
The Case for Java as a First Language

K. N. King
Department of Mathematics and Computer Science

Georgia State University
Atlanta, GA 30303
knking@gsu.edu

Abstract – Java could well be the answer to the problem of
choosing an appropriate language for the first programming course.
This paper looks at the pros and cons of teaching Java, concluding
that Java appears to have outstanding prospects for computer sci-
ence education in general and the first programming course in
particular. In particular, the paper argues that the properties that
make Java a suitable Internet language also make it excellent for
classroom use.

1. Introduction

Not too long ago, most computer science departments used
Pascal as their introductory language. In recent years, how-
ever, we’ve seen a wide divergence, as many departments
switched to C, C++, Ada, Scheme, and other languages.

Richard J. Reid of Michigan State University maintains
a list of languages used in CS1 courses [11]. This list is
updated semiannually; the latest version confirms that there
is no longer a single dominant language. Instead, six lan-
guages each have a share of 10% to 30% of the market
(Table 1). At least a dozen other languages are used as well,
but none has more than a 2% share. Although there’s no
guarantee that the schools in the survey are representative of
the thousands of colleges that teach introductory program-
ming, this survey provides the best information currently
available.

The lack of consensus concerning the introductory lan-
guage has caused a variety of problems [3]. One set of
problems affects computer science departments. Failing to
agree on which language to switch to can cause paralysis
and stagnation. A switch that’s not widely supported can
result in friction between colleagues, in extreme cases even
causing highly qualified faculty to depart rather than teach a
language that they personally abhor. A profusion of lan-
guages also makes it harder for departments to find qualified
instructors and teaching assistants.

A plethora of introductory languages can also hurt stu-
dents by making it difficult for them to transfer courses

from one college to another or to get advanced placement
credit. Imagine the difficulties faced by a student with a
Scheme background, say, transferring to a school where
C++ is the language of choice.

Another problem is fragmentation of the textbook mar-
ket. When multiple languages are used in the introductory
course, books designed to teach one language are often hur-
riedly translated to other languages, with mixed results.
Some of the best books are available only for a single lan-
guage, making them unusable by instructors teaching other
languages.

Java, the new language from Sun Microsystems, could
well be the solution to these problems. Java is a general-pur-
pose, object-oriented language that’s been in the news quite
a bit over the past couple of years. Most of Java’s press cov-
erage emphasizes its client/server role, as a language for
writing “applets” that are downloaded from a server and
executed locally. But Java isn’t restricted to writing applets;
it works just as well for writing traditional single-computer
applications.

This paper examines the advantages and disadvantages
of Java as a teaching language, with the focus on using Java
as the first language that students encounter at the college
level. It pays particular attention to how Java stacks up
against C++, the language whose use in academia is grow-
ing the fastest. In Reid’s Spring 1995 survey, only 27
schools reported using C++ in CS1; in the latest survey, the
total stands at 87. (The growth of C++ may have peaked,

Table 1: Language Usage in CS1

Language
Number of
Colleges

Percentage
of Total

Pascal, Object Pascal 153 30.1

C++ 87 17.1

Ada 74 14.6

C 51 10.0

Scheme 51 10.0

Modula-2, Modula-3 49 9.6

Others 43 8.5

Source: Richard J. Reid, CS1 Language List, 15th edition
(October 15, 1996)

Reprinted from Proceedings of the 35th Annual ACM Southeast Conference (April 1997), pp. 124–131.

however; the number of schools reported to be using C++
increased by just five between April 1996 and October
1996.)

The perils of teaching C++ are well-known. There is
widespread agreement among faculty that C++ needs to be
prominent in the curriculum because of its widespread use
in industry, but there is considerable doubt that C++ is a
suitable introductory language. As Kölling and Rosenberg
[7] put it, “We agree that a graduate must be a competent
programmer in C++ or a similar widely used language. It is
our firm belief, however, that experience with one year of a
good teaching language and one year of C++ produces bet-
ter C++ programmers than two years of C++.” That paper
argued for the creation of a new language for teaching
object-oriented programming. Another paper [3] proposed
several ways to attack the problem of choosing a first lan-
guage. One proposed solution was to design a new language
“with a C-like syntax, but without the problematic features
of C.” This paper will argue that no new language is
needed—Java fills the bill.

2. Java as a Teaching Language

A good place to start is with the The Java Language: An
Overview [14] (previously titled The Java Language: A
White Paper), a well-known document from Sun Microsys-
tems that lists eleven properties of Java. Although this
document describes the significance of these properties from
the standpoint of commercial programming, it might as well
have been addressing the academic world, where they are
just as important, if not more so. Let’s review the proper-
ties, considering the relevance of each one to the
introductory programming course.

2.1 Simple

Although Java resembles C++, it omits many of C++’s
more confusing features, including the ones most likely to
cause problems for beginners: pointers, operator overload-
ing, multiple inheritance, and templates. Moreover, Java
lacks many of the automatic type conversions that C++
performs.

At the same time, Java adds an important feature that
simplifies programming: automatic garbage collection.
Having the language handle storage management gives Java
a big edge in introductory classes over languages such as C
and C++, where releasing memory that’s no longer needed
requires programmer intervention. Garbage collection not
only makes programming easier but also avoids the bugs
caused by dangling pointers. In C++ programming, too
much effort is spent on problems of memory allocation and
deallocation. As Bergin [1] notes, “some reports from
industry are that on large [C++] projects, half of the pro-
gramming effort is spent in getting memory management
right.”

Overall, Java is a small language, closer in size to Pas-
cal or C than Ada or C++. Java’s relatively small size is a
powerful argument in its favor as a teaching language. As
one author puts it, “Possibly the most attractive feature [of
Java] is the relative smallness of the language.” [5]

2.2 Object-Oriented

The importance of introducing the object-oriented paradigm
early in a student’s program of study is increasingly being
recognized. However, there’s widespread disagreement over
which object-oriented language to use. C++ is the most pop-
ular object-oriented language used to teach introductory
programming, but it has plenty of critics. Some even argue
that no existing object-oriented language (prior to Java, at
least) is really suitable for beginners [6]. (This paper
describes desirable characteristics for a beginner’s object-
oriented language. Although the paper predates the release
of Java, the authors might just as well have been describing
Java.)

Java also supports object-oriented programming, but
with significant advantages over C++:

• Students must use objects. Only the primitive types are
not objects. There are no stand-alone functions; all
functions must belong to a class.

• Objects are always allocated dynamically and manipu-
lated through references, thereby simplifying their
semantics.

• Storage management is handled automatically, signifi-
cantly reducing the difficulty of writing many classes.

• Fancy features, like operator overloading and multiple
inheritance, are missing. Students have less to learn
before writing useful classes, and they can concentrate
on learning the object paradigm rather than mastering a
host of esoteric details.

In its support for object-oriented programming, Java is
closer to Smalltalk than C++. Smalltalk is even more object-
oriented than Java, and it makes a good introductory lan-
guage as well [17]. However, Smalltalk has a syntax that’s
difficult for beginners to grasp, among other drawbacks [6].

2.3 Distributed

With the growing importance of networking in general and
the Internet in particular, students need experience in writ-
ing software that’s network-aware. Java is unique among
major languages in its support for networking, which
includes classes for working with URLs and sockets.

Although most of Java’s networking capabilities
wouldn’t be used in an introductory course, some of the
simpler ones could make excellent examples. For example,
Java makes it easy for programs to access specific URLs on
the Web, allowing students to gain a better understanding of

how the Web works as well as being able to write some
rather interesting programs. Ambitious instructors could use
the more advanced networking features to illustrate how
programs cooperate over a network.

If Java is used in the second programming course as
well as the first one, its networking support would be more
likely to come into play. At one college, students use Java in
the first two programming courses. When asked what was
the most surprising thing about using Java, the instructor
replied, “For me, the way in which CS2 students so readily
adapt to the notion of building reactive, distributed pro-
grams on the internet, and how this, as much or more so
than the object-oriented aspects of Java programming, so
fundamentally governs their attitudes on what programming
is all about.” [8]

2.4 Robust

A number of Java’s properties are the result of making the
language safe for transmitting executable content over the
Internet. These properties, as it turns out, are often the same
properties instructors look for in an introductory language.
As [14] puts it, “Java puts a lot of emphasis on early check-
ing for possible problems, later dynamic (runtime) checking,
and eliminating situations that are error prone.” This should
be music to the ears of Pascal and Ada instructors who have
resisted switching to C or C++ because of their relatively
weak abilities to detect errors.

Here are some of the measures that Java uses to achieve
robustness:

• No pointers. Although Java uses pointers internally, no
pointer operations are made available to programmers.
There are no pointer variables, arrays can’t be manipu-
lated via pointers, and integers can’t be converted into
pointers.

• Garbage collection. Thanks to automatic garbage col-
lection, there’s no chance of a program corrupting
memory via a dangling pointer.

• Strict type checking. Java’s type checking is much
stricter than that in C or C++. In particular, casts are
checked at both compile time and run time. As a bonus,
type checking is repeated at link time to detect version
errors.

• Run-time error checking. Java performs a number of
checks at run time, including checking that array sub-
scripts are within bounds.

2.5 Secure

In addition to being robust (resistant to programmer error),
Java programs are designed to be secure (safe against mali-
cious attack). Java’s run-time system performs checks to
make sure that programs transmitted over a network have
not been tampered with. The code produced by the Java

compiler is checked for validity, and the program is pre-
vented from performing unauthorized actions. For example,
an applet that’s been downloaded from a Web page can’t
access files on the local computer. Moreover, the nature of
Java makes it hard to write viruses and other kinds of mali-
cious programs. A program that can’t access memory
locations via pointers will find it hard to do much damage.
Instructors who have been stung by viruses in student pro-
grams will appreciate the security provided by Java.

2.6 Architecture-Neutral

The Java language is completely architecture-neutral. As a
result, programs written in Java will run on any platform
that supports the Java run-time system.

The significance of a multiplatform language like Java
cannot be overstated. Sun’s Java Development Kit is avail-
able for a variety of platforms, including Windows 95 and
NT, Macintosh, and Sun Solaris, all of which are widely
used in education. Colleges can offer Java without having to
worry about whether their labs contain enough computers of
the same type. Students can easily transport programs from
campus to home and vice-versa, even though their home
computers may be different from the ones on campus.

2.7 Portable

Java programs are not only architecture-neutral but portable
as well. One way in which Java achieves portability is by
completely defining all aspects of the language, leaving no
decisions to the compiler writer. Consider the issue of types.
Most programming languages don’t define the exact ranges
of types, allowing for variations based on the computer’s
architecture. Java, on the other hand, completely defines the
ranges and properties of all types. Values of the int type
are always signed 32-bit integers; float values are stored
in 32 bits using the IEEE 754 representation. That’s a plus
for instructors, who don’t have to worry about trying to
explain to beginners why a program may not work if com-
piled with a different compiler.

Other aspects of Java are portable as well. Java’s librar-
ies are designed for complete portability. The Java system
itself is portable. Sun’s Java compiler is written in Java
itself; the run-time system is written in Standard C.

2.8 Interpreted

Java is usually an interpreted language. A Java compiler
translates a program into bytecodes, which can then be exe-
cuted by an interpreter. Linking is done at run time, with
code loaded dynamically by the run-time system as needed.
For students, this means that building a program is simple:
there’s no linking step to perform. When one part of a pro-
gram is changed, only that part needs to be recompiled, and
there’s no linking step to redo.

From the standpoint of the instructor, the fact that Java
is interpreted has two primary implications. One is that Java
programs won’t run at the same speed as programs written
in a compiled language such as Pascal, Ada, C, or C++. For
most student programs, however, the speed of execution is
irrelevant.

A more important implication of interpretation is that
students will be able to get excellent feedback when a pro-
gram fails during execution. A C or C++ program that fails
at run time generally doesn’t provide any clue as to the
problem; students are forced to crank up the debugger. A
Java program that fails can print the call stack and describe
the exception that caused the program to fail. That informa-
tion alone is often enough to pinpoint the cause of the error,
without the need to use a debugger. This behavior is possi-
ble thanks to information about the source program that’s
embedded into the bytecodes during compilation.

2.9 High-Performance

Programs written in interpreted, garbage-collected lan-
guages often don’t execute at high speed. In Java, however,
the performance penalty isn’t as bad as in some languages.
One reason for Java’s superior performance is that garbage
collection is done by a separate low-priority thread. That
way, garbage collection takes place primarily when the pro-
gram has nothing else useful to do—while it’s waiting for
user input, say.

Greater speed can be achieved by translating Java’s
bytecodes into native machine instructions. This can be
done by translating the entire program to native code prior
to execution, or it can be done on the fly by a “just-in-time”
(JIT) compiler. JIT compilation is becoming a standard fea-
ture of commercial Java environments; both Borland C++
5.0 (which supports Java) and Microsoft J++ 1.0 provide
JIT compilers. When translated into native code, Java’s per-
formance “is almost indistinguishable from native C or
C++” [14]. Java’s support for translation to machine code is
one of the features that gives it an edge over Smalltalk,
another interpreted, garbage-collected language.

2.10 Multithreaded

Unlike most major programming languages (with the nota-
ble exception of Ada), Java has built-in support for
multitasking. A Java program may create any number of
threads, which appear to execute in parallel.

For instructors, Java’s support for threads provides a
golden opportunity to introduce students to the concept of
concurrency, a topic that’s already important and will only
become more so in the future, with multiprocessor PCs soon
to be commonplace. It is imperative that students become
comfortable with concurrency early in their studies. Java’s
model of concurrency is simple enough that even beginners
can use concurrency effectively.

Instructors teaching concurrency often use Ada, one of
the few mainstream languages to provide built-in support
for concurrency. However, Ada provides no support for
GUI interfaces, without which writing simple concurrent
programs is difficult. Ideally, a concurrent program should
support multiple input sources and multiple output destina-
tions, to avoid problems of mutual exclusion. Doing this in
Ada is not trivial. Java’s support for GUI interfaces makes it
a snap to write programs that illustrate concurrency. Enter-
ing keyboard input into a concurrent program is tricky,
because only one task can read from the keyboard. With
separate windows for tasks, however, input is easy. Simi-
larly, writing output to the screen becomes an exercise in
mutual exclusion in Ada; a Java program simply writes to
different windows.

Knowledge of threading isn’t required to write Java
programs, so instructors who wish to skip it in a first class
may easily do so.

2.11 Dynamic

Java is designed to accommodate the fast-paced, modern
world of software development, in which components of a
system may change on a regular basis. Java’s run-time link-
ing guarantees that a program always loads the most recent
version of its library modules. (That’s good for students,
who often forget to relink and end up running older ver-
sions of their programs.) It also reduces recompilation by
making it possible to add methods and instance variables to
a library without having to recompile its clients.

3. Java’s Support for GUI Programming

With graphical user interfaces now standard among every-
day software applications, it seems odd to continue to teach
students to write only programs that perform character I/O.
Yet that is the norm in many introductory computer science
courses. One reason for this situation is that graphical user
interfaces are traditionally tied to a particular platform or
even a particular software vendor. Another is that writing
programs that use these interfaces is an arduous task.

Various solutions have been proposed to the problem of
introducing GUI programming into the computer science
curriculum. One solution is to let students write GUI pro-
grams in a proprietary language like Microsoft’s Visual
Basic or Borland’s Delphi. Another is to develop simplified
libraries that shield students from the complexity of a com-
mercial GUI application interface [10, 16]. The alterna-
tive—asking students to write in C++ and master the
Microsoft Foundation Classes (MFC) or Borland’s Object
Windows Library (OWL)—is difficult, and students won’t
progress with any speed [15].

Java changes all that. Java comes with a platform-inde-
pendent windowing API, known as the Abstract
Windowing Toolkit (AWT). Java’s AWT is remarkably

easy to use. A simple component, such as a button, can be
created and added to the screen in one statement. Handling
an event (such as that triggered when the button is pressed)
isn’t much harder. Using AWT, students can write GUI
programs with ease, and their programs will run on a vari-
ety of platforms. Once they’re familiar with the event-
driven nature of GUI programming and the basic compo-
nents from which GUI programs are built, they’ll be better
prepared to tackle the complexities of MFC or OWL in a
subsequent course.

AWT supports not just GUI components, but graphics
and sound as well. The advantages of using graphics in
introductory classes are well documented [12]. With Java,
it’s easy for beginners to incorporate graphics, animation,
and sound in their programs.

4. Other Advantages of Java

Besides those mentioned in Sections 2 and 3, Java has some
other advantages as a teaching language:

• Low cost. The tools needed to build and test Java pro-
grams are available without charge. Sun makes the Java
Development Kit (JDK) available over the Internet (at
www.javasoft.com), where faculty and students alike
can download it. The JDK—which includes the Java
compiler and interpreter, among other tools—is admit-
tedly spartan, but students should find it adequate for
most programming assignments. Those willing to spend
a little money will find nicer program development
environments (such as Symantec Café and Microsoft
J++) available at moderate prices.

• Easy to test. Students can put their programs—written
as applets—on their Web pages for instructors to test
and critique. Instructors can monitor a student’s
progress at any stage by simply visiting the student’s
Web page.

• Student enthusiasm. Java has gotten so much publicity
that students are bound to be excited about learning it.
By harnessing that enthusiasm, instructors can use Java
as a vehicle to teach students a tremendous amount
about modern-day computing. Students will be moti-
vated by Java’s growing importance in the “real world.”
Moreover, students will be thrilled by the ease with
which they can build sophisticated GUI programs.

• Suitable for advanced courses. After students gain
familiarity with the basic features of Java in CS1, they
can use its advanced features in later courses. For
example, a course on operating systems can take advan-
tage of Java’s support for threads. The network classes
that come with Java make it ideal for a networking
course.

• Easy transition to C++ and other languages. Java’s
syntactic similarity to C and C++ should ease the transi-

tion to those languages. We’ll return to this point in
Section 6.

• International appeal. The Unicode character set is an
integral part of Java, allowing students to learn about
the issues of developing software for the international
market.

5. Disadvantages of Java

Like any programming language, Java is not without draw-
backs. Section 2.8 mentioned one of them: Java is an
interpreted language, so programs written in Java won’t be
speed demons. Still, for most programs that students write,
speed is secondary. With ever-faster computers available at
bargain prices, Java should be fast enough for all but the
most time-intensive programs.

Other problems stem from Java’s youth. For one thing,
Java isn’t available on all platforms. Although Java will
likely spread to more as time goes on, it’s unlikely to be
implemented on older platforms. That will cause problems
for institutions that lack funds for hardware and software
upgrades. Still, that barrier should be only a temporary one.

Java is relatively immature. Although the language
itself is unlikely to change dramatically, we can expect sig-
nificant changes in the Java API and associated technology.
(The latest version of the Java Development Kit, JDK 1.1, is
currently in beta. It features a host of changes to the API.)
Still, C++ has been in a state of almost continuous change
since it was created—the official standard isn’t expected for
another year or two—but that hasn’t stopped industry and
academia from adopting it.

Java is also hampered by a shortage of genuine text-
books. This problem should also take care of itself within a
short time. The tremendous sales of Java books in the trade
market will undoubtedly spur publishers to make Java texts
available as well. Java How to Program [4] is the first intro-
ductory textbook; Java Software Solutions [9] is due out in
1997.

The syntax of Java can be criticized. Making Java
resemble C and C++ was a shrewd move on the part of
Java’s designers: the language looks familiar to most soft-
ware developers, making it easy to switch to. On the other
hand, Java has inherited some of the quirks and traps of C
and C++. For example, the placement of semicolons can
easily trip up the beginner. The “dangling if” problem is
present in Java; most modern languages have eliminated it.
C’s /* … */ comment style is supported, allowing stu-
dents to accidentally “comment out” parts of their programs.

Another criticism of Java is that it lacks certain fea-
tures that are desirable for teaching introductory courses.
Hosch [5] provides a list of such features:

• No separation of specification from implementation.
Java classes aren’t divided into specification and imple-

mentation parts. Hosch feels that this is an important
point for beginners and would like “this distinction
between specification and implementation to be sup-
ported by the syntactic structure of the language.”
Lacking such a separation, he would at least like to be
able to write prototypes for methods, which Java
doesn’t allow except within an abstract class or
interface.

• No preconditions and postconditions. Hosch’s intro-
ductory course emphasizes preconditions and
postconditions, for which he would like language sup-
port. Java, like most languages, has no such support.
(Among major languages, only Eiffel does.)

• Visibility rules are “baroque.” Hosch decries the many
types of visibility in Java. He also laments that Java’s
syntactic support for hierarchical packages doesn’t
carry any semantic significance.

• No support for genericity. Hosch notes Java’s lack of
support for writing generic data structures and meth-
ods. As a substitute, he would accept “type by
association,” such as Eiffel’s anchored types.

• No enumeration types. Java lacks enumeration types
entirely, although they can be simulated by creating a
series of named constants.

• No local constants. In Java, variables that belong to a
class can be made constant by declaring them to be
final. Variables that are local to a method cannot be
declared final, however.

• Exceptions not caught within a method must be
declared as thrown by that method. Hosch finds this
requirement to be onerous: “for introductory students,
it’s a sequence of ugly, unintelligible syntactic marks.”

To some instructors these criticisms may be a major
concern; to others they are likely to be minor quibbles. None
of Hosch’s complaints would dissuade me from using Java
in an introductory class. In particular, his complaints about
visibility and hierarchical packages seem to be of little con-
sequence in an introductory course.

Hosch’s criticism of exceptions appears to be based on
a misunderstanding of this feature. Not all exceptions need
to be declared as being thrown by a method. Many of the
most common exceptions, including ArithmeticExcep-
tion, IndexOutOfBoundsException, and Null-
PointerException are exempt from this requirement.
Only exceptions that the programmer should have handled
but didn’t are required to be declared as thrown by a method.
This feature actually has a pedagogical advantage, since it
enables the compiler to point out exceptions that students
have overlooked.

Bergin [1] complains that Java lacks templates, over-
loaded operators, and user-defined conversions. The latter
two, he points out, are useful for making a user-defined

type behave like a built-in type. Like Hosch, he also
laments the lack of separation between specification and
implementation.

6. After Java, What?

Java won’t be a universal language anytime in the near
future; students need exposure to other languages as well.
That raises a few questions:

• If Java is the first programming language, where should
the transition to other languages take place?

• What languages should follow Java?

• How difficult will it be to move from Java to other
languages?

C++ is well-established in commercial software devel-
opment, so it obviously needs to be taught. C remains the
language of choice for low-level, close-to-the-metal pro-
gramming, so it should be in the curriculum as well.
Smalltalk is increasingly popular in the business world, so
it’s also a likely follow-up to Java.

C++ is the language most likely to be taught after Java.
Learning C++ exposes students to issues that Java hides,
including pointers and memory management. Introducing
C++ during (or just prior to) a data structures course might
be appropriate. C++ and Java are similar enough that stu-
dents can pick up C++ in a fraction of the time it would take
without prior knowledge of Java. Students will view C++ as
a more baroque version of Java, spending most of their time
learning pointers and memory issues, as well as mastering
multiple inheritance, templates, and other advanced C++
features.

A logical place for C would be in a class that also cov-
ers UNIX programming, since UNIX system calls are done
using C and since many UNIX tools use a C-like syntax.

The transition to Smalltalk should be easy regardless of
where it occurs in the curriculum. The main issues will be
syntax, a different class library, and the need to learn a dif-
ferent kind of program development environment.

Java has enough in common with C, C++, and Small-
talk that the transition to any of these languages should be
relatively painless. In many cases, it won’t be necessary to
spend an entire course on the transition; instead, it can be
managed at the beginning of another course. (A UNIX
course, for example, could spend the first couple of weeks
on C.)

7. Experiences So Far

So far, few colleges have tried using Java in an introductory
course, and even fewer have reported their experiences. Sun
Microsystems maintains a Web page listing academic insti-
tutions that teach Java [13]. According to this page, there
are 102 colleges known to teach Java as of January 2, 1997,

of which 60 are in the U.S. However, only one (Washing-
ton University) is identified as “committed to teach Java as
a first language.” This isn’t surprising, given the newness of
the language and the lack of teaching materials. Most col-
leges are still in the experimentation phase, as instructors
learn Java and evaluate its potential place in the curriculum.

One of the first colleges to teach Java was the State
University of New York (SUNY) at Oswego, where Java
was used in the introductory programming course during
the fall of 1995. The experiences of the Oswego instruc-
tors—summarized on a Web page [8]—were positive, an
encouraging sign given the primitive state of Java tools and
the paucity of textbooks. In particular, they report less attri-
tion in the course than when C++ was the introductory
language.

Other feedback from faculty who have taught Java
appears in a recent JavaWorld article [2]. According to
David Dobkin of Princeton, “Java seems to correct some of
[the] flaws [of C++], and we are now coming to believe that
Java can be made to work as a first programming lan-
guage.” Roger Whitney of San Diego State says that,
teaching Java instead of C++, he has been more successful
in getting students to write modular code. Whitney also
notes that Java enables him to cover “material, ideas, and
concepts that would not be possible with C/C++.” To Doug
Lea of SUNY, that aspect of Java is crucial. “Concepts such
as distributed computing, component-based design, and the-
oretical issues in concurrency, distribution, and reactive
design used to be reserved for advance [sic] courses but
now need to be introduced in the first few computing
courses.”

Georgia State’s Department of Mathematics and Com-
puter Science has not yet tried Java as an introductory
language, although it’s being used in other courses. As a
result of a recent curriculum redesign, we will soon switch
to a breadth-first introductory course (with no programming
in a “real” language), followed by a Java programming
course. We plan to move students to C++ in the second pro-
gramming course, so that we can discuss pointers and other
issues that don’t arise in Java. A later course will give stu-
dents experience with C in the context of UNIX system-
level programming.

8. Conclusion

Java has significant advantages not only as a commercial
language but also as a teaching language. It allows students
to learn object-oriented programming without exposing
them to the complexity of C++. It provides the kind of rigor-
ous compile-time error checking typically associated with
Pascal. It allows instructors to introduce students to GUI
programming, networking, threads, and other important con-
cepts used in modern-day software.

Java might well be a language that most computer sci-
ence departments could agree to use as an introductory
language. If so, we’ll all benefit from once again having a
single dominant language in CS1.

References

[1] Bergin, J., “Java as a better C++,” ACM SIGPLAN
Notices 31, 11 (November 1996), pp. 21–27.

[2] Bowen, B. D., “Educators embrace Java,” JavaWorld
(January 1997), http://www.javaworld.com/javaworld/
jw-01-1997/jw-01-education.html.

[3] Brilliant, S. S., and T. R. Wiseman, “The first pro-
gramming paradigm and language dilemma,”
Proceedings of the 27th SIGCSE Technical Sympo-
sium on Computer Science Education, Philadelphia,
February, 1996, pp. 338–342.

[4] Deitel, H., and P. Deitel, Java How to Program, Pren-
tice-Hall, Englewood Cliffs, N.J., 1997.

[5] Hosch, F., “Java as a first language: an evaluation,”
ACM SIGCSE Bulletin 28, 3 (September 1996), pp.
45–50.

[6] Kölling, M., B. Koch, and J. Rosenberg, “Require-
ments for a first year object-oriented teaching
language,” Proceedings of the 26th SIGCSE Techni-
cal Symposium on Computer Science Education,
Nashville, March, 1995, pp. 173–177. Published as
ACM SIGCSE Bulletin 27, 1 (March 1995).

[7] Kölling, M., and J. Rosenberg, “Blue—a language for
teaching object-oriented programming,” Proceedings
of the 27th SIGCSE Technical Symposium on Com-
puter Science Education, Philadelphia, February,
1996, pp. 190–194.

[8] Lea, D., Some Questions and Answers about Using
Java in Computer Science Curricula, http://
g.oswego.edu/dl/html/javaInCS.html.

[9] Lewis, J., and W. Loftus, Java Software Solutions:
Foundations of Program Design, Addison-Wesley,
Reading, Mass., 1997.

[10] Mutchler, D., and C. Laxer, “Using multimedia and
GUI programming in CS 1,” Proceedings of SIGCSE/
SIGCUE Conference on Integrating Technology into
Computer Science Education, Barcelona, Spain, June,
1996, pp. 63–65. Published as a special issue of ACM
SIGCSE Bulletin 28 (1996).

[11] Reid, R. J., CS1 Language List, ftp.cps.msu.edu:pub/
arch/CS1_Language_List.Z.

[12] Roberts, E. S., “A C-based graphics library for CS1,”
Proceedings of the 26th SIGCSE Technical Sympo-
sium on Computer Science Education, Nashville,
March, 1995, pp. 163–167. Published as ACM
SIGCSE Bulletin 27, 1 (March 1995).

[13] Sun Microsystems, Academic Institutions Teaching
Java, http://www.sun.com/edu/hot/java/javaschools.html.

[14] Sun Microsystems, The Java Language: An Over-
view, http://www.javasoft.com/doc/Overviews/java/.

[15] Szuecs, L., “Creating Windows applications using
Borland’s OWL classes,” Proceedings of the 27th
SIGCSE Technical Symposium on Computer Science
Education, Philadelphia, February, 1996, pp. 145–
149.

[16] Wolz, U., S. Weisgarber, D. Domen, and M. McAu-
liffe, “Teaching introductory programming in the
multi-media world,” Proceedings of SIGCSE/SIGCUE
Conference on Integrating Technology into Computer
Science Education, Barcelona, Spain, June, 1996, pp.
57–59. Published as a special issue of ACM SIGCSE
Bulletin 28 (1996).

[17] Woodman, M., and S. Holland, “From software user
to software author: an initial pedagogy for introduc-
tory object-oriented computing,” Proceedings of
SIGCSE/SIGCUE Conference on Integrating Technol-
ogy into Computer Science Education, Barcelona,
Spain, June, 1996, pp. 60–62. Published as a special
issue of ACM SIGCSE Bulletin 28 (1996).

	1. Introduction
	2. Java as a Teaching Language
	2.1 Simple
	2.2 Object-Oriented
	2.3 Distributed
	2.4 Robust
	2.5 Secure
	2.6 Architecture-Neutral
	2.7 Portable
	2.8 Interpreted
	2.9 High-Performance
	2.10 Multithreaded
	2.11 Dynamic

	3. Java’s Support for GUI Programming
	4. Other Advantages of Java
	5. Disadvantages of Java
	6. After Java, What?
	7. Experiences So Far
	8. Conclusion
	References

