
A Visualization and Measurement Environment
for Software Engineering

T. Dean Hendrix, James H. Cross II, Larry A. Barowski, Joseph C. Teate,
Karl S. Mathias, and Tahia I. Morris

Auburn University
Email: hendrix@eng.aubum.edu

Abstract- Work is reported on the development and
enhancement of the GRASP software engineering and
visualization tool. GRASP automatically produces
visualizations of control and complexity (control
structure diagrams and complexity profile graphs,
respectively) of source code written in Ada 95, C, and
Java. These visualizations use intuitive, compact
graphical representations that allow the software
engineer to holistically visualize the overall program as
well as visualize the details of a small section of the code.
Current features and enhancements of GRASP as well as
its availability are discussed.

1. Introduction
Software visualization is an active area of research that
investigates efficient and effective ways of automatically
producing graphical representations of program source
code, algorithms, or the runtime behavior of software.
Such visualization technology promises to bring
considerable help to bear on difficult and costly issues in
software engineering such as communicating program
information for the purposes of testing, maintenance, and
reverse engineering [2].

As part of the ongoing GRASP project at
Auburn University, we have developed a software
engineering tool, GRASP/Ada that automatically
produces a control structure diagram (CSD) visualization
of Ada source code and PDL in a manner flexible and
efficient enough for professional application [3], Initial
empirical studies indicate the usefulness of the CSD and
the practical potential for tools such as GRASP/Ada [4].

Despite the potential usefulness of visualizations
such as the CSD, there is considerable evidence that the
effectiveness of visualizations is quite sensitive to issues
such as the user’s skill level (the ability of a user to
interpret a given visualization) and the manner in which
the visualization is produced (the suitability of a given
visualization to be correctly interpreted) [7]. Recognizing

Permission to make digital or hard copies of part or all o f this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

© 1997 ACM 0-89791-925-4

these facts, we have enhanced the GRASP software
visualization tool to incorporate significant new features
which make the resulting visualizations more useful.

In this paper we discuss three enhancements to
GRASP: the measurement of source code through the
complexity profile graph, the scalability of visualization
through unit symbols, and the extension of GRASP to
multiple languages.

2. The Complexity Profile Graph
The complexity profile graph (CPG) [6] is a new fine
grained complexity metric. Unlike other many other
complexity metrics, the CPG provides a composite profile
of a program’s complexity at the individual statement
level rather than producing a single metric for the entire
program. This composite profile can be viewed as a
graph and synchronized with a visualization of source
code structure such as the CSD. The statement-level
profile nature of the CPG is particularly useful for
identifying the complex clusters of code in large
programs. The CPG in Figure 1 easily allows the user to
quickly identify the complex clusters of code and
appropriately concentrate their efforts. This CPG was
automatically produced by GRASP and is synchronized
with a CSD window (not shown) containing the
corresponding source code.

Figure 2 shows a CPG window synchronized
with a separate window containing the CSD visualization
of the corresponding source code. Once the complex
clusters are identified, the user can simply click on a line
in the cluster and be automatically scrolled there in the
CSD window.

The CPG is composed of five individual
measures of statement-level complexity: content
complexity, inherent complexity, statement reachability,
statement breadth complexity, and total complexity (a
weighted sum of the other four). Each of these five
measures may be plotted individually, in combination
with each other (as shown in Figure 3 and Figure 4) or as
a weighted sum called the Total Complexity (as shown in
Figure 1 and Figure 2).

mailto:hendrix@eng.aubum.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2817460.2817488&domain=pdf&date_stamp=1997-04-02

• ■ • 4gsK-æ___ ■ '■ ■■ ■■ isesræ jse tte tsam m m iM
-- :̂ç<: -

Complexity IS

Totals

Complexity B953.G172

50

40

30
20
10
0

200 400 600

Segment Number

BOO 1000

Figure 1. CPG Identifying complex clusters of code.

3. CSD Unit Symbols
One of the ways in which visualization tools should aid
the software engineer is in scaling from one level of
abstraction to another. For example, a reverse
engineering effort might begin at the source code level,
then progress to the architecture and on to the design
level. To provide cognitive leverage to the user in making
these transitions, GRASP has added new unit symbols to
its notation for program units such as procedures,
functions, packages, and tasks.

The standard CSD has always provided the box
symbols shown in Figure 5. Now, the user can choose
four different modes of viewing program units: box
symbols only, unit symbols only, box symbols and unit

symbols together, or no symbol at all. The new unit
symbols, shown in Figure 6 are patterned after Booch’s
module notation [1] but include additional original
symbols for task entry, protected specification and body,
and exception handler. As programs increase in size and
complexity, the CSD unit symbols become more useful in
comprehending the Ada source code since they can
provide a direct visual relation to the architectural
diagrams of the system

4. The GRASP Environment
In addition to the visualizations, GRASP provides the
user with a complete program development environment,
including a lull-featured program editor, compiler,

-- subprograms, tasks, protected units

-- package specifications and bodies

I

task specifications and bodies

r

generic
-- generic subprograms

generic
-- generic packages

4 ========

Figure 3. CPG plotting Total Complexity and Content
Complexity separately.

Figure 5. CSD Box symbols.

B - subprogram specification

H subprogram body

m - package specification

a - - package body

ÏÉ7-- task specification

■3 task body

Ü j — generic package

B -- generic subprogram

m L - protected specification

a - - protected body

exception handler

Figure 4. All five complexity measures plotted separately. Figure 6 . CSD Unit Symbols.

linker, and runtime window. Users organize and control
a session with GRASP through the Control Panel, shown
in Figure 7. Menu options on the Control Panel provide
functions such as selecting of a printer, accessing the
user manual, and setting user preferences.

The File option allows the user to open one or
more CSD windows. Each CSD window, as shown in
Figure 8, is a full-function text editor with the additional
capabilities to generate, display, edit, and print CSDs of

source code and also perform syntax checks,
compilations, makes, and executions of the source code.
The File and Edit options are similar to traditional text
editors, complete with cut-copy-paste and undo options.

Multiple CSD windows may be opened to access
several files at once. File names and their associated
directory paths are selected under the File option and
displayed at the top of each window. Each time a source
code file is loaded, the CSD is automatically generated if

Figure 7. GRASP Control Panel

Auto (next to Generate CSD on the toolbar) is turned
on. If Auto is not turned on, the user may elect to use
GRASP only as a text editor and not take advantage of
the visualization options, or generate the CSD and CPG
visualizations independently and on demand.

Pressing Generate CSD on the toolbar (or
control-g, or FI) will immediately render the CSD of the
source code in the CSD window. All white space and
comments are preserved with the exception of leading
indentation with is replaced by the CSD. If a parse error
occurs during CSD generation, the cursor is moved to the
highlighted line containing the error and a message
window appears informing the user of the error, as
shown in Figure 9. The CSD generation and display
cycle is extremely fast, rendering approximately 20,000
line of code per second on a Sun UltraSparc. Thus,
generating the CSD is also a quick way to check for
syntax errors without performing a much slower

' ;r | . . G B A S P O D (A d iS f r .n « / e s 0 ^ 1 i i / l i e « l r h i / i A i * 9 n / e r t s p _ s t n * a ^ f t r e tx /r ilj te tr& a d b "

mum
' ' >M. ,'______■ £ _______ _____

I procedure Dljkefere (T : in out Table) is

-- Adapted from _Data Structure* and
-- Algoritha Analysis in Ada_ by Weiss
• V : Vertex)
• W : Vertex;
begin
f for 1 in 1..Num_vertex loop

:- Small«*t_Unknown_Ois tance.Vertex j
— T<v).Known :» True)

Tfor w in Adjacent(V) loop
—(S if < not T(W).Known) and then

((T(V).Dist + Cost<V,wn < T(W).Dist) then
-- update w .
— Decrease (T(W) .Dlst, To -> T(v) .Dist + Coet(v,i
— T (W) . Path :« V,I
■ end if;

end loopi
end loop;

.end Dijkstra)

Figure 8. GRASP CSD Window

compilation. The net result is that the CSD window can
be used in place of a traditional program editor to
generate, display, edit, and print CSDs and check for
syntax errors with virtually no overhead; i.e., the CSD is
essentially free.

View allows the user to select any combination
(or none) of the following: the standard CSD box
notation, alternate CSD program unit symbols, and line
numbers. The Template option opens a tear-off menu of
templates to aid in writing code. A selection of one of the
template choices will cause a block of text, typically a
pre-defmed program structure, to be pasted into the
source code at the point of the cursor. Users can also add
any number of personal template items to the list. The
CSD in Figure 10 is the result of choosing the Ada
program templates “package body”, “procedure body”,
and “infinite loop.”

5. Many Languages, One Development
Environment
GRASP is designed around the language independent
model of rendering described in [5]. Thus, the rendering
algorithm is independent of a particular source language,
although a certain amount of preprocessing is necessarily
language dependent. In the current GRASP prototype,
the CSD window is capable of providing the same
functionality for many different languages, including
Ada, C, and Java. Languages to be included in the near
future include C++ and VHDL. Figure 11 and Figure 12
show examples of C and Java programs respectively
constructed automatically using GRASP’s template
feature for these languages.

GRASP users are presented with a single tool
and interface for multiple languages, making GRASP
well suited to the needs of those involved with the

Figure 10. GRASP’s template feature.

development or maintenance of multi-lingual software
systems. GRASP not only provides a common editing
and visualization environment for its supported
languages, but also provides compilation, make, and
execution capabilities. GRASP is coupled with the
GNAT Ada 95 and GNU C compilers. The CSD window
allows the user to invoke gcc directly for the current
program unit to perform a Make or a Compile and set
compiler flags via the Flag Setup dialog box. When an

error is reported by the compiler, the offending line of
code is highlighted in the CSD window and a message
window is raised to inform the user of the nature of the
error.

After making an executable, the user may run
the file directly from the CSD window by selecting Run,
Run Previous, or Run File. Run assumes the user wants
to run the executable associated with the source file in
the current CSD window. Run Previous runs the file that
was executed by the most recent Run option. Run File
opens a file select dialog box and allows the user to run
any existing executable. The Run Shell Window is
opened for input/output to the executing program. This
shell runs as a separate process to the execution of the
user’s program cannot affect GRASP. A separate dialog
box that is raised during a Run option allows the user to
send various signals to the executing program (e.g.,
interrupt or kill).

6. T h e G R A S P M odel
The major system components of the latest full release of
GRASP are shown in the block diagram in Figure 13.
Currently, the entire prototype is written in the
programming language C and runs under Solaris.

The user interface was built using Motif and the
X Window System. The CSDgen component controls the
generation of control structure diagrams, the CPGgen
component controls the generation of complexity profile
graphs, and the ODgen component controls the

Figure 12. CSD window for Java.

source code CSD CPG OD

Figure 13. GRASP block diagram.

generation of object diagrams.
The GRASP library component, GRASPlib,

supports coordination of all generated items with their
associated source code. The current file organization uses
standard UNIX directory conventions as well as default
naming conventions to facilitate navigation among the
diagrams and the production of sets of diagrams.

The control structure diagram generator,
CSDgen, inputs source code and produces a CSD.
CSDgen has its own parser/scanner built using FLEX
and BISON, and also includes its own printer utilities.
When changes are made to the source code, the entire file
must be reparsed to produce an updated CSD. A CSD
editor, which will provide for dynamic incremental
modification of the CSD, is currently in the planning
stages.

The object diagram generation component,
ODgen, is in the analysis phase and has been
implemented as a separate preliminary prototype. The
feasibility of automatic layout of object diagrams so that
they are both useful and aesthetically pleasing remains
under investigation.

6. C onc lu sion
GRASP is a software engineering tool providing
automatic visualization, measurement, and program
development environments for Ada 95, C and Java.
Other languages such as C++ and VHDL are currently
being integrated into the tool. GRASP is being used in
five computer science classes at Auburn University and
numerous educational and government institutions have
downloaded and installed the tool. The most recent
prototype has significantly extended the functionality of
GRASP. Especially noteworthy are the additions of
complexity visualization in the form of the CPG,
visualization scaling in the form of Booch module
symbols, and support for multiple languages. Preliminary
studies (publication currently in progress) indicate that
GRASP is highly useful to software engineering efforts

and further empirical studies are currently being planned
and implemented.

GRASP is freely available via the Internet at the
following URL:

http://www.eng.auburn.edu/grasp.html

Acknowledgments
The GRASP project has been supported, in part,

by grants from NASA, ARPA, and DISA.

References

[1] Booch, G. and Bryan, D. Software Engineering
With Ada, 3rd Edition, Benjamin/Cummings,
1994.

[2] Cross, J. H. Improving Comprehensibility of
Ada With Control Structure Diagrams.
Proceedings o f Software Technology
Conference, April 11-14, 1994, Salt Lake City,
UT.

[3] Cross, J. H., Chang, K. H. and Hendrix, T. D.
GRASP/Ada95: Visualization With Control
Structure Diagrams. CrossTalk: Defense
Software Engineering Journal, 9, 1, (1996), 20-
24.

[4] Cross, J. H., Maghsoodloo, S., and Hendrix, T.
D. The Control Structure Diagram: An
Overview and Initial Evaluation, (submitted for
publication).

[5] Cross, J. H and Hendrix, T. D. Language
Independent Software Visualization. P. Eades
and K. Zhang (eds.), Software Visualization,
World Scientific Publishing Company, (1996).

[6] McQuaid, P. A., Chang, K. H. and Cross, J. H.
Complexity metric to aid Software testing and
maintenance. Proceedings o f Decision Sciences
Institute, 2, (1995), 862-864.

[7] Petre, M. Why Looking Isn’t Always Seeing:
Readership skills and Graphical Programming,”
Communications of the ACM, 38, 6, 1995, pp.
33-44.

http://www.eng.auburn.edu/grasp.html

