
Toward a Unified Approach to Coupling

Aaron B. Binkley and Stephen R. Schach
Computer Science Department, Vanderbilt University, Nashville, TN

{binkley, srs}@vuse.vanderbilt.edu

A b s t r a c t
We describe a unified approach to coupling that incorporates
four disparate elements, namely, taxonomies for classical
coupling; taxonomies for object-oriented coupling; metrics
for classical coupling; and metrics for object-oriented
coupling. A single instance of coupling between two
modules (or classes) can incorporate several points of depen­
dency between the two modules (or classes). It is the
combination of the effects of these dependencies that gives
the true measure of that instance of coupling. We identify a
metric based on three types of dependencies that commonly
exist between modules, namely, referential dependency, a
measure of the extent to which the program relies on its
declarations remaining unchanged; structural dependency, a
measure of the extent to which the program relies upon its
internal organization remaining unchanged; and data integrity-
dependency, a measure of the vulnerability of data elements
in one module to change by other modules. We show how
this approach can be used to describe different forms of
coupling. We also compare our metric with another cou­
pling metrics.

1. I n t r o d u c t io n
The coupling between two classes is a measure of the degree
of dependency between the classes [10]. High coupling has
a deleterious effect on both maintainability and reusability
[12]. Accordingly, measuring the coupling between pairs of
classes is an important design metric.

If we wish to measure the coupling between two
classes, there are four different approaches that we can adopt.
First, in view of the fact that a class is a special case of a
classical module, we can use one of the many taxonomies of
the classical (structured) paradigm, such as that of [10] or
[12]. Thus, the classical coupling between two classes can
be described as, say, common coupling or data coupling.
Second, we can classify the coupling according to one of the
many taxonomies specific to the object-oriented paradigm,
including [2] or [13]. Using such a taxonomy, coupling
between two classes might be classified as. say, interface
coupling or outside internal object coupling from the side.

Notwithstanding the widespread use of classical and
object-oriented coupling taxonomies, these approaches have
an inherent problem, namely, the level of granularity at

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

© 1997 ACM 0-89791—925-4

which they are applied. A major purpose of evaluating cou­
pling is to determine maintainability and reusability. These
two qualities are affected by a variety of factors. For exam­
ple, when the coupling is via a calling interface, the factors
include the number of parameters and whether they are
passed by value or by reference. Even though the many
published taxonomies differ as to details, all agree that class
A passing a simple data item to class B (data coupling) is
preferable to the situation where classes A and B can both
potentially modify the same global variable (common cou­
pling). However, what if class A passes 57 simple data
items to class B? In terms of the standard taxonomies this
is indeed data coupling, but both maintainability and
reusability are adversely affected. In fact, most designers
would prefer to have common coupling with one shared
variable than to have data coupling with an excessive
number of parameters. Another problem with taxonomies is
that they are ordered, not numeric. That is, we can say that
coupling category Ci is better than category C2 , but we
cannot attach a numerical value to either of the two
categories as we can with a less qualitative metric. Because
of these problems, we believe that existing coupling
taxonomies are inadequate from the viewpoint of measuring
the coupling between two classes.

The other two approaches we can take to measuring the
coupling between two classes are classical coupling metrics
and object-oriented coupling metrics. There are a variety of
classical coupling metrics, including metrics based on fan-in
and fan-out [8] and on measures of complexity [5, 7].
Again, we believe that these metrics are at too high a level
of granularity. For example, fan-out is the same in two
different instances of common coupling, one in which two
classes access a global data element by name, the other in
which they do so by giving a byte offset into a shared
memory area. The two situations are different from the
viewpoints of maintainability and reusability, and this
should be reflected in the coupling metric.

Instead of applying classical metrics to the object-
oriented domain, specifically object-oriented metrics can be
used. Some of these are applicable to coupling, such as the
metrics of [6] and [9]. However, here again the level of
granularity does not permit the designer to distinguish
between variations of the forms of coupling measured by
those metrics. For example, the value of the coupling
between object classes (CBOC) metric [6] is the same for a
given class, regardless of the number of interface items from
other classes it actually references.

In addition to the difficulties specific to each approach,
there is one problem that is common to all four, namely,
the fact that there are four different approaches. What is

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2817460.2817486&domain=pdf&date_stamp=1997-04-02

needed is a unifying approach to measuring coupling that is
equally applicable to both paradigms.

In this paper, we describe the coupling dependency
metric (or CDM), a coupling metric that solves these
problems. First, the level of granularity is low enough to
distinguish between subclasses of coupling. Second, the
metric is domain-independent; it is equally applicable to the
structured and object-oriented domains.

The basis for our metric is that a single instance of
coupling between two modules (or classes) can incorporate
several points of dependency between the two modules; it is
the combination of the effects of these dependencies that
gives the true measure of that instance of coupling. We
identify three types of dependencies that commonly exist
between modules. Referential dependency is a measure of
the extent to which the program relies on its declarations
remaining unchanged; structural dependency measures the
extent to which the program relies upon its internal
organization remaining unchanged; data integrity dependency
is a measure of the vulnerability of data elements in one
module to change by other modules. We obtain an overall
measure of the coupling by combining these three
dimensions of coupling.

In the next section, we define the coupling dependency
metric. In Section 3 we calculate it for declaration coupling,
a recently identified form of coupling. The CDM for
classical forms of coupling is presented in Section 4, and for
object-oriented forms in Section 5. Comparisons between
our metric and other coupling metrics are presented in
Section 6. A discussion and conclusions are presented in
Section 7.

2. Defining the Coupling Dependency
Metric
Coupling exists between two modules (or classes) when a
change made to one module (or class) can potentially change
the other module (or class). Instead of attempting to use
just one dimension to measure coupling, we propose three
distinct dependency dimensions (or facets). In this section
we define the three constituent facets of the coupling
dependency metric.

The dependency between two modules (or classes) is
then measured with respect to each of these three facets in
dependency units (DU), a discrete integer scale. The
resulting dependency vector is defined to be the coupling
dependency metric (CDM). This is a measure of the
coupling between the respective two modules (or classes).
The facets can be used separately, or they can be summed to
provide a single composite measure of the instance of
coupling.

We now define our three dimensions. The first is
referential dependency, a measure of the extent to which a
program relies on its declarations remaining unchanged. If a
module A makes a reference to a component element of a
module 8 (either explicitly or implicitly), this makes mod­
ule A dependent on the stability of module B. Thus, each
reference within module A to a distinct component element
in another module introduces one unit of dependency. Each
such reference is represented by the dependency vector R =

(1,0, 0). For example, if module A accesses a variable x
declared within module B by giving the name of the variable,
module A is referentially dependent on module B.

The second of the dimensions is that of structural
dependency, and it measures the extent to which a program
relies on its internal organization remaining unchanged. The
sharing of information between modules written in a high-
level language is often constrained by the physical structure
of the design of the program, often hierarchical in the case of
the object-oriented paradigm. It is important to measure the
extent to which modules depend on their relative positions
in the overall program structure. Each such constraint on
the program structure introduces a unit of dependency and
each can be represented by the dependency vector S = (0,1,
0). For example, in a language such as Pascal, if module A
calls module B, module B must have been defined before A in
the program, and this imposes a structural dependency
between the two modules.

The third and last of the dimensions is that of data
integrity dependency, a measure of the vulnerability of data
elements in one module to change by other modules. When
module A shares information with module B, it is important
to measure the level of vulnerability introduced to the
program because of this sharing. One unit of dependency is
introduced for each data element within module A for every
other module that may alter the value of that element, and
each is represented by the dependency vector D = (0, 0,1).
For example, if module B may change the value of variable x
which is declared within module A, the data integrity of A is
dependent on module B.

Next, all the individual R , S , and D vectors are
summed. The value of the CDM metric is then the
resulting vector. The component values of the vector can be
used separately (e.g., to express the total structural
dependency in an instance of coupling), or the facets can be
summed to provide a single composite measure of the
dependencies within the instance of coupling.

To illustrate how this works, we now show how these
three facets occur in a well-known form of classical
coupling, namely, common coupling. Common coupling
occurs when two modules can both potentially modify the
same variable [10, 12], When a data element is shared
between two modules through common coupling, there exist
several dependencies which can be measured in their
appropriate dimensions. In the Pascal* code of Figure 1,
for example, data element x of procedure p1 is accessed by
procedure p3, and the following dependencies exist in this
typical example of common coupling:

1. Procedure p3 is dependent on the declaration of the name
x in p 1; that is, p 1 must not change the name of
variable x because of the reference to it in p3 (1 DU of
referential dependency).

* One might wonder why Pascal was chosen instead of a
language more commonly used in industry (e.g., COBOL
or C), but a hierarchical language providing the nesting
of modules was needed for this example.

procedure p1;
var x : integer;

procedure p3;
begin f p3 *)

fo rx := Oto 100 do
writeln (x)

end;
begin (* p1 *)

P3
end;

Figure 1: Simple example of common coupling.

2. Procedure p3 is dependent on the type declaration of x in
p1; that is, p1 must not change the type of variable x
because of the assumption within p3 that x is an
integer. This is an implicit reference by p3 to the type
of x (1 DU of referential dependency).

3. Because of the rules for the scope of identifiers in
Pascal, p3 must be nested within p 1 in order to have
access to the variables of p1. Therefore, the accessing
of x is dependent on the structure p 1 =3 p3 [read: “p 1
contains p3”] (1 DU of structural dependency).

4. Procedure p3 can change the value of x (1 DU of data
integrity dependency).

Combining the above component dependencies, the
dependency vector for this simple instance of common
coupling is (2 , 1, 1).

3. C alculating CDM for Declaration
Coupling
Before we can consider other forms of coupling, both
classical and object-oriented, we need to consider a recently
identified form of coupling, namely, declaration coupling
[3]. Although a distinct form of coupling, it usually occurs
in combination with other categories of coupling.
Declaration coupling is treated separately in this section so
that once its effects on maintenance and reuse are quantified,
these results can be combined with additional dependencies
to express more succinctly the complete effects of the other
forms of coupling which are encountered in the classical and
object-oriented paradigms.

Declaration coupling is a form of coupling found in
both the classical and object-oriented paradigms. It is
defined as follows: Let A and B be mutually disjoint modules.
If module A contains a declaration (that is, a definition of the
implementation of a data structure or a code sequence, or
both) and if there is an (implicit or explicit) instance of that
declaration in module B, then A and B are declaration
coupled. (As will be described later, the phrase “contains a
declaration” includes an implicit null declaration.)

In the Pascal code of Figure 2, for example, procedure
p3 is declaration coupled to procedure p1 because p3 uses a
data type that was defined in p1. This induces the following
dependencies:

procedure p1;
type percent = 0 .. 100;
procedure p3;

var x : percent;
begin (* p3 *)

fo rx := 0 to 100 do
writeln (x)

end;
begin {* p1 *)

p3
end;

Figure 2: Simple example of declaration coupling.

procedure p1;
type percent = 0 .. 100;

procedure p2;
procedure p3;

var x : percent;
begin (* p3 *)

fo rx := Oto 100do
writeln (x)

end;
begin (* p2 *)

p3
end;

begin (* p1 *)

P2
end;

Figure 3: More complex declaration coupling

1. Procedure p3 is dependent on the declaration of the name
percent in p1; that is, p1 must not change the name of
type percent because of the reference to it in p1 (1 DU
of referential dependency).

2. Procedure p3 is dependent on the type declaration of
percent in p 1 ; that is, p 1 must not change the
declaration of percent because of the reference in p3 to
the physical attributes of percent data elements. This
is an implicit reference by p3 to the declaration of per­
cent (1 DU of referential dependency).

3. Because of the rules for the scope of identifiers in
Pascal, p3 must be nested within p1 in order to have
access to the type declarations of p1. Therefore, the use
of percent is dependent on the structure p1 z> p3 (1 DU
of structural dependency).

Given the above dependencies, the vector for this simple
instance of declaration coupling is therefore (2 , 1, 0).

Declaration coupling between modules can take a more
complicated form as the Pascal example of Figure 3
illustrates. In this example, p3 is still sharing percent with
p1, but the further condition exists that p3 is now nested
within procedure p2. At first glance, one might say that p2

is independent of the declaration coupling of modules p1 and
p3, but that is not the case. If a new identifier percent were
declared within p2, the reference to percent in p3 would no
longer be bound to the declaration of percent within p1, but
instead it would be bound to the declaration of percent
within p2. Because we cannot make arbitrary changes to p2
without considering the implications they may have on the
declaration coupling of p1 and p3, p2 is not, in fact,
independent of p1 and p3 with regard to the sharing of type
percent. Therefore, we must measure this dependency as
well. Along with the previous dependencies, there is a
fourth dependency here, namely:

class Quadrilateral: public Polygon {
private:

float area;
public:

void setarea (float newarea);

};
void Quadrilateral:: setarea (float newarea) {

area = newarea;

}
Figure 4: Sample C++ class declaration.

4. Procedure p3 is dependent on an implicit null
declaration of percent in p2; that is, p2 must not de­
clare a local identifier percent. This is an instance of
declaration coupling between p2 and p3 (1 DU of
referential dependency).

Although the above dependency is between p2 and p3,
we include its negative effects into the measure of the
declaration coupling between p1 and p3 because the coupling
exists as a consequence of the declaration coupling between
p1 and p3.

Each instance of implicit null declaration coupling
introduces one unit of referential dependency into the
program (due to the dependency on the null declaration) and
is described using the dependency vector (1,0, 0). There
will be one such unit for each level of nesting.

The overall dependency vector for the instance of
declaration coupling between p1 and p3 shown in Figure 3
is thus (3, 1, 0). In general, the declaration coupling
between two modules is described by the vector [(2 , 0, 0) +
ID + IS], where ID reflects the dependencies introduced by
implicit null declaration coupling and I S reflects the
dependencies introduced by the structural restrictions
imposed by the programming language. In Pascal, for
example, structural dependency is induced by the need for
nesting in situations such as that depicted in Figure 3.

4. Calculating CDM for Classical Forms
of Coupling
As previously defined, the term classical coupling refers to
the taxonomy of coupling first defined by Stevens, Myers,
and Constantine in their landmark 1974 paper [12]. In the
previous section, we showed how to derive CDM for a
simple form of common coupling. We have also derived
CDM for the classical types of coupling. For the sake of
brevity, we omit the details and give only the results here.
In all five formulae that follow, ID reflects the dependencies
introduced by the declaration couplings present (including
implicit null declaration couplings), and I S reflects the
dependencies introduced by the structural restrictions
imposed by the programming language.

Content [(2, 0, ICSI) + ID + IS], where ICSI is
Coupling the number of instructions in the code

segment being accessed.

[(2, 0, v) + ID + IS], where v is the
total number of variables shared
between the two modules.

[(2Pt + \CV\ + 2, 0, 0) + ID + IS],
where Pt is the total number of parame­
ters, and \CV\ is the number of possible
values that the control variable can
assume.

[{2Pt + 2,0, Ar) + ID + IS], where Pt
is the total number of parameters, and
Ar is the total number of atomic data
elements passed between the two
modules by reference (as opposed to
simply the number of parameters passed
by reference).

\f2Pt + 2, 0, Pr) + ID + IS], where Pt
is the total number of parameters, and
Pr is the total number of parameters
passed by reference.

5. Calculating CDM in the Object-
Oriented Paradigm
We tum now to some published taxonomies of object-
oriented coupling categories. Again, for the sake of brevity,
we explicitly show the derivation for just one type of
coupling, and then cite the results for others.

If object A references a component of the public interface
of object B, objects A and B are interface coupled [13]. This
usually takes the form of object A invoking a method of
object B or changing the value of an instance variable of
object B. For example, given the C++ code of Figure 4, if
some object A invokes the setarea method of an object B of
class Quadrilateral, this induces the following dependencies:

1. Object A is dependent on the declaration of method
setarea; that is, method setarea must not be renamed
because of the reference to it in object A (1 DU of
referential dependency).

2. Object A is dependent on the type declaration of the
return value of method setarea; that is, method setarea
must not return a result which is incompatible with
what object A expects (1 DU of referential dependency).

Common
coupling

Control
Coupling

Stamp
Coupling

Data Coupling

class Polygon : public Shape {
private:

float area;
public:

void setarea (float newarea);

class Polygon : public Shape {
private:

float area;
public:

void setarea (float newarea);

class Quadrilateral: public Polygon { class Quadrilateral: public Polygon {

void Polygon :: setarea (float newarea) {
area = newarea;

}

Figure 5: C++ Class inheriting a method.

3. Object A is dependent on the type declaration of
parameter newarea of method setarea. This is an
implicit reference by object A to the type of newarea (1
DU of referential dependency).

4. Because of the rules for the scope of identifiers in C++ ,
the definition of Polygon must precede the definition of
Quadrilateral, that is, Polygon z> Quadrilateral (1 DU
of structural dependency).

Given the above component dependencies, the
dependency vector for this typical instance of interface
coupling is (3, 0, 1).

Additional dependencies are introduced, though, when
methods are passed multiple parameters. In such a case, the
invoking object must match its parameter list to that of the
method it invokes, and this requirement induces the
following dependencies:

5. In C++, formal and actual parameters are paired accord­
ing to their relative positions in the parameter lists.
This assigns each formal parameter a unique name cor­
responding to its ordinal position in the list. Therefore,
the invoking method is referentially dependent on the
ordinal names of the parameters of the method (1 DU of
referential dependency per parameter).

6 . The invoking object is also dependent on the type
declarations of the additional parameters of the method
(1 DU of referential dependency per parameter).

In addition, there are three other situations which may
complicate the interface coupling between two objects,
namely, when the method being invoked is an inherited
method, when the inheritance of the method is through
multiple generations, and when there are additional attributes
listed in the public interface.

The C++ code of Figure 5 shows an example of the
first complication. Class Quadrilateral inherits method
se tarea from class Polygon. If an object invokes the
setarea method of an object of class Quadrilateral, the
object is dependent on the presence of setarea in the public

class Square : public Quadrilateral {

};

void Polygon :: setarea (float newarea) {
Polygon :: area = newarea;

}

Figure 6: Inheritance through multiple generations.

interface of class Quadrilateral, and by transitivity the
following dependencies are induced:

7. The interface of Quadrilateral is dependent on that
class’s inheritance from Polygon; that is, class Quadri­
lateral may not be moved in the class hierarchy so that
it is no longer a descendant of Polygon. Therefore, the
interface of the Quadrilateral object is dependent on the
structure Polygon +- Quadrilateral (read: “Polygon is
an ancestor of Quadrilateral”) (1 DU of referential de­
pendency).

8. The interface of Quadrilateral is dependent on the
definition of the setarea method of class Polygon being
public. If its definition were later changed to private,
Quadrilateral could no longer inherit it. Therefore,
there is an implicit reference to the definition of the ac­
cess type of setarea (1 DU of referential dependency).

The situation is further complicated when, as in
Figure 6 , the second condition exists, that is, the
inheritance of the method is through multiple generations.
Assuming that an object invokes the se ta rea method
(inherited from Polygon) of a Square object, the following
additional dependencies are induced:

9. Not only is the interface of class Square dependent on
Quadrilateral +- Square, but also on Polygon «-
Quadrilateral. In general, there will be additional refer­
ential dependencies equal to the length of the path be­
tween the descendant class and the ancestor class from
which it inherits a method.

10. The interface of Square is dependent on an implicit null
declaration of method setarea within class Quadrilat­
eral. If Quadrilateral were to have a method defined
with that name, Square would inherit the method from
Quadrilateral instead of from Polygon, and this might
cause a number of undesirable effects. In general, there

class Quadrilateral: public Polygon {
public:

float area;
char name [15];
void setarea (float newarea);

void Quadrilateral:: setarea (float newarea) {
area = newarea;

}
Figure 7: Sample C ++ public interface.

is implicit null declaration coupling between a class and
each of its ancestor classes along the path between the
descendant class and the ancestor class from which it inherits
a method.

Finally, Figure 7 shows an example of the third
complication, namely, there are additional attributes listed in
the public interface. If the designers of a class include
attributes in the public interface of the class, this has the
undesirable effect of giving access to all of these attributes
to those modules which reference objects of that class. This
induces a unit of data integrity dependency for each attribute
listed in the public interface.

Combining all these component dependencies, the
dependency vector for a typical instance of interface coupling
is [(2Pt + 3, 0, v) + ZD + ZS], where Pt is the total
number of parameters, v is the number of variables in the
public interface, ZD reflects the dependencies introduced by
the declaration couplings present (including implicit null
declarations), and ZS reflects the dependencies introduced by
the structural restrictions imposed by inheritance.

Again, for brevity, we simply cite the coupling
dependency metric for the object-oriented coupling categories
listed in [2], In all four formulas that follow, ZD reflects
the dependencies introduced by the declaration couplings
present and IS reflects the dependencies introduced by the
structural restrictions imposed by the programming
language.

Interface [(2Pt + 3, 0, v) + ZD + ZS] where Pt
Coupling is the total number of parameters and v

is the number of variables in the public
interface.

Outside Internal [(3, 0, v) + ZD + ZS], where v is the
Object total number of variables (or attributes)
Coupling from in the accessed class,
the Side

Outside Internal
Object
Coupling from
Underneath

[(3, 0, v) + ZD + ZS], where v is the
total number of variables (or attributes)
visible from underneath the accessed
class.

Inside Internal
Object
Coupling

[(2, 0, v) + ZD + ZS], where v is the
total number of variables (or attributes)
in the container class.

A useful side effect of CDM is that it assigns a
“signature” (rd, sd, di) to an instance of coupling. First, the
signature of common coupling is identical to that of inside
internal object coupling. This is in accord with the claim
that every category of object-oriented coupling reduces to a
category of classical coupling, and that inside internal object
coupling is simply another name for common coupling
[11]. Second, the signatures of outside internal object
coupling from the side and outside internal object coupling
from underneath are the same. This implies that the two
categories of object-oriented coupling have similar negative
effects on reusability and maintainability.

6. Comparison with Other Metrics
We compared the five CDM formulae for classical coupling
presented in Section 4 with classical coupling taxonomies.
We computed the composite value of CDM for a large range
of values of the parameters. In almost all cases, the
resulting ordering of the value of CDM for the five formulae
is precisely that of the corresponding five classical coupling
categories in the taxonomies of [10] and [12]. That is, the
worse the coupling, the higher the value of CDM. The
CDM metric is therefore plausible, at least within the
classical domain.

With regard to the object-oriented domain, we tested
CDM using data presented in [1], The authors of that paper
submitted two or three versions of various object-oriented
design fragments to experts and asked those experts to decide
which version had the better design. They then compared
the experts’ opinion with the result of applying their
permitted interaction metric (PIM) to the same versions.
When we applied our CDM to the 18 design fragments in
[1], we found that in 14 out of the 18 cases (78%) CDM
agreed with the experts as to which was the better design;
these results are fully discussed in [4], Thus, CDM appears
to perform well as a measure of object-oriented design
quality.

7. Discussion and Conclusions
We have developed the coupling dependency metric (CDM),
a metric for coupling that incorporates three different
dimensions or facets. The CDM between two modules is
the 3-dimensional vector representing the three facets of
coupling. The facets can be used separately, or they can be
summed to provide a composite measure of the dependencies
in an instance of coupling.

One strength of CDM is its multidimensional
(multifaceted) nature. A problem with almost all previous
coupling metrics is that they essentially measure a single
quality, such as fan-in/fan-out or a count of the number of
other classes to which a given class is coupled. In contrast,
CDM measures three distinct quantities, namely, referential
dependency, a measure of the extent to which the program
relies on its declarations remaining unchanged; structural
dependency, a measure of the extent to which the program

relies upon its internal organization remaining unchanged;
and data integrity dependency, a measure of the vulnerability
of data elements in one module to change by other modules.
Taking the sum of these three dimensions of coupling we
obtain an overall measure of an instance of coupling. In
this way, we can incorporate what we believe to be all the
facets of coupling into one number.

In our opinion, however, the greatest strength of CDM
is that is unifies the classical and object-oriented paradigms.
That is, instead of having two different taxonomies or two
different sets of metrics, one for software developed using
the classical paradigm and the other for software developed
using the object-oriented paradigm, there is just one metric
applicable to both paradigms that replaces both the two
taxonomies and the two sets of metrics.

References
[1] D. H. Abbott, T. D. Korson, and J. D. McGregor, “A

Proposed Design Complexity Metric for Object-
Oriented Development,” Technical Report 94-105,
Clemson University, Clemson, SC, April 1994.

[2] E. Berard, Essays in Object-Oriented Software
Engineering, Prentice-Hall, Englewood Cliffs, NJ,
1993, pp. 72-130.

[3] A. B. Binkley and S. R. Schach, “A Classical View of
Object-Oriented Cohesion and Coupling,” Technical
Report 96-06, Computer Science Department,
Vanderbilt University, Nashville, TN, 1996.

[4] A. B. Binkley and S. R. Schach, “A Comparison of
Sixteen Quality Metrics for Object-Oriented Design,”
Information Processing Letters 57 (No. 6, 1996), pp.
271-275.

[5] D. N. Card and R. L. Glass, Measuring Software
Design Quality, Prentice-Hall, Englewood Cliffs, NJ,
1990.

[6] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite
for Object Oriented Design,” IEEE Transactions on
Software Engineering 20 (June 1994), pp. 476-493.

[7] B. Henderson-Sellers and J. M. Edwards, The Working
Object, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[8] S. Henry and D. Kafura, “Software Structure Metrics
Based on Information Flow,” IEEE Transactions on
Software Engineering 7 (May 1981), pp. 510-518.

[9] M. Lorenz, Object-Oriented Software Development: A
Practical Guide, Prentice-Hall, Englewood Cliffs, NJ,
1993, p. 227.

[10] S. R. Schach, Classical and Object-Oriented Software
Engineering, Third Edition, Richard D. Irwin,
Chicago, 1996.

[11] S. R. Schach, “On the Cohesion and Coupling of
Objects: A Classical Approach,” Journal of Object-
Oriented Programming 8 (January 1996), PP. 48-50.

[12] W. P. Stevens, G. J. Myers, and L. L. Constantine,
“Structured Design,” IBM Systems Journal 13 (No. 2,
1974), pp. 115-139.

[13] F. H. Wild, “Managing Class Coupling,” UNIX
Review 9 (October 1991), pp. 44-47.

