
Impact of Clustering on the Performance
of Network De-anonymization

Carla-Fabiana Chiasserini
Dipartimento di Elettronica e

Telecomunicazioni
Politecnico di Torino, Italy
chiasserini@polito.it

Michele Garetto
Dipartimento di Informatica
Universita’ di Torino, Italy

michele.garetto@unito.it

Emilio Leonardi
Dipartimento di Elettronica e

Telecomunicazioni
Politecnico di Torino, Italy

leonardi@polito.it

ABSTRACT
Recently, graph matching algorithms have been successfully ap-
plied to the problem of network de-anonymization, in which nodes
(users) participating in more than one social network are identified
only by means of the structure of their links to other members. This
procedure exploits an initial set of seed nodes large enough to trig-
ger a percolation process which correctly matches almost all other
nodes across the different social networks. Our main contribution
is to show the crucial role played by clustering, which is a ubiq-
uitous feature of realistic social network graphs (and many other
systems). Clustering has both the effect of making matching algo-
rithms more vulnerable to errors, and the potential to dramatically
reduce the number of seeds needed to trigger percolation, thanks
to a wave-like propagation effect. We demonstrate these facts by
considering a fairly general class of random geometric graphs with
variable clustering level, and showing how clever algorithms can
achieve surprisingly good performance while containing matching
errors.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics—
Probabilistic algorithms; G.2.2 [Discrete Mathematics]: Graph
Theory; H.1 [Information Systems]: Models and Principles

Keywords
Graph matching; bootstrap percolation; social networks; de-ano-
nymization; privacy

1. INTRODUCTION
The advent of online social networks, and their massive world-

wide penetration, can be well considered as one of the most in-
fluential changes brought by information and communication tech-
nologies into our lives during the last decade, with profound im-
pact on all aspects of economy, society and culture. The extraordi-
nary capitalization of the companies running these (typically free)
online services can be explained by the huge amount of valuable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
COSN’15, November 2–3, 2015, Palo Alto, California, USA.
© 2015 ACM. ISBN 978-1-4503-3951-3/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2817946.2817953.

information that can be extracted from the traces of activities per-
formed by billions of users. Such information allows, for example,
to build user profiles that can be effectively used for targeted ad-
vertisements, marketing and social surveys, and many other prof-
itable business run by service providers and third parties. Privacy
concerns raised by the collection, analysis and distribution of per-
sonal data, exposed more or less consciously by active users, have
been recently hotly debated in the media. User privacy is especially
threatened when data collected from different systems is combined
together to construct richer and more accurate user profiles.

In this work we are specifically concerned with the problem of
identifying users participating in different online social networks
We emphasize that this problem can be perceived by people in to-
tally different ways. Some users would prefer to hide any Personal
Identifiable Information (PII) while using a service, and they see
any attempt to correlate accounts created in different systems as a
severe violation of their privacy. Other users instead are more than
happy to merge or link together their various accounts, as this turns
out to be convenient to the user itself. For example, the increasing
practice of ‘social logins’ allow users to use existing accounts on
social networks to directly sign into other services (different appli-
cations, websites, public Wi-Fi hotspots).

In our work, we are specifically interested in privacy issues, and
consider the case of an ‘attacker’ trying to identify users belonging
to two different social networks (without their consent). Recently,
security experts have made the dramatic discovery that user privacy
cannot be guaranteed when traces of communication activities are
made available after applying the simple anonymization procedure
which replaces real ID’s by random labels [1].

A standard way to formalize the user identification problem is
the following: each communication system (e.g., a given social
network) generates (from the traces of user activities) a ‘contact
graph’ in which nodes represent anonymized users, and edges de-
note who has come in contact with whom. The attacker then runs a
graph matching algorithm on the contact graphs generated by dif-
ferent systems, which in the hardest case can make use only of the
topologies of these graphs, without any additional side information
[2]. The majority of algorithms proposed so far to achieve this goal
are facilitated by an initial set of already matched nodes (called
seeds). This is actually a realistic case, since, as explained above,
some users explicitly link their accounts in different systems ‘for
free’. Many proposed matching strategies, based on heuristic algo-
rithms, work by progressively expanding the set of already matched
nodes, trying to identify all of the other nodes [1, 3, 4]. In particu-
lar, in their seminal paper Narayanan and Shmatikov [1] were able
to identify a large fraction of users having account on both Twitter
and Flickr (with only 12% error ratio).

83

Significant progress has also been made towards theoretical un-
derstanding of the feasibility of network de-anonymization (in the
first place), and of the asymptotic performance of graph matching
algorithms applied to large systems. Recent analytical work has
adopted the following convenient probabilistic generation model
for two contact graphs G1 and G2: we consider the (inaccessi-
ble) ‘ground-truth’ graph GT representing true social relationships
among people, and then assume that G1 is obtained by indepen-
dently sampling each edge of GT with probability s (similarly, and
independently, G2). Specifically, when the social network GT is
modeled as an Erdös–Rényi random graph, it has been shown in [5]
that, under mild conditions, users participating in two different so-
cial networks can be successfully matched by an attacker with un-
limited computation power, even without seeds. Still in the case of
Erdös–Rényi random graphs, in [6] authors have proposed a prac-
tical identification algorithm based on bootstrap percolation, [7]
showing an interesting phase transition phenomenon in the num-
ber of seeds that are required for network de-anonymization. The
results in [6] have been recently extended to the more realistic case
in which contact graphs are scale-free (power-law) random graphs.
In particular, by modeling them as Chung-Lu graphs, [8] and [9]
have independently shown that a much smaller set of seeds is suf-
ficient to trigger the percolation-based matching process originally
studied in Erdös–Rényi graphs.

While previous work has captured the impact of power-law de-
gree distribution on percolation graph matching, another essential
feature of real social networks, namely, clustering, has not been
investigated so far. Interestingly, in [6] authors attempted to ap-
ply their basic algorithm also to highly clustered random geomet-
ric graphs, observing almost total failure (error rates above 50%).
This preliminary finding has been the starting point of our work. In
this paper we consider a fairly general model of random geometric
graphs that allows us to incorporate various levels of clustering in
the underlying social network, without concurrently generating a
scale-free structure. By so doing, we separate the (unkown) impact
of clustering from the (known) impact of power law degree, going
back to the original case of Erdös–Rényi graphs and exploring a
totally different, ‘orthogonal’ direction. Our main findings are as
follows:

(i) Clustered networks can be indeed largely prone to matching
errors when we naively apply the method proposed in [6]. Such
errors can be mitigated and asymptotically eliminated by an im-
proved matching algorithm still based on bootstrap percolation;

(ii) Once errors are eliminated, clustering turns out to have a
surprising beneficial effect on the performance of graph matching,
thanks to a wave-like propagation phenomenon that allows to pro-
gressively identify all nodes starting from a very small, compact set
of seeds;

(iii) In contrast with previous results derived for Erdös–Rényi
[6] and Chung-Lu graphs [8], we show that the minimum number
of seeds required for network de-anonymization can increase with
the average node degree of the graph.

Our results are qualitatively validated via experiments with syn-
thetic and real social network graphs. We emphasize that, although
we focus on network de-anonymization, the results derived in this
work have much broader applicability, since graph matching prob-
lems are arising in many different domains, ranging from computer
graphics to bioinformatics.

2. NOTATION AND PRELIMINARIES
Without loss of generality, we assume that GT(V ,E),

G1(V1,E1) and G2(V2,E2) have the same set of nodes (or vertices)

Figure 1: An example of G1 and G2 obtained from GT by inde-
pendent edge sampling, and of the pairs graph P (GT). There
is a single seed, highlighted in red. In P (GT), good pairs are
highlighted in white and bad pairs in grey.

with cardinality n, i.e., V1 = V2 = V 1. Similarly to previous work
[4, 5, 6, 8, 9] we assume that edges in G1 and G2 are obtained by
independently sampling each edge of GT with probability s. Specif-
ically, each edge in GT is assumed to be (independently) sampled
twice, the first time to determine its presence in E1, the second
time to determine its presence in E2. This model is a reasonable
approximation of real systems which permits obtaining fundamen-
tal analytical insights.

To match G1 and G2, we build the pairs graph P (V,E), with
V ⊆ V1 ×V2 and E ⊆ E1 ×E2. In P (V,E) there exists an edge
between [i1, j2] and [k1, l2] iff edge (i1,k1) ∈ E1 and edge (j2, l2) ∈
E2. We will slightly abuse the notation and denote the pair graph
associated to a generic ground-truth graph GT simply as P (GT).
Fig. 1 shows the pairs graph built from a toy example.

We will refer to pairs [i1, i2]∈P (GT), whose vertices correspond
to the same vertex i ∈ GT, as good pairs, and to all others (e.g.,
[i1, j2]) as bad pairs. Also, we will refer to two pairs such as [i1, j2]
and [i1, l2], or [i1, j2] and [k1, j2], as conflicting. Finally, two adja-
cent pairs on P (GT) will be referred to as neighbors. The seeds set
will be denoted by A0(n)⊂ V , with cardinality a0.

We now briefly describe the Percolation Graph Matching (PGM)
algorithm originally proposed in [6]. The PGM algorithm main-
tains an integer counter (initialized to zero) for any pair of P (GT)
that may still be matched. It exploits a set At , indexed by time
step t, which is initialized (for t = 0) with the seed pairs. At any
given time t ≥ 0, the PGM algorithm extracts at random one pair
from At matching the corresponding nodes, and increases by one
the counter associated to each of its neighbor pair in P (GT). Then
the algorithm adds to At+1 all pairs whose counter has reached r
at time t with the exception of those pairs that are in conflict with
either any of the already matched pairs or any of the pairs in At .
The algorithms stops when At = /0. It is straightforward to see that
PGM takes at most n steps to terminate.

1This assumption can be easily removed by considering that only
the intersection of vertices belonging to G1 and G2 has to be de-
anonymized.

84

Table 1: Main system parameters
Symbol Definition

GT ground-truth graph
G1 and G2 contact graphs

V , V1 and V2 set of vertices of GT, G1 and G2
E , E1 and E2 set of edges of GT, G1 and G2

s edge sampling probability
P (GT) pair graph
P̂ (GT) imperfect pair graph
A0(n) seed set

H k-dimensional network domain

pi j = K(n)min
(

1,
(

C(n)
di j

)β
)

edge (i, j) probability

D(n) average degree of vertices

In the case where GT is an Erdös–Rényi random graph, previous
work [6] has established the following lower bound on the number
of seeds that are needed to correctly match almost all nodes without
errors. Table 1 summarizes the main parameters of the system.

Critical seed set size for Erdös-Rényi graphs [6]. Let GT be
an Erdös-Rényi random graph G(m, p). Let r ≥ 4. Denote by ac
the critical seed set size:

ac =

(
1− 1

r

)(
(r−1)!
m(ps2)r

) 1
r−1

. (1)

For m−1 ≪ ps2 ≤ s2m− 3.5
r , we have that, if ao/ac → a > 1, the

PGM algorithm matches w.h.p. a number of good pairs equal to
m−o(m) (i.e., all vertex pairs except for a negligible fraction) with
no errors.

Critical seed set size for random graphs bounded by Erdös-
Rényi graphs. Let H (V ,EH) and K (V ,EK) be two random
graphs insisting on the same set of vertices V , where EH ⊆ EK .
We define the following partial order relationship: H (V ,EH) ≤st
K (V ,EK). Given that, we introduce the following extended results
(in part borrowed from our previous work [8]):

Theorem 1. Consider GT satisfying: G(m, pmin) ≤st GT ≤st
G(m, pmax) with pmin ≤ pmax. Applying the PGM algorithm to
P (GT) guarantees that m− o(m) good pairs are matched with no
errors w.h.p., provided that:

1. m → ∞;

2. pmin = Θ(pmax) and pmin ≫ m−1;

3. pmax ≤ m− 3.5
r ;

4. liminfm→∞ ao/ac > 1, with ac computed from (1) by setting
p = pmin.

Also, under conditions 1)-4), the PGM successfully matches w.h.p.
m− o(m) correct pairs (with no errors) also in any subgraph G ′

T
of GT that comprises a finite fraction of vertices of GT and all the
edges between the selected vertices. The proof can be found in our
technical report [10].

Corollary 1. Under the same conditions as in Theorem 1, the
PGM algorithm can be successfully applied to an imperfect pairs
graph P̂ (GT) ⊂ P (GT) comprising a finite fraction of the pairs in
P (GT) and satisfying the following constraint: a bad pair [i1, j2] ∈
P (GT) is included in P̂ (GT) only if either [i1, i2] or [j1, j2] are also
in P̂ (GT).

The above results provide basic building blocks to perform the
asymptotic analysis of the number of seeds that are sufficient to de-
anonymize clustered networks described by the model presented
next.

3. CLUSTERED NETWORK MODEL
To incorporate different degrees of clustering in the ground-truth

social network GT, we have adopted the following geometric ran-
dom graph model, which guarantees a large degree of flexibility,
while inheriting the main features of the small-world graphs. We
assume that nodes are located in a k-dimensional space correspond-
ing to the hyper-cube2 H = [0,1]k ⊂ Rk, where the k dimensions
could correspond to different attributes of the users. We consider n
nodes independently and uniformly distributed over H . Notice that
the node density in the space is n. Given any two vertices i, j ∈ V ,
with i ̸= j, edge (i, j) exists in GT with probability pi j that depends
only on the Euclidean distance di j between i and j (independently
of everything else). We consider the following generic law for pi j:

pi j = K(n) f (di j) . (2)

In (2), f is a non-increasing function of the distance, and K(n) is
a normalization constant introduced to impose a desired average
node degree D(n), which is assumed to be the same for all nodes.
It is customary in random graph models representing realistic sys-
tems to assume that the average node degree is not constant, but
it increases with n due to network densification. Also, although
a common choice is to assume D(n) = Θ(logn), in our model we
consider more in general D(n) = Ω(logn).

Since we are interested in the order-sense asymptotic perfor-
mance of network de-anonymization as n grows large, we further
characterize the shape of function f as follows. We assume that
f (d) equals 1 for all distances 0< d <C(n), where C(n) is a param-
eter of the model (possibly scaling with n). Note that this implies
that K(n) must be less than or equal to 1 to obtain a proper prob-
ability function. For distances larger than C(n), we assume that f
decays according to a power-law with exponent β, with β > 0. In
summary,

f (di j) = min

{
1,
(

C(n)
di j

)β
}

. (3)

The above characterization of the shape of f (d) is fairly general and
allows accounting for different levels of node clustering. In partic-
ular, our random-graph model degenerates into a standard Erdös–
Rényi graph when C(n) approaches 1, with arbitrary β. For β → ∞,
instead, edges can be established only between nodes whose dis-
tance is smaller than or equal to C(n).

The average node degree is:

D(n)=Θ
(

nK(n)
(

Ck(n)+Cβ(n)
∫ 1

C(n)
ρk−1−β dρ

))
.

From the above equation it follows that for β > k the dominant
fraction of the neighbors of a given node lie at distance Θ(C(n))
from it, while for β < k only a marginal fraction of the neighbors
of a node lie at distance o(1) from it. Since we are interested in
graphs with significant node clustering (so as to mimic real-world
social networks), we restrict the analysis in this paper to the case
β > k. In this case, the average node degree is:

D(n) = Θ(nK(n)Ck(n)). (4)
2To avoid border effects, we assume wrap-around conditions (i.e.,
a torus topology).

85

Since by construction K(n) ≤ 1, the average node degree is con-
strained to be O(nCk(n)). Moreover, given that we assume D(n) =

Ω(logn), we have C(n) = Ω
((

logn
n

)1/k
)

.

The clustering coefficient turns out to be Θ(K(n)), as direct con-
sequence of the fact that almost all neighbors of a node lie at dis-
tance Θ(C(n)) from it. We remark that the clustering coefficient
of the networks generated according to our model is always much
larger than in an Erdös–Rényi graph having the same average node
degree (recall that in G(n, p) the clustering coefficient is p). To see
this, we observe that in our model the ratio between the clustering
coefficient Θ(K(n)) and the graph density 3 is Θ(1/Ck(n)). Since
in general Ck(n) = o(1), our graph model exhibits a high level of
clustering. In the following, we will slightly abuse the language
and refer to groups of vertices lying in sub-regions of side Θ(C(n))
as clusters (not to be confused with the clustering coefficient).

In essence, in our model, which has been chosen in light of its
flexibility, K(n) and C(n) provide the two knobs that allow us to di-
rectly control the clustering coefficient of the graph and the average
node degree (or the graph density). We will see next that these are
indeed the crucial parameters affecting the asymptotic performance
of the proposed graph matching algorithms.

4. OVERVIEW AND MAIN RESULTS
In our analysis we have to distinguish two cases:

1) K(n) = o((nCk(n))−γ), for some γ > 0, which will be referred to
as sparse clusters case;
2) K(n) = ω((nCk(n)−γ)) for any γ > 0, which will be referred to
as dense clusters case.
In the first case the clustering coefficient goes to zero “relatively"
fast as the number of nodes within a cluster goes to infinity (i.e.,
when nCk(n)→ ∞). In the second case, the clustering coefficient is
either bounded away from zero or decreases very slowly. It com-
prises the particularly relevant sub-case in which K(n) = Θ(1).

In the sparse clusters case the density of edges within a cluster
is sufficiently small that the PGM algorithm can be safely applied
within it without incurring matching errors. We therefore apply
the following de-anonymization procedure. We start from a set of
seeds which are assumed to lie in a small sub-region of H of size
Θ(C(n)) (i.e., within a cluster). Then, using the PGM algorithm,
we run a first ‘trigger phase’ in which we correctly match almost
all nodes located sufficiently close (within a fixed distance) to the
seeds. The identification procedure then goes on through a second
phase in which nodes located in ‘expanding rings’ around the ini-
tial seeds are progressively identified through a sequence of steps
(representing a discretized version of a wave-like expansion). Note
that, in this second phase, we do not apply PGM any more, but
a simpler direct strategy, matching at each step those pairs having
a sufficiently large number of neighbor pairs matched at previous
steps. Fig. 2 illustrates graphically this idea.

In the dense clusters case, de-anonymization is more complex,
due to the high clustering coefficient (note that for large values of
K(n) the graph can have many cliques or quasi-cliques of nodes). In
particular, if we tried to match the nodes using only the local struc-
ture of a cluster (as in the sparse clusters case) we would initially
incur an intolerable amount of errors disrupting the entire identifi-
cation process. It follows that, to guarantee that almost no errors
are made, we have to ignore all edges whose length is too short

3Given a generic graph G(V ,E), the graph density is defined as
2|E |

|V |(|V |−1) . It can be interpreted as the probability that an edge
exists between two randomly selected nodes of the graph.

Table 2: Minimum seed set size to achieve percolation
Scenario Minimum seed set size

K(n) = ω((nCk(n))−γ), ∀γ > 0 O((nCk(n))ε), ∀ε > 0

K(n) = o((nCk(n))−γ), with γ > 0 Θ
(

lognCk(n)
K(n)

)

(in particular, shorter than a properly defined threshold ω(C(n))),
and identify the nodes on the only basis of the ‘fingerprint’ pro-
vided by longer edges. More specifically, we devise a different
‘trigger phase’ which starts from two sub-regions of H of side
h(n) = Θ(C(n)), which are sufficiently far from each other (i.e.,
separated by a minimum distance ω(C(n)), see Fig. 3). We as-
sume that a suitable number of seeds are initially selected within
each of these two sub-regions. To identify all of the other nodes
in the sub-regions, we modify the PGM algorithm so that only the
edges between nodes belonging to different sub-regions are used.
After that, similarly to the sparse clusters case, we enter a second
phase which progressively expands the set of matched nodes. This
time we exploit the fact that, in the dense cluster regime, the dis-
tance between two nodes in H can be estimated quite precisely.
Thus, given a sub-region where nodes have already been matched,
we can select a set of compact nodes that are sufficiently far from
the matched sub-region, and re-apply the modified PGM algorithm.
This procedure can be iterated until almost all nodes throughout the
network are correctly identified.

already de-anonimized

to be de-anonymized

next to be de-anonymized

Figure 2: The de-anonymization procedure for K(n) =
o((nCk(n))−γ).

Hl Hr

ω(h(n))

h(n) h(n)

Figure 3: Bipartite graph construction for K(n) =
ω((nCk(n)−γ)).

In Table 2, we summarize our main results for the minimum seed
set size that is required for successful network de-anonymization,
assuming that seeds are selected within suitable clusters of H . Ob-
serve that the minimum number of seeds depends on both K(n)
and C(n), whereas it is independent of β. Specifically, in the dense

86

cluster case (first raw of the table), the minimum number of seeds
can be simply expressed in terms of the average number of nodes
falling within a cluster (nCk(n)). Indeed, a seed set whose size is
equal to (nCk(n))ε, for any ε > 0, is enough to guarantee an al-
most complete successful network de-anonymization. In the rel-
evant case in which C(n) = Θ(logn

n)1/k (i.e., when the average
degree of the graph D(n) = Θ(log n)), the above expression re-
duces to (logn)ε, with arbitrarily small ε > 0. This result readily
reveals the strong beneficial impact of clustering on network de-
anonymization. Somehow surprisingly, the minimum seed set size
increases when we increase the average degree of the nodes (i.e.,
for increasing C(n)). This is in sharp contrast with previous results
derived for Erdös–Rényi and Chung-Lu graphs [6, 8]. The intuition
behind this result is that, by increasing C(n), we increase the clus-
ter size, making the problem of identifying nodes within a cluster
intrinsically more challenging. In the sparse clusters case (second
raw of the table), our de-anonymization techniques become less
effective, and the minimum seed set size turns out to be roughly
inversely proportional to K(n).

5. SPARSE CLUSTERS
In this case, we assume K(n) = o

(
(nCk(n))−γ), for some γ > 0,

and a set of seeds A0 (|A0|= a0) whose maximum mutual distance
is ds = O(C(n)).

As first phase, we show how nodes in H lying sufficiently close
to the seeds can be identified. To this end, we start by defining two
sub-regions, Hin ⊂ H and Hout ⊂ H . Intuitively, Hin (Hout) can
be seen as the set of points whose distance from any seed vertex is
higher (lower) than a given threshold. More formally, denote by x
a generic point in H and by xσ the position in H of a generic seed
vertex σ. Then, given two positive constants α and δ, s.t. δ ≤ 1 and
α(1+δ) ≤ 1, we define:

Hin(α,δ) =
{

x s.t. max
σ∈A0

∥x−xσ∥ ≤ f−1((1+δ)α)
}

Hout(α,δ) =
{

x s.t. min
σ∈A0

∥x−xσ∥> f−1((1−δ)α)
}

where f is the non-increasing function defined in Section 3. The
two sub-regions are depicted in Fig. 4. Note that, by construction,
the area |Hin|= Θ(Ck(n)).

f−1((1+δ)α)
Seeds

Hin(α,δ)

Hout(α,δ)

f−1((1−δ)α)

Figure 4: Hin(α,δ) and Hout(α,δ).

The theorem below proves that, given graph G1 (G2), it is possi-
ble to correctly distinguish nodes in Hin(α,δ) from nodes in Hout(α,δ)
by counting the number of their neighboring seeds.

Theorem 2. Given a node i ∈ G1 (i ∈ G2), let Si be the number
of seeds that are neighbors of i on G1 (G2). We say that node i is ac-

cepted if Si >αsK(n)a0. If ds =O(C(n)) and a0 =Ω
(

log(nCk(n))
K(n)

)
,

then for an arbitrary δ > 0, the above procedure accepts all nodes
located in Hin(α,δ), while it excludes all nodes located in Hout(α,δ).

PROOF. See Appendix A.

Note that, in the above statement, sK(n) is the probability that a
node in G1 (G2) is connected with a seed node at distance C(n) or
less. Thus, αsK(n)a0 provides a suitable threshold on the number
of connections between a node and the a0 seed vertices.

Next, we denote by N 1(α) and N 2(α), respectively, the set of
nodes from G1 and G2 that are classified as located in Hin(α,δ).
By construction, we have |N 1(α)| = Θ(nCk(n)) and |N 2(α)| =
Θ(nCk(n)). We build the pairs graph P (N) that is induced by
the nodes of G1 and G2 that belong to, respectively, N 1(α) and
N 2(α). While doing this, we can guarantee that a bad pair [i1, j2]
is included in P (N) only if either [i1, i2] or [j1, j2] are also in-
cluded in P (N). This is accomplished as follows. We apply the
previous classification procedure twice, using two different values
α1 and α2, with α1 > α2, chosen in such a way that Hout(α1,δ)⊆
Hin(α2,δ). Then we insert in P (N) all pairs whose constituent
nodes have been selected by at least one of the classification proce-
dures, adding the constraint that at least one of the nodes must have
been selected by both. Since, by construction, no good pair [i1, i2]
exists s.t. i1 falls in Hin(α1,δ) and i2 in Hout(α2,δ) (or vice versa),
the above condition is ensured.

We then apply the PGM algorithm on P (N). Our goal is now
to verify that the conditions in Theorem 1 hold so that, applying
Corollary 1, we can claim that all good pairs in P (N) can be
matched without errors. To this end, let us define m = Θ(nCk(n)),
which in order sense equals the number of nodes in N 1(α) and
N 2(α). Then note that pmin = Θ(pmax), pmax = K(n) and K(n) =
o(m−γ). Thus, for a sufficiently large r, pmax ≪ m− 3.5

r . Further-
more, since by assumption nCk(n)K(n)=Ω(log n), it follows pmin ≫
m−1. At last, it is easy to see that ao/ac → ∞. Indeed, from
(1), ac = O(1/K(n)) while, by assumption (see Theorem 2), a0 =

Ω
(

log(nCk(n))
K(n)

)
. In conclusion, we have that all good pairs whose

nodes fall in Hin(α1,δ) can be correctly matched.
To further expand the set of identified pairs, we pursuit the fol-

lowing simple approach. Starting from the pairs already matched in
the first phase, which act as seeds, we consider a larger region that
includes the previous one. By properly setting a threshold r, we
can match all pairs in this larger region having at least r neighbors
among the seeds. So doing, we successfully match w.h.p. all good
pairs in the region with no errors. More formally, the following
theorem allows us to claim that our approach can be successfully
employed.

Theorem 3. Consider a circular region D(0,ρ) centered at 0,
of radius ρ, with ρ ≥ C(n). Given that all (or almost all) nodes
lying within D(0,ρ) have been correctly identified, it is possible
to correctly identify (almost) all nodes in D(0,ρ1) \D(0,ρ) with
probability 1−o(n−1), for ρ1 =ρ+C(n)/2, when K(n)= o((nCk(n))−γ)
for some γ > 0. In addition, none of the bad pairs formed by nodes
in H −D(0,ρ)will be identified, again with probability 1−o(n−1).
This is done by setting threshold r = n

2 |D(0,ρ)∩D(x,C(n))|K(n)
2 ,

with |x| = ρ1, and identifying as good pairs those in H \D(0,ρ)
that have at least r neighbors among good pairs in D(0,ρ).

PROOF. The proof is based on the application of standard con-
centration results, namely, Chernoff bound and inequalities in [11,
p. 16] (also reported in B for convenience). The detailed proof is
given in [10].

87

Almost all good pairs can be matched w.h.p. by iterating the match-
ing procedure of Theorem 3 a number of steps Θ(1/C(n)). Indeed,
each time the PGM algorithm successfully matches all good pairs
whose constituent nodes lie within distance C(n)/2 from the set
of previously matched pairs. Note that Theorem 3 also guarantees
that, jointly over all steps, no bad pair is matched w.h.p.

6. DENSE CLUSTERS
The case K(n) = ω((nCk(n)−γ)), for any γ > 0, is significantly

different from the previous case since the de-anonymization algo-
rithm must disregard all edges whose length is too short (shorter
than a properly defined threshold ω(C(n))) so as to avoid errors
(i.e., matching bad pairs). The approach we propose to address this
case relies on some results that we introduce next, in an more ab-
stract sense, considering the case in which GT is a bipartite graph.
Then we apply such results to our clustered social network model,
and derive the minimum seed set size that is required to trigger the
identification process in this case.

6.1 Results on bipartite graphs
Let GT be a ml ×mr bipartite graph. Let Ml denote the set of

vertices on the left hand side (LHS), with |Ml| = ml , and Mr the
set of vertices on the right hand side (RHS), with |Mr| = mr. We
assume that for any pair of vertices i ∈ Ml and j ∈ Mr an edge (i, j)
exists in the graph with probability pi j , with pmin ≤ pi j ≤ pmax and
pmax = ηpmin for some constant η > 1. Our goal is to identify a
minimum number of seeds a0 located in either side of the graph,
i.e., with a0 = |A l

0| in Ml and a0 = |Ar
0| in Mr, such that vertices

in Ml and Mr can be correctly matched.
Let us first consider the case where ml = mr = m, for which the

theorem below holds.

Theorem 4. Assume that GT is an m×m bipartite graph and
that two sets of seeds, A l

0 and Ar
0, both of cardinality a0, are avail-

able on, respectively, the LHS and the RHS of the graph. Then the
PGM algorithm with threshold r ≥ 4 correctly identifies m−o(m)
good pairs w.h.p. on the RHS and the LHS of graph P (GT), with
no errors, under the same 4 conditions listed in Theorem 1.

PROOF. See Appendix C.

Theorem 4 can be extended to the general case where ml ̸= mr, as
stated in the corollary below.

Corollary 2. Assume that GT is an ml ×mr bipartite graph and
define m = min(ml ,mr). Under the same assumptions of Theorem
4, the PGM algorithm with threshold r ≥ 4 successfully identifies
w.h.p. m−o(m) good pairs on both the LHS and the RHS of P (GT),
with no errors. Furthermore, the PGM algorithm can be success-
fully applied to an imperfect pairs graph P̂ (GT)⊂ P (GT) compris-
ing a finite fraction of pairs on both the LHS and the RHS of P (GT)
and satisfying the following constraint: a bad pair [i1, j2] ∈ P (GT)
is included in P̂ (GT) only if either [i1, i2] or [j1, j2] are also in
P̂ (GT).

PROOF. The assertion can be proved by following the same ar-
guments as in Theorem 4 and applying Corollary 1.

Finally, we prove the following result, which shows that all good
pairs can be matched with no errors w.h.p.

Theorem 5. Consider that GT is an ml ×mr bipartite graph
with ml = ω(√mr) and that a seed set A l

0 is available on the LHS
of the graph, with |Al

0|= a0 = Θ(ml). With probability larger than

1− e−
ml√
mr , all the mr good pairs on the RHS can be successfully

identified with no errors, provided that:

1. 1√
mr

≪ pmin ≤ pmax ≪ 1

2. pmin = Θ(pmax)

3. a matching algorithm is used on P (GT) that matches all
pairs on the RHS that have at least r adjacent seeds on the
LHS, with r = a0

pmin
2 .

The same result holds in case of imperfect pairs graph comprising
a finite fraction of all possible pairs on the RHS.

PROOF. Without loss of generality, we assume a0 ≥ cmr for
some c > 0. The proof is obtained by applying the inequalities
reported in Appendix B and [11, p. 16]. First, observe that, given
a good pair [j1, j2] on the RHS of the pairs graph, the number of
its adjacent seeds on the LHS is E[Ng] ≥ a0 pmin = 2r. Thus, by
applying inequality (8) and union bound, we have:

P(all good pairs on the RHS have at least r adjacent seeds)

≥ 1−mre−cml pminH(1
2) ≥ 1−e−

ml√
mr

which imply that all good pairs on the RHS are successfully matched
since ml = ω(√mr). Similarly, considering a bad pair [j1,k2] on
the RHS, the number of its adjacent seeds on the LHS is E[Nb] ≤
cmr(pmax)2 ≪ r. Thus, by applying inequality (10) and union
bound, we have:

P(all bad pairs on the RHS have less than r adjacent seeds)

≥ 1−m2
r e

−cml
pmin

4 log
(

pmin
(pmax)2

)

≥ 1−e−
ml√
mr .

6.2 The de-anonymization procedure
We now outline how our proposed matching algorithm for the

dense clusters case works. First, we consider two hyper-cubic re-
gions, Hl ⊂ H and Hr ⊂ H , whose side is h(n) = Ω(C(n)) and
whose distance is g(n) = ω(C(n)) (see Fig. 3). Note that by con-
struction, given two vertices i∈Hl and j ∈Hr, pmin =K(n) f (g(n)+√

kh(n)) ≤ pi j ≤ K(n) f (g(n)) = pmax. Let us assume pmax =
ηpmin for some constant η > 1.

We then extract vertices in Hl and Hr from the rest of vertices
so that we can focus on the bipartite graph induced by the nodes
in the two sub-regions, along with the edges between them. To
this end, we assume that two sufficiently large sets of seeds are
available in Hl and Hr so that Theorem 2 can be applied. In this
regard, observe that we can use the same procedure as in Section 5,
to make sure that a bad pair [i1, j2] is included in the pair graph
only if either [i1, i2] or [j1, j2] are also included in it. We can then
apply Corollary 2.

It follows that the execution of the PGM algorithm ensures that
almost all of the good pairs in either the LHS or the RHS of the
pairs graph are correctly de-anonymized. Without lack of gener-
ality, we assume that almost all pairs on LHS are de-anonymized,
i.e., ml < mr, and that a non-negligible fraction of the good pairs
on the RHS have still to be identified. Then the rest of good pairs
on the RHS can be matched by applying Theorem 5.

To further expand the set of matched nodes, we first show how
it is possible to estimate (at least in order sense) the length of the
edges between two nodes, again by exploiting the dense structure
of the clusters.

Proposition 1. Given two nodes in region H , it is possible to
estimate with arbitrary precision their mutual distance d as far as

d ≪C(n)
(
nK2(n)Ck(n)

) 1
β .

88

xi

x j

x

sK(
n) f (||x

i−
x||)

sK(n) f (||x−xj ||)

Figure 5: Computation of E[Ni j].

PROOF. Let us consider two nodes i and j on G1 (G2) whose
mutual distance is di j . Let Ni j be the variable that represents the
number of their common neighbors. By construction (see Fig. 5),
we have:

E[Ni j]=(n−2)s2K2(n)
∫

H
f (||x−xi||) f (||x−x j||)dx

=Θ(nCk(n)K2(n) f (di j)) .

Observe that E[Ni j] is continuous and strictly decreasing with di j ,
and thus invertible. Now, applying Chernoff bound we can show
that for any 0 < δ < 1

(
|Ni j −E[Ni j]|

E[Ni j]
> δ
)
≤ e−c(δ)E[Ni j]

for a proper constant c(δ) > 0. Since E[Ni j]→ ∞ as long as d ≪
C(n)

(
nK2(n)Ck(n)

) 1
β , the assertion follows.

We can therefore use the number of common neighbors between
two given nodes as an estimator of their distance. We then set
two thresholds, dL = Θ(C(n) log(n1/kC(n))) and dH = λdL (with
λ > 1), and we leverage the above result to correctly classify the
edges going out of previously matched nodes into three categories:
edges that are shorter than dL, edges that are longer than dH and
edges of length comprised between dL and dH . In particular, we
are interested in the latter, for which the following result holds.

Proposition 2. Assume K(n) = ω((nCk(n))−γ), ∀γ > 0. Con-
sider a set comprising a finite fraction of the nodes in G1 (G2) ly-
ing in a region of side Θ(C(n)), and the edges incident to them.
For an arbitrarily selected δ > 0, w.h.p (i.e., with a probability
larger than 1 − [C(n)]k) we can select all edges whose length d
is (1+δ)dL ≤ d ≤ (1−δ)dH . Furthermore, no edges whose length
d < (1−δ)dL and d > (1+δ)dH are selected.

The proof follows the same lines as in the proof in Appendix A (see
[10] for further details).

At this point, we consider a bipartite graph whose LHS is still
represented by Hl , and whose RHS is given by the nodes that are
connected with those in Hl through edges of length comprised be-
tween dL and dH . We can therefore apply Theorem 5 and match
w.h.p. all good pairs on the RHS, with no errors. The procedure is
then iterated so as to successfully de-anonymize the entire network.
Note that, at every step we apply the following proposition to ex-
tract a group of matched nodes whose mutual distance is Θ(C(n))).

Proposition 3. Assume K(n) = ω((nCk(n))−γ) ∀γ > 0. Given
a node i, we can set a threshold dT = Θ(C(n)) and select all nodes
in G1 (G2) whose estimated distance from i is less than dT . So
doing, for an arbitrarily selected δ > 0, we successfully select with
a probability larger than 1− [C(n)]k all nodes whose real distance
is d ≤ (1−δ)dT . Furthermore, no nodes whose distance from i is
d > (1+δ)dT are selected by our algorithm.

The proof is similar to that of Proposition 2 (see also [10]).

6.3 Minimum seed set size
To explicitly derive the minimum seed set size, we need to fur-

ther specify h(n) and g(n), which are to be carefully selected so as
to minimize the resulting critical size ac in Theorem 4 and Corol-
lary 2.

Starting from the result provided by Theorem 4, ac can be written
as:

ac =

(
1− 1

r

)(
(r−1)!

m(pmins2)r

) 1
r−1

≤
(

r−1

(m(pmins2)
1

r−1 pmins2

)
≤ r−1

pmins2 . (5)

The above expression can be minimized by maximizing pmin, i.e.,
by minimizing g(n) (recall that pmin = K(n) f (g(n) +

√
kh(n))).

However, g(n) and h(n) must also be selected in such a way that
condition 1) of Theorem 4 is met. Additionally, as mentioned, it
must be ensured that h(n) = Ω(C(n)). At last, by standard concen-
tration results, ml and mr turn out to be both Θ(nhk(n)) provided
that h(n)≥ (logn/n)1/k .

Previous considerations suggest to fix h(n) = Θ(C(n))≥
(logn/n)1/k (i.e., the minimum possible value in order sense), which
corresponds to having m=Θ(nCk(n)) (recall that m=min(ml ,mr)).
We then derive g(n) by forcing pmax ≈ m− α

r , with 3.5 < α < 4 and
r ≥ 4. Note that condition 1) of Theorem 4 is met since pmax and
pmin are both Θ(m− α

r). Hence, we have pmax = Θ((nCk(n))−
α
r)

and g(n) = Θ(n
α
βr [C(n)]1+

αk
βr [K(n)]

1
β)).

Given the above expression for pmax, considering that pmax =
ηpmin and using (5), the minimum seed set size can be made as
small as ac = O([nCk(n)]ε), for any ε > 0, by choosing r > 4

ε . Fi-
nally, we remark that the obtained ac is in order sense greater than
the minimum number of seeds needed to apply Theorem 2 while
selecting nodes in regions Hl an Hr, thus the whole construction is
consistent.

7. EXPERIMENTAL VALIDATION
Although our results hold asymptotically as n → ∞, we can ex-

pect to qualitatively observe the main effects predicted by the anal-
ysis also in finite-size graphs. We will first investigate the perfor-
mance of graph matching algorithms in synthetic graphs generated
according to our model of clustered networks, and then apply them
to a real social network graph.

7.1 Synthetic graphs
In this section we consider bi-dimensional graphs having n =

10,000, the sampling probability s = 0.8 and, unless otherwise
specified, the average node degree in the ground-truth graph D(n)=
30.

Fig. 6 reports the average number of correctly matched nodes
across 1,000 runs of the PGM algorithm (using r = 5) in various
cases, as function of the number of seeds. In each run, seeds are
either chosen uniformly at random among all nodes (label ‘uniform
seeds’), or as a compact set around one randomly chosen seed (la-
bel ‘compact seeds’). In our model of clustered graphs, we have
fixed β = 3 (the decay exponent of the edge probability beyond
C(n)), and we consider either K(n) = 0.05 or K(n) = 0.2. As ref-
erence, in the plot we also show the phase transition occurring (at
about 600 seeds) when GT is a G(n, p) graph having the same av-
erage node degree. The plot confirms the wave-like nature of the
identification process as predicted by our analysis, namely: i) clus-
tered networks (larger K(n)) can be matched starting from a much

89

smaller seed set as compared to G(n, p); ii) such huge reduction
requires seeds to be selected within a small sub-region of H .

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700

go
od

 m
at

ch
es

seeds

(uniform seeds)

(compact seeds)

(compact seeds)

K(n) = 0.05

G(n, p)

K(n) = 0.05

K(n) = 0.2

Figure 6: Comparison of PGM performance (with r = 5) in
different networks with n = 10,000. Number of good matches
(averaged over 1,000 runs) as a function of the number of seeds,
chosen either uniform or compact.

What the plot in Fig. 6 does not clearly show (except for a rough
estimate based on the maximum number of correctly matched nodes)
is the error ratio incurred by the PGM algorithm, which is expected
to become larger and larger as we increase the level of clustering
in the network. This phenomenon is confirmed by Fig. 7, which
reports the average error ratio (bad matches over all matches) in-
curred by PGM as a function of K(n), starting from a compact set
of seeds. In Fig. 7 we have considered also different values of β.
The little circle denotes the operating point already considered for
the left-most curve in Fig. 6 (K(n) = 0.2), having an error ratio
of about 5%. The plot reveals that the error ratio increases dra-
matically when K(n) tends to 1, confirming that PGM cannot be
safely applied in highly clustered networks. The effect of β is more
intriguing: smaller β’s produce fewer errors since generated net-
work graphs tend to become more similar to G(n, p), where PGM is
known to generate very few errors. As side-effect, smaller values of
β tend to slightly increase the percolation threshold (not shown in
the plot). For example, for K(n) = 0.4, the critical number of seeds
(estimated from simulations) corresponding to β = 2.2,2.5,3,4 are
equal to 11,15,24,45, respectively.

Next, we focus on the ‘hard’ case corresponding to the little
square shown in Fig. 7, i.e., K(n) = 0.8, β = 3. This case corre-
sponds to networks having highly dense clusters, where the per-
formance of the original PGM algorithm is rather poor (error ratio
about 50%). Fig. 8 shows the average number of nodes matched
by different algorithms as a function of the number of seeds: thick
lines correspond to good matches, whereas thin lines (with the same
line style) refer to bad matches produced by the same algorithm.
For sake of simplicity, network de-anonymization is performed by
applying a simplified version of the algorithm proposed and anal-
ysed in Section 6. This simple algorithm consists in adopting PGM
after having removed all graph edges shorter than x ·C(n). In the
following, we will call this algorithm ‘filtered PGM’ and we will
label the corresponding curves in the plots by ‘ f =<x>’. We stress
that filtered PGM approaches the performance that can be obtained
by the algorithm in Section 6.

Looking at Fig. 8, it is important to remark that in this scenario
the performance of the various algorithms is highly sensitive to the
location of the set of seeds (in each run we uniformly select one

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

er
ro

r r
at

io

K(n)

β = 4
β = 3

β = 2.5
β = 2.2

Figure 7: Error ratio of PGM as a function of K(n) for different
values of β, starting from compact seeds.

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

nu
m

be
r o

f m
at

ch
ed

 n
od

es

seeds

PGM - good matches - r = 7
PGM - bad matches - r = 7
f = 1, r = 5 - good matches

f = 1, r = 5 - bad matches
 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

nu
m

be
r o

f m
at

ch
ed

 n
od

es

seeds

f = 1, r = 4 - good matches
f = 1, r = 4 - bad matches

Figure 8: Average number of good and bad pairs matched by
different Numbers close to the vertical line at K(n) = 0.4 denote
corresponding estimates of the percolation thereshold derived
via simulation.

seed among all nodes, and choose all of the other seeds among its
neighbors). Since we average the results over 1,000 runs, this ex-
plains why all curves do not exhibit a sharp transition4. An average
number of matched nodes equal to, say, 2,000, must be given the
following probabilistic interpretation: about 1/5 of (uniformly cho-
sen) initial locations allow us to match almost all nodes (10,000),
while 4/5 of initial locations do not trigger the percolation effect.

Also, we note that the poor performance of standard PGM can-
not be fixed by just increasing the threshold r: using r = 7, PGM
still produces about 12% error ratio, while also requiring a dis-
proportionally larger number of seeds (only about 2,000 nodes are
matched on average starting from 100 seeds). Instead, filtered PGM,
with f = 1 and r = 4, requires very few seeds to match almost all
nodes, incurring about 3.7% error ratio. Using f = 1, r = 5, filtered
PGM requires more seeds, but achieves as low as 0.3% error ratio.

Next, we fix r and increase the filtering factor f so as to diminish
the number of errors while, however, reducing the average number
of matched nodes (i.e., the probability to trigger percolation from a

4We verified that, if we instead fix the very first seed across all runs,
a sharp transition appears. The transition threshold changes as we
vary the initial seed (results not shown here).

90

 1

 10

 100

 1000

 10000

 1 1.05 1.1 1.15 1.2 1.25 1.3

av
er

ag
e

nu
m

be
r o

f m
at

ch
ed

 n
od

es

filtering factor, f

good matches - 30 seeds
bad matches - 30 seeds

good matches - 60 seeds
bad matches - 60 seeds

Figure 9: Effect of varying the filtering factor f for fixed r = 4
(scenario with K(n) = 0.8).

Table 3: Combinations of parameters achieving error ratio 3%,
percolation probability 50%

average node degree f # seeds
36 1.1 22
45 1.2 24
53 1.3 28
64 1.4 32

given seed set). Fig. 9 illustrates this effect for r = 4, in the case
of two different seed set sizes, 30 and 60. Having 60 seeds one
could, for example, employ f = 1.1 obtaining very high chance of
percolation (almost 100%) and small error ratio (around 1%).

Alternately, we can fix a desired error ratio and average number
of matched nodes (i.e., the probability to trigger large-scale perco-
lation), and look for the filtering factor and number of seeds that
let us achieve the desired goals. Table 3 reports an example of this
numerical exploration, in which we vary the average degree of the
nodes in GT corresponding to each examined scenario (the average
degree can be increased, for fixed K(n) = 0.8, by increasing C(n)).
The results in Table 3 validate, at least qualitatively, the counter-
intuitive theoretical predictions in Table 2: as we increase C(n)
(and thus the average node degree), the seed set size necessary to
achieve a desired matching performance increases as well.

7.2 Real social graph
We consider a real graph derived from the Slovak social network

Pokec.The public data set, available at [12], is a directed graph with
1,632,803 vertices and 30,622,564 edges, where nodes are users of
Pokec and directed edges represent friendships. Since the origi-
nal graph contains too many vertices for our computational power,
and since we would like to isolate the impact of clustering from
the effect of long-tailed degree distributions, we considered only
vertices having: i) in-degree larger than 20; ii) out-degree smaller
than 200. We ended up with a reduced graph having n = 133,573
nodes, 5,449,236 edges, average (in or out) degree 40.8 and clus-
tering coefficient 0.11. We use this graph as our ground-truth, and
employ an edge sampling probability s= 0.8. Notice that we main-

tain the direct nature of the edges, since all considered algorithms
immediately apply to direct networks as well 5.

 100

 1000

 10000

 100000

 20 30 40 50 60 70 80 100 200 300 400

av
er

ag
e

nu
m

be
r o

f m
at

ch
ed

 n
od

es

seeds

uniform - good matched
uniform - bad matched

compact - good matched
compact - bad matched

filter 10 - good matched
filter 10 - bad matched

Figure 10: Performance of matching algorithms in a subset of
the friendship graph of the social network Pokec.

Fig. 10 shows the performance of the different algorithms using
threshold r = 6. As before, curves labelled ‘uniform’ refer to the
PGM algorithm in which seeds are selected uniformly at random
among the nodes. Curves labelled ‘compact’ refer to the PGM al-
gorithm in which seeds are chosen among the closest neighbors of
a uniformly selected node. Curves labelled ‘filter 10’ differ from
the previous one in that the edges connecting each node to its near-
est 10 neighbors are not used by the algorithm. We emphasize that
a G(n, p) having the same number of nodes and average degree
would require ac = 5,783 seeds, according to (1). In contrast, all
considered algorithms require much fewer seeds to match almost
all nodes, confirming that real social networks are much simpler
to de-anonymize than G(n, p). In particular, the uniform variant
requires about 400 seeds to match on average 100,000 nodes, but
incurs a quite large error ratio (about 17%). The compact variant
reduces this number roughly by a factor 3, but produces the same
error ratio. At last, the filtered variant requires a bit more seeds
than the compact one, but it allows to lower down the error ratio
to about 4%. The above results confirm the crucial performance
improvement that can be obtained by jointly: i) starting from a
compact set of seeds (to exploit the wave-propagation effect), ii)
carefully discarding edges connecting nodes to their local clusters
(to limit the errors).

8. CONCLUSIONS
We focused on the effect of node clustering on social network

de-anonymization. We defined a flexible model of geometric ran-
dom graphs that can incorporate different levels of clustering. Then
we designed de-anonymization algorithms and analysed their per-
formance by using bootstrap percolation. Our theoretical results
highlight that clustering significantly helps to reduce the number of
seeds required to trigger the identification process, and that our al-
gorithms can correctly match almost all nodes while making errors
negligible (asymptotically as the network grows large). Our find-
ings were confirmed by numerical experiments on synthetic and
real social graphs.

5In direct networks, counters of matchable pairs are incremented
only by using outgoing edges from matched pairs.

91

APPENDIX
A. PROOF OF THEOREM 2

Without loss of generality, let us focus on G1 and let us consider
a node i ∈ Hin(α,δ). By construction, the number of seeds that are
neighbors of i on G1 is given by Si = ∑σ∈A0 XiσS1

iσ ≥st Yi ≥st Y
where

Yi = Bin(a0,sK(n) f (max
σ∈A0

||xi −xσ||))

and Y = Bin(a0,sK(n)(1 + δ)α), with E[Y] = sK(n)(1 + δ)αa0.
Now, using the inequalities in Appendix B, we can bound:

P(Yi < αsK(n)a0)≤ exp
(
−E[Yi]H

(αsK(n)a0
E[Yi]

))

≤ exp
(
−(1+δ)αsK(n)a0H

(1
1+δ

))
(6)

with H(b) = 1−b+b log b.
If we consider jointly all nodes in Hin(α,δ) and we denote with

Nin their number, we can bound the probability that every node in
Hin(α,δ) is accepted with:

P(all nodes in Hin are accepted | Nin)

≤ 1−Nin exp
(
−(1+δ)αsK(n)a0H

(1
1+δ

))
, (7)

with (7) that tends to 1 if logNin − (1+ δ)αsH
(

1
1+δ

)
K(n)a0 →

−∞. This can be enforced by opportunely setting a0 = Ω
(

logNin
K(n)

)
.

Since by construction |Hin|>Ck(n) ≥ logn
n , we have w.h.p. Nin ≤

2n|Hin| by standard concentration results (see also [10, Lemma 2]).
As consequence,

P(all vertices in Hin are accepted)→ 1

provided that a0 = Ω
(

log(nCk(n))
K(n)

)
. Then we focus on the nodes in

Hout(α,δ) and we show that all those nodes are jointly rejected.
Conceptually we repeat the same approach as before, however,
the argument is made slightly more complex by the fact that, to
achieve tight bounds on the probability that all nodes in Hout(α,δ)
are jointly rejected, we need to partition Hout(α,δ) into smaller
sub-regions containing nodes which lie at similar distance from the
seeds.

Assuming δ < e2−1
e2 , we define H 1

out =H 1(α, e2−1
e2)⊂Hout(α,δ)

and H 0
out(α,δ) = Hout(α,δ)\H 1

out. Furthermore, we partition H 1
out

into disjoint sub-regions, i.e., H 1
out = ∪h≥1H 1,h

out , with

H 1,h
out = Hout(

α,hβe2 −1
hβe2)\Hout(α,

(h+1)βe2 −1
(h+1)βe2)

Now, given a vertex i in H 0
out (H 1,h

out), the number of its neighbor
seeds Si on G1 can be bounded from above by a Bin(a0,sK(n)(1−
δ)α)

(
Bin(a0,

sK(n)
hβe2 α)

)
. Furthermore, by elementary geometrical

arguments, it can be shown that: i) |H 0
out|= Θ(Ck(n)), ii) |H 1,1

out |=
Θ(Ck(n)) and iii) H 1,h

out = Θ(hk−1H 1,1
out).

Denoted with N0
out and N1,h

out the number of nodes in H 0
out and

H 1,h
out , respectively, by exploiting again the inequalities in [11, pag

16], w.h.p. we have:

P
(

all nodes in H 0
out are rejected

)
≤

1−N0
out exp

(
−(1−δ)αsK(n)a0H

(
1−δ

))
→ 1 .

The above expression holds under the assumption that
a0 = Ω

(
log(nCk(n))

K(n)

)
. Indeed, we remark that N0

out ≤ 2n|H 0
out| =

Θ(nCk(n)) w.h.p. At last,

P
(

all nodes in H 1
out are rejected

)

≤ 1−
∞
∑
h=1

N1,h
out exp

(
−αsK(n)a0

2
(β logh+2)

)
.

For every h, N1,h
out ≤ 2n|H 1,h| = Θ(nhk−1Ck(n)); also, the num-

ber of sub-regions of H 1
out is O(n/Ck(n)). Thus, w.h.p. we have

that jointly on all h’s, the number of nodes in these sub-regions
can be bounded by 2n|H 1,h|. Under the assumption that a0 =

Ω
(

log(nCk(n))
K(n)

)
, it can be easily shown that

P
(

all nodes in H 1
out are rejected

)
→ 1.

B. CONCENTRATION INEQUALITIES
For the reader’s convenience, we report below the inequalities

that can be found also in [11, p. 16].

Lemma 1. Let H(b) = 1−b+b logb for b > 0. Suppose n ∈N
p ∈ (0,1) and 0 ≤ k ≤ n. Let µ = np; if k ≤ µ, then:

P(Bin(n,p) ≤ k)≤ exp
(
−µH

(k
µ

))
(8)

if k > µ, then:

P(Bin(n,p) ≥ k)≤ exp
(
−µH

(k
µ

))
(9)

if k > e2µ, then

P(Bin(n,p) ≥ k)≤ exp
(
− k

2
log

k
µ

)
. (10)

Algorithm 1 The PGM algorithm
1: A0 = B0 = A0(n), Z0 = /0
2: while At \Zt ̸= /0 do
3: t = t +1
4: Randomly select a pair [∗1,∗2] ∈ At−1 \Zt−1 and add one

mark to all neighboring pairs of [∗1,∗2] in M (GT).
5: Let ∆Bt be the set of all neighboring pairs of [∗1,∗2]

in M (GT) whose mark counter has reached threshold r
at time t.

6: Construct set ∆At ⊆ ∆Bt as follows. Order the pairs
in ∆Bt in an arbitrary way, select them sequentially
and test them for inclusion in ∆At :

7: if the selected pair in ∆Bt has no conflicting pair in
At−1 or ∆At then

8: Insert the pair in ∆At
9: else

10: Discard it
11: Zt =Zt−1∪[∗1,∗2], Bt =Bt−1∪∆Bt , At =At−1∪∆At

12: return T = t, ZT = AT

92

C. PROOF OF THEOREM 4
The following proof uses the PGM algorithm that has been in-

troduced in [6] and here is reported for completeness in Alg. 1. The
notation is briefly explained below; the reader may also refer to [10]
for a detailed description of the PGM algorithm and associated no-
tation.

With reference to PGM algorithm, we define:

• Bt(GT) as the set of pairs in P (GT) that at time step t have
already collected a least r marks. It is composed of good
pairs B ′

t (GT) and bad pairs B ′′
t (GT);

• At(GT) as the set of matchable pairs at time t. Similarly
to Bt(GT), it comprises good pairs A ′

t (GT) and bad pairs
A ′′

t (GT). In general, At(GT) and Bt(GT) do not coincide
as Bt(GT) may include conflicting pairs that are not present
in At(GT);

• Zt(GT) as the set of pairs that have been matched up to time
t. By construction, |Zt(GT)|= t, ∀t.

For the sake of readability, below we omit the dependency on the
GT.

For any two vertices i ∈ Ml and j ∈ Mr, let Xi j be the Bernoulli
random variable that represents the presence of an edge (i, j) ∈ E .
By construction, Ber(pmin) ≤st Xi j ≤st Ber(pmax). I.e., two vari-
ables Xi j and Xi j, with distribution, respectively, Ber(pmin) and
Ber(pmax), can be defined on the same probability space as Xi j
such that Xi j ≤ Xi j ≤ Xi j point-wise.

We consider the corresponding pairs graph P (GT), which is, by
construction, composed of all the pairs of vertices residing in Ml
and Mr and of the edges connecting pairs of vertices in Ml with
pairs of vertices in Mr. We denote by Pl and Pr , respectively, the
set of pairs of P (GT), whose vertices lie in Ml and Mr. Observe
that, given two good pairs [i1, i2]∈Pl and [j1, j2]∈Pr, the presence
of an edge in P (GT) is associated with the random variable:

Y[i1 ,i2],[j1, j2] = Xi jXi jS1
i jS

2
i j = X2

i jS
1
i jS

2
i j

where S1
i j and S2

i j are mutually independent Ber(s) random vari-
ables, which are in turn independent of Xi j . By construction,

pmins2 ≤ E[Y[i1,i2],[j1, j2]]≤ pmaxs2.

Instead, given two bad pairs [i1,k2] ∈ Pl and [j1, l2] ∈ Pr, we have
Y[i1 ,k2],[j1,l2] = Xi jXklS1

i jS
2
kl , with p2

mins2 ≤ E[Y[i1,k2],[j1,l2]]≤ p2
maxs2.

Finally, if we consider one good pair and one bad pair (e.g., [i1, i2]∈
Pl and [j1,k2] ∈ Pr), we obtain Y[i1 ,i2],[j1,k2] = Xi jXikS1

i jS
2
ik, with

p2
mins2 ≤ E[Y[i1,i2],[j1, j2]]≤ p2

maxs2.
Recall that we assume that two seed sets, A l

0 ∈ Pl and Ar
0 ∈ Pr

(with |A l
0| = |Ar

0|), are available. On P (GT) we run the PGM
algorithm [6], opportunely modified, as follows. At every time
step t, we extract uniformly at random one pair zl(t) = [zl

1,z
l
2]t ∈

A l
t−1 \Zl

t−1 and zr(t) = [zr
1,z

r
2]t ∈ Ar

t−1 \Zr
t−1, adding a mark to

all the neighbor pairs in Pr and Pl , respectively. In other words,
matched pairs in Pl contribute to the mark of pairs in Pr and vice
versa. Thus, for a generic node pair [i1, j2] ∈ Pr \Zr

t , marks are
updated according to the iteration: Mr

[i1, j2]
(t) = Mr

[i1 , j1]
(t − 1) +

Yzl(t),[i1, j2]. Similarly, for [i1, j2] ∈ Pl marks are updated according
to Ml

[i1 , j2]
(t) = Ml

[i1 , j2]
(t − 1)+Y[i1, j2],zr(t). For the rest, the algo-

rithm proceeds exactly as described in Section 2.
Now, it is important to observe that marks of pairs on the RHS

of the graph evolve exactly as the marks of a coupled PGM that
operates over a pairs graph PR defined as follows. Denote the

generic pair by [∗1,∗2]; then PR is a graph insisting on the set of
nodes Mr and in which the presence of edge (zr(t), [∗1,∗2]), for
any [∗1,∗2] ∈ Pr \ Zr

t , is dynamically unveiled at time t by ob-
serving variable Xzl

1(t)∗1
Xzl

2(t)∗2
Sl

zl
1(t)∗1

Sr
zl

1(t)∗2
. In other words, the

edges originated from zl(t) are replaced by the edges originated
from zr(t) and vice versa.

zl (t)

zr (t)

zL (t)

zR(t)

PL PR

Pl Pr

Figure 11: Graphical representation of the PGM evolution over
coupled graphs.

Furthermore, we make the following observations.
(i) We assume that the sequence of matched pairs {zR

t }t ∈ P (R)

exactly corresponds to the sequence of matched pairs {zr(t)}t ∈ Pr,
i.e., zr(t) = zR(t) at every t. This is made possible by the fact that
given Zr

t−1 =ZR
t−1, marks collected by every unmatched pair in the

two graphs at time t exactly correspond.
(ii) Our construction is consistent since edges between pairs are

unveiled only once, specifically at the time at which the first be-
tween the two edge endpoints in PR is placed in ZR

t = Zr
t . Since

then, the edge is replaced with an edge between two pairs that are
both in PR, hence it will not be used again.

(iii) PR is isomorphic to a pairs graph originated by a general-
ized Erdös–Rényi graph GR

T , in which the presence of every edge
(zr(t),∗) can be represented by a Bernoulli r.v. and the probabil-
ity that the edge is added to the graph takes values in the range
[pmin, pmax] and is independent of other edges. Indeed, observe
that the presence of an edge in PR deterministically corresponds to
the presence of the corresponding edge in P (GT). Furthermore, by
construction, different edges in PR correspond to different edges in
P (GT).

The same observations hold when we consider the evolution of
the marks of the pairs on the left hand side and a pairs graph PL,
which is originated from a coupled generalized Erdös–Rényi graph
GL

T with same properties as GR
T .

Now, clearly

G(m, pmin)≤st GR
T ≤st G(m, pmax)

and

G(m, pmin)≤st GL
T ≤st G(m, pmax) ,

i.e., GR
T (GL

T) can be obtained by opportunely thinning a graph
G(m, pmax), while a graph G(m, pmin) can be obtained by oppor-
tunely thinning GR

T (GL
T). Then we invoke Theorem 1 to conclude

our proof and show that our algorithm correctly percolates over GR
T

and GL
T and, thus, over the bipartite graph GT.

93

D. REFERENCES
[1] A. Narayanan, V. Shmatikov, “De-anonymizing social

networks,” IEEE Symposium on Security and Privacy, 2009.
[2] P. Pedarsani, D.-R. Figueiredo, M. Grossglauser, “A

Bayesian method for matching two similar graphs without
seeds,” IEEE Allerton 2013.

[3] W. Peng, F. Li, X. Zou, J. Wu, “A two-stage
deanonymization attack against anonymized social
networks,” IEEE Trans. on Computers, 63(2), 2014.

[4] N. Korula, S. Lattanzi, “An efficient reconciliation algorithm
for social networks,” PVLDB,2014.

[5] P. Pedarsani, M. Grossglauser, “On the privacy of
anonymized networks,” SIGKDD, 2011.

[6] L. Yartseva, M. Grossglauser, “On the performance of
percolation graph matching,” COSN, 2013.

[7] S. Janson, T. Luczak, T. Turova, T. Vallier, “Bootstrap
percolation on the random graph Gn,p,” The Annals of
Applied Probability, 22(5), 2012.

[8] C.F. Chiasserini, M. Garetto, E.Leonardi, “De-anonymizing
scale-free social networks by percolation graph matching,”
INFOCOM, 2015.

[9] K. Bringmann, T. Friedrich, A. Krohmer, “De-anonymization
of heterogeneous random graphs in quasilinear time,” 22nd
Annual European Symposium on Algorithms, ESA’14.

[10] C.F. Chiasserini, M. Garetto, E. Leonardi, “Impact of
clustering on the performance of percolation-based graph
matching,” Technical Report, 2015,
http://arxiv.org/abs/1508.02017.

[11] M. Penrose, Random Geometric Graphs, Oxford University
Press, 2003.

[12] Pokec network dataset - KONECT, (website)
http://konect.uni-koblenz.de/networks/
soc-pokec-relationships

94

