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Appendix 1: GWAS Statistics and Power
In GWAS, the effect of each variant on the trait is ex-
amined independently of the other variants. When an-
alyzing variant k, the following model for the effect of
variant k on the phenotype is utilized

yj = µ∗ + βkxkj + e∗j (1)

and in vector notation

y = µ∗1 + βkXk + e∗ (2)

where Xk is a column vector of normalized genotypes for
variant k and e∗ ∼ N (0, σ2

e∗I) We note that equation
(1) above and equation (1) in the main text differ by
the omission of the terms

∑
i 6=k βixij which results in

the values of these terms being absorbed in the mean
and residual which is why we use the notation µ∗ and
e∗j instead of µ and ej . We describe the implications of
this omission in more detail in the main text.

Using equation (1), we can use the observed data to
obtain an estimate of βk. This reduces to a simple
regression problem where the resulting estimates are

µ̂ = 1
N
1T y, β̂k = (XT

k Xk)−1XT
k y =

XT
k y

N
since Xk is

normalized so XT
k Xk = N . The estimated residuals

ê = y − µ̂1 − β̂kXk can be used to estimate the stan-

dard error σ̂ =
√

êT ê
n−2

. Since the studies are large, the

association statistic

Sk =
β̂k
σ̂

√
N ∼ N

(
βk
σe∗

√
N, 1

)
(3)

will approximately follow the standard normal distri-
bution under the null hypothesis of no association and
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can be used to determine whether or not the statistic is
significant.

Since GWASes collect many markers, the significance
threshold is adjusted for multiple hypothesis testing.
The community has settled on using the significance
threshold of αs = 5 × 10−8 as the genome-wide signifi-
cance threshold which takes into account the large num-
ber of SNPs in the human genome. Since our statistics,
Sk, are normally distributed, a GWAS simply computes
Sk for each variant and then checks to see if Φ(Sk) <
αs/2 or Φ(Sk) > 1−αs/2 in which case the variant is as-
sociated. Φ(x) computes the cumulative standard nor-
mal distribution. Figure 1 shows an example of checking
for significance of a variant using the normal distribu-
tion.

The statistical power measures the probability of de-
tecting an association under the assumption that an as-
sociation is present with a certain effect size. Intuitively,
the power measures the probability that the truly associ-
ated variants will be discovered. Since statistical power
depends on both the effect size and the number of in-
dividuals in the study, statistical power can be used to
guide the choice of study size as well as provide expecta-
tions on what effect sizes can and can not be discovered
in association studies.

Using the distributions above, we can also estimate
the statistical power of an association study. We assume
that the effect size at variant i is βi and the residual
variance from equation (1) is σ2

e∗ . Since we know that
the statistic Sk follows the distribution in equation (3),
the question is how often this statistic is significant (i.e.
Φ(Sk) < αs/2 or Φ(Sk) > 1 − αs/2). This probability
can be estimated using the following

P (αs, β, σ,N) = Φ(−Φ−1(αs/2)+
β

σ

√
N)+1−Φ(Φ−1(αs/2)+

β

σ

√
N)

(4)
Note that the power depends on what is referred to as
the non-centrality parameter (in our case β

σ

√
N ) which
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Figure 1: Significance testing in association studies. The null distribution is shown which is the standard normal
distribution and the expected distribution of the association statistics under the assumption that the effect size is 0.
For each variant, that association statistic in equation (3) is computed and its significance is evaluated using the null
distribution. If the statistic falls in the significance region of the distribution, the variant is declared associated. In
this example, S1 is not significant and S2 and S3 are significant. The exact location of the threshold is defined as the
location on the x axis where the tail probability area equals the significance threshold (αs). This is denoted using
the quantile of the standard normal ±Φ−1(αs/2).



is the mean of the distribution of the statistic under
the assumption of the genetic effect. A visualization of
estimating the power is shown in Figure 2.

Figure 3(a) and 3(b) show the effect of minor allele
frequency and study size on the power of discovering
associations. As can be shown in the figure, for small
minor allele frequencies, even very large studies have
very low power to detect associations.

Appendix 2: Computational Problems in Ge-
netics
• how to efficiently estimate mixed model parame-

ters, which has been an active area of research for
several years[15, 13, 20, 30]

• how to efficiently identify pairs of segments in in-
dividuals which were inherited from a recent com-
mon ancestry[4, 5, 9]

• predicting haplotypes or the sequence of alleles
on a chromosome from the genotype information
which mixes the two chromosomes[6, 2, 7, 1, 10,
26]

• identifying the population origin of each region of
an individual’s genome for individuals who are ad-
mixed or a mixture of multiple ancestral popula-
tions[24, 23].

• identifying the geographical origin of an individ-
ual[22, 27, 3]

• identifying pairs of genetic variants which have a
larger effect on the trait than each individually[29,
28]

• inferring the genetic relationships between individ-
uals[17, 19, 11]

• inferring the genetic history of a region of the
genome in the population which is referred to as
an ancestral recombination graph[25]

• predicting missing genotype data in an association
study[21, 14, 12]

• correcting for multiple testing in genome-wide as-
sociation studies[16, 8]

• efficiently computing association statistics[18]
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Figure 2: Power of association studies. The power is defined by considering the expected distribution of the association
statistics assuming a specific effect size which is referred to as the alternative distribution. This effect size as well as
the number of individuals in the study define the non-centrality parameter (NCP) of the alternative distribution. The
area of the alternative (noncentral) distribution outside the significance threshold defined by the null distribution is
the probability that an observation under the assumption of the specific effect size will be declared significant. This
probability is referred to as the power.
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Figure 3: The effect of minor allele frequency and study size on the statistical power of a GWAS. Power is shown for
studies of size 1000, 5000, 10,000, 50,000 and 100,000 as a function of minor allele frequency for (a) an effect equal
to 10% of a standard deviation of the phenotype and (b) a larger effect equal to 20% of a standard deviation of the
phenotype.
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