
Implementation of Distributed Applications using Java

Obaid Yousuf and Jennifer McManis *

Abstract

Java’s portability, architectural neutrality, and support
of network connectivity make it ideal for implementation
of applications on networks. Java applets in particular
are designed to interact with Web browsers to provide a
variety of services over the network. Unfortunately, Java
applet security constraints restrict the user’s ability to
connect with and transfer data to and from remote sites
and thus limit the user’s ability to utilize distributed ap
plications. In this paper we explore ways to get around
this limitation. Specifically, we propose to use an in
termediate server to connect the user of the applet to
remote sites that they wish to access.

1 Introduction

The Java language emerged in 1995 and has been attract
ing considerable interest since that time. Java programs
compile to an architecturally neutral byte code format.
This combined with its portability and support of net
work connectivity makes Java ideal for network-based
applications. A wide variety of references discussing all
features of the Java language are already available [1],
[2], [3], [4], [5],

Java programs may be run either as applications which
are executed by a Java interpreter or applets which are
executed within an applet viewer or web browser. Gen
erally, applications are run when the code is well un
derstood and trusted by the user. Java applets, on the
other hand, are designed specifically to be embedded in
side web pages, providing easy access to users. Because
applets are meant to be run by users who have little
or no idea of their functionality, stringent security mea-

* Department of Computer Science and Engineering, Auburn
University

Peimission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

© 1997 ACM 0-89791-925-4

sures are in place to ensure that the applet code run by
the user is not able to damage the user’s system. As
with all security measures, they cannot absolutely guar
antee the user’s safety [6], [7], [8], but they go a long way
towards doing so. These security measures restrict the
ability of the applet to access user data and other sys
tem resources, and its ability to connect to remote sites.
Unfortunately, this also limits the applet’s usefulness in
distributed application where it becomes necessary to
interact with multiple remote locations.

This paper explores a way in which applets can be
used to develop a distributed application while still obey
ing the security constraints placed on them. The pro
posed scheme uses the server from which the client ini
tially downloads the applet as an intermediate link be
tween the client and remote locations. Section 2 gives
an overview of Java security features. Particular atten
tion is paid to those features which will restrict a Java
applet’s ability to interact with remote sites. Section
3 discusses our general approach to implementing dis
tributed applications using the server as an intermedi
ate link between the client and remote sites. In section
4 our implementation of a small test application is dis
cussed. The functionality of this application is limited,
but it demonstrates that data can be moved between the
client and remote data sites through the use of an inter
mediate server. Naturally, this does not implement a
completely distributed application since all interactions
must be run through the intermediate server. In section
5 possibilities for easing the load on this intermediate
link are discussed.

2 Java Security Features

Java security features exist at three levels. First, Java
has eliminated many language features that lead to po
tential security breaches. For instance pointers have
been eliminated. Secondly, the compiled Java bytecode
is checked to ensure that it does not contain forged point
ers, use illegal data conversion, violate access restric
tions, etc. This is accomplished by the class loader. The
third Java security feature is a set of security restrictions
which are specific to Java applets and are enforced by the
Java enabled browser. It is these security restrictions

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2817460.2817519&domain=pdf&date_stamp=1997-04-02

that have the most significant impact on ones ability to
implement distributed applications in Java. The most
significant of these restrictions are as follows.

• Applets do not have access to local file systems.

• Applets are allowed to read and write only on the
original host.

• Applets cannot invoke a program on the local sys
tem.

e Applets cannot access or load classes in any package
other than the standard eight of the Java API.

e An applet cannot make a socket connection to any
machine other than the one from which it was down
loaded.

• Applets cannot create or manipulate any thread on
the local system.

The restriction of access to the local file system and the
inability to open socket connections to remote locations
are particularly restrictive in terms of implementing a
distributed application since the applet is limited to com
munication with a single machine, and not the multiple
machines necessary for a truly distributed application.

3 Distributed Applications Us
ing Java

Java’s architectural neutrality makes it ideally suited
to network applications. In particular, the Java ap
plet is designed to interact with web browsers to provide
straightforward client/ server connections, freeing clients
from the burden of having to install the software them
selves and providing security measures to ensure that
the software will not be able to damage the system it
is running on. If the client only needs to interact with
processes on the machine from which it downloaded the
original applet, the security features are only minimally
restrictive.

The next logical step is to think about what would
be required to support remote distributed applications
where the resources the client may access (and poten
tially modify) are located on a number of remote ma
chines. An example of this would be a distributed
database where the client wishes to access information
which may be stored on any of a number of remote ma
chines. Ideally, if there were no security restrictions,
supporting such an application would requires that con
nections be made between the client and multiple remote
sites as in figure 1. Unfortunately, Java applet security
constraints prevent connections being implemented be
tween a downloaded applet and remote sites.

In order to get around this problem, it is necessary to
use the server from which the applet was originally down
loaded as an intermediate link between the client and
the remotes sites the client might wish to access. Data
transfer between client and server and between server
and remote locations may be accomplished using Java
applications running on the server. See figure 2.

Figure 1: Ideal (No Security) Implementation of Dis
tributed Application

Figure 2: Implementing a Virtual Connection Through
an Intermediate Server

In this solution, the client downloads an applet from
the intermediate server for the purposes of data transfer.
The only direct connection the client makes is to this
intermediate server. Through this connection, the client
may request the server retrieve data from a remote site,
access this data from a local repository at the server site,
and request that the server transfer modified data back
to the remote locations. The client stores all retreived
data in the browser buffer, and thus the applet never
needs to access the local file system.

There are basically two host server processes that must
be run. The first provides a connection through which
data may be retrieved from a remote site upon client re
quest. The second provides a connection through which
data may be retrieved from the client to be forwarded to
the appropriate remote site. These processes are imple
mented as Java applications as opposed to applets and
thus are not subject to the security constraints placed
on applets. Thus the server can make socket connec
tions to multiple remote sites. It is reasonable to use
applications, since as the service provider, the server is
confident that its software is reliable. Figures 3 and 4
illustrate the procedures followed when moving data be
tween the client and the remote sites.

Figure 3: Sending Data to Remote Sites

Figure 4: Retrieving Data from Remote Sites

4 Implementation

A small proof of concept has been implemented in or
der to test the approach described in section 3. The
implementation tests the ability of the client to transfer
data to and from remote sites through an intermediate
server. The application used is a ‘phone book’ which
is contained in three files at remote locations which the
client wishes to access. When the client loads the applet,
the applet establishes a virtual connection between the
client and remote data sites. The files are automatically
retrieved from the remote location for the client’s use.
This simplifies the functionality of the remote data sites
since they no longer have to determine what are the rel
evant pieces of data to send. The client may create and
send a file containing selected names, phone numbers,
and addresses to the of the remote sites. The code for
this implementation is too large for this paper, but may
be found in [9].

5 Conclusion

There are two issues associated with distributed com
puting - security and functionality. Evidently, both of
these cannot be maximized at the same time. Taking

into consideration the relatively insecure nature of the
Internet, more emphasis has been placed on security is
sues in Java. Applet security in Java limits its flexibility.
In this paper we have presented a solution to overcome
the limitations of Java applets.

The idea behind this implementation is to establish a
virtual link between a remote site and the applet running
on the client side through the local host. This indirect
connection needs to be established because applets can
not directly connect to any machine other than the one
from which the applet was originally downloaded. With
the virtually link, the client connects with the original
server and then relies on this server to make connections
with the remotes sites. Thus no direct links need to be
established between client and remote site and Java se
curity constraints are not violated.

Naturally, this approach leads to a potential bottle
neck at the server. Future work would include looking
at possible solutions to this problem. One likely solution
is to have the initial server act as a router guiding the
client to multiple sites from which they could download
the applet. The server would then be responsible for de
termining the load on possible alternate server sites and
attempting to balance that load. The tradeoff of added
complexity of implementation versus possibly better dis
tribution of workload remains to be explored.

References

[1] J. Gosling and H. McGilton. The java language en
vironment.

[2] B. Boone. Java Essentials for C and C++ Program
mers. Addison-Wesley, 1996.

[3] D. Flannagan. Java in a Nutshell. O’Reilly and As
sociates, inc., 1996.

[4] M. Danconta. Java for C/C++ Programmers. Wiley
Computer Publishing, 1996.

[5] D. Friedel and A. Potts. Java Programming Language
Handbook. Coriolis Group, 1996.

[6] D. Dean, E. Felton, and D. Wallach. Java security:
From hotjava to netscape and beyond. IEEE Sym
posium on Security and Privacy, 1996.

[7] D. Hopwood. Java security bug. RISKS Forum,
March 1996.

[8] M. Mueller. Regarding java security. RISKS forum,
November 1995.

[9] O. Yousuf. A distributed client server interactive
implementation using java applets. Master’s thesis,
Auburn University, 1996.

