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ABSTRACT
In everyday life, we often observe unusually frequent inter-
actions among people before or during important events,
e.g., we receive/send more greetings from/to our friends on
Christmas Day, than usual. We also observe that some
videos suddenly go viral through people’s sharing in online
social networks (OSNs). Do these seemingly different phe-
nomena share a common structure?

All these phenomena are associated with sudden surges
of user activities in networks, which we call “bursts” in this
work. We find that the emergence of a burst is accompanied
with the formation of triangles in networks. This finding mo-
tivates us to propose a new method to detect bursts in OSNs.
We first introduce a new measure, “triadic cardinality dis-
tribution”, corresponding to the fractions of nodes with dif-
ferent numbers of triangles, i.e., triadic cardinalities, within
a network. We demonstrate that this distribution changes
when a burst occurs, and is naturally immunized against
spamming social-bot attacks. Hence, by tracking triadic car-
dinality distributions, we can reliably detect bursts in OSNs.
To avoid handling massive activity data generated by OSN
users, we design an efficient sample-estimate solution to esti-
mate the triadic cardinality distribution from sampled data.
Extensive experiments conducted on real data demonstrate
the usefulness of this triadic cardinality distribution and the
effectiveness of our sample-estimate solution.

Categories and Subject Descriptors: J.4 [Computer
Applications]: Social and Behavioral Sciences

General Terms: Design, Measurement

Keywords: Social Activity Streams, Burst Detection, Sam-
pling Methods, Data Stream Algorithms

1. INTRODUCTION
Online social networks (OSNs) have become ubiquitous

platforms that provide various ways for users to interact over
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the Internet, such as tweeting tweets, sharing links, messag-
ing friends, commenting on posts, and mentioning/replying
to other users (i.e., @someone). When intense user interac-
tions take place in a short time period, there will be a surge
in the volume of user activities in an OSN. Such a surge
of user activity, which we call a burst in this work, usually
relates to emergent events that are occurring or about to oc-
cur in the real world. For example, Michael Jackson’s death
on June 25, 2009 triggered a global outpouring of grief on
Twitter [15], and the event even crashed Twitter for sev-
eral minutes [30]. In addition to bursts caused by real world
events, some bursts arising from OSNs can also cause enor-
mous social impact in the real world. For example, the 2011
England riots, in which people used OSNs to organize, re-
sulted in 3, 443 crimes across London due to this disorder [1].
Hence, detecting bursts in OSNs is an important task, both
for OSN managers to monitor the operation status of an
OSN, and for government agencies to anticipate any emer-
gent social disorder.

Typically, there are two types of user interactions in OSNs.
First is the interaction between users (we refer to this as
user-user interaction), e.g., a user sends a message to an-
other user, while the second is the interaction between a
user and a media content piece (we refer to this as user-
content interaction), e.g., a user posts a video link. Ex-
amples of bursts caused by these two types of interactions
include, many greetings being sent/received among people
on Christmas Day, and videos suddenly becoming viral after
one day of sharing in an OSN. At first sight, detecting such
bursts in an OSN is not difficult. For example, a straightfor-
ward way to detect bursts caused by user-user interactions
is to count the number of pairwise user interactions within
a time window, and report a burst if the volume lies above
a given threshold. However, this method is vulnerable to
spamming social-bot attacks [10, 14, 31, 7, 33, 6], which can
suddenly generate a huge amount of spamming interactions
in the OSN. Hence, this method can result in many false
alarms due to the existence of social bots. Similar prob-
lem also exist when detecting bursts caused by user-content
interactions. Many previous works on burst detection are
based on idealistic assumptions [17, 39, 24, 13] and simply
ignore the existence of social bots.

Present work. The primary goal of this work is to leverage
a special triangle structure, which is a feature of humans, to
design a robust burst detection method that is immunized
against common social-bot attacks. We first describe the
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Figure 1: Interaction burst and interaction triangle

triangle structure shared by both types of user interactions.

Interaction triangles in user-user interactions. Hu-
mans form social networks with larger clustering coefficients
than those in random networks [38] because social networks
exhibit many triadic closures [19]. This is due to the social
phenomenon of “friends of my friends are also my friends”.
Since user-user interactions usually take place along social
links, this property implies that user-user interactions should
also exhibit many triadic closures (which we will verify in ex-
periments). In other words, when a group of users suddenly
become active, or we say an interaction burst occurs, in addi-
tion to observing the rise of volume of pairwise interactions,
we expect to also observe many interactions among three
neighboring users, i.e., many interaction triangles form if we
consider an edge of an interaction triangle to be a user-user
interaction. This is illustrated in Fig. 1(a) when no inter-
action burst occurs, while in Fig. 1(b), an interaction burst
occurs. In contrast, activities generated by social bots do
not possess many triangles since social bots typically select
their targets randomly from an OSN [7, 33].

Influence triangles in user-content interactions. We
say that a media content piece becomes bursty if many users
interact with it in a short time period. There are many rea-
sons why a user interacts with a piece of media content.
Here, we are particularly interested in the case where one
user influences another user to interact with the content,
a.k.a. the cascading diffusion [21] or word-of-mouth spread-
ing [27]. It is known that many emerging news stories arising
from OSNs are related to this mechanism such as the story
about the killing of Osama bin Laden [34]. We find that
a bursty media content piece formed by this mechanism is
associated with triangle formations in a network. To illus-
trate this, consider Fig. 2(a), in which there are five user
nodes {a, b, d, e, u} and four content nodes {c1, c2, c3, c4}.
A directed edge between two users means that one follows
another, and an undirected edge labeled with a timestamp
between a user node and a content node represents an inter-
action between the user and the content at the labeled time.
We say content node c has an influence triangle if there ex-
ist two users a, b such that a follows b and a interacts with
c later than b does. In other words, the reason a interacts
with c is due to the influence of b on a. In Fig. 2(a), only c2
has an influence triangle, the others have no influence trian-
gle, meaning that the majority of user-content interactions
are not due to influence; while in Fig. 2(b), every content
node is part of at least one influence triangle, meaning that
many content pieces are spreading in a cascading manner
in the OSN. From the perspective of an OSN manager who
wants to know the operation status of the OSN, if the OSN
suddenly switches to a state similar to Fig. 2(b) (from a pre-
vious state similar to Fig. 2(a)), he knows that a cascading
burst is present in the OSN.
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Figure 2: Cascading burst and influence triangle

Characterizing bursts. So far, we find a common struc-
ture shared by different types of bursts: the emergence of
interaction bursts (caused by user-user interaction) and cas-
cading bursts (caused by user-content interaction) are both
accompanied with the formation of triangles, i.e., interaction
or influence triangles, in appropriately defined networks.
This finding motivates us to characterize patterns of bursts
in an OSN by characterizing the triangle statistics of a net-
work, which we called the triadic cardinality distribution.

Triadic cardinality of a node in a network, e.g., a user
node in Fig. 1(a) or a content node in Fig. 2(a), is the num-
ber of triangles that it belongs to. The triadic cardinality
distribution then characterizes the fractions of nodes with
certain triadic cardinalities. When a burst occurs, because
many new interaction/influence triangles are formed, we will
observe that some nodes’ triadic cardinalities increase, and
this results in the distribution shifting to right, as illustrated
in Figs. 1(c) and 2(c). The triadic cardinality distribution
provides succinct summary information to characterize burst
patterns of a large scale OSN. Hence, by tracking triadic car-
dinality distributions, we can detect the presence of bursts.

In this paper, we assume that user interactions are aggre-
gated chronologically to form a social activity stream, which
can be considered as an abstraction of a tweet stream in
Twitter, or a news feed in Facebook. We aim to calculate
triadic cardinality distributions from this stream. However,
when a network is large or users are very active, the social
activity stream will be high speed. For example, the speed of
the Twitter’s tweets stream can be as high as 5, 700 tweets
per second on average, 143, 199 tweets per second during
the peak time, and about 500 million to 12 billion tweets
are aggregated per day [20]. To handle such a high-speed
social activity stream, we design a sample-estimate solution,
which provides a maximum likelihood estimate of the triadic
cardinality distribution using sampled data. Our method
works in a near-real-time fashion, and is demonstrated to
be accurate and efficient.

Overall, we make three contributions in this work.

• We propose a useful measure, triadic cardinality distri-
bution, which provides succinct summary information
to characterize burst patterns of user interactions in a
large scale OSN (Section 2).

• We design a sample-estimate method that is able to
accurately and efficiently estimate triadic cardinality
distributions from high-speed social activity streams
in near-real-time (Sections 3 and 4).

• Extensive experiments conducted on real data demon-
strate the usefulness of the proposed triadic cardinality
distribution and effectiveness of our sample-estimate
solution. We also show how to apply our method to
detect bursts in Twitter during the 2014 Hong Kong
Occupy Central movement (Section 5).



2. PROBLEM FORMULATION
We first formally define the notion of social activity stream

as mentioned in previous section. Then we define triadic
cardinality distribution and describe our proposed solution.

2.1 Social Activity Stream
We represent an OSN by G(V,E,C), where V is a set of

users, E is a set of relationships among users, and C is a
set of media content such as hashtags and video links. Here,
a relationship between two users can be undirected like the
friend relationship in Facebook, or directed like the follower
relationship in Twitter.

Users in the OSN generate social activities, e.g., interact
with other users in V , or content in C. We denote a social
activity by a ∈ V × (V ∪C)× [0,∞). Here user-user inter-
action, a = (u, v, t), corresponds to user u interacting with
user v at time t; and user-content interaction, a = (u, c, t),
corresponds to user u interacting with content c at time t.

These social activities are aggregated chronologically to
form a social activity stream, denoted by S = {a1, a2, . . .},
where ak denotes the k-th social activity in the stream.

2.2 Triadic Cardinality Distribution
Triadic cardinality distributions are defined on two in-

teraction multi-graphs which are formed by user-user and
user-content interactions, respectively.

Interaction multi-graphs. Within a time window (e.g.,
an hour, a day or a week), user-user interactions in stream
S form a multi-graph Guu(V, Euu), where V is the original
set of users, and Euu is a multi-set consisting of user-user
interactions in the window. The triadic cardinality of a user
u∈V is the number of interaction triangles related to u in
Guu. For example, user u in Fig. 1(a) has triadic cardinality
two, and all other users have triadic cardinality one.

Similarly, user-content interactions also form a multi-graph
Guc(V ∪C,E ∪Euc) in a time window. Unlike Guu, the node
set includes both user nodes V and content nodes C, and
the edge set includes user relations E and a multi-set Euc de-
noting user-content interactions in the window. Note that
in Guc, triadic cardinality is only defined for content nodes,
and the triadic cardinality of a content node c ∈ C is the
number of influence triangles related to c in Guc. For exam-
ple, in Fig. 2(a), content c2 has triadic cardinality one, and
all other content nodes have triadic cardinality zero.

Triadic cardinality distribution. Let θ = (θ0, ..., θW )
and ϑ = (ϑ0, ..., ϑW ′) denote the triadic cardinality distri-
butions on Guu and Guc respectively. Here, θi (ϑi) is the
fraction of users (content pieces) with triadic cardinality i,
and W (W ′) is the maximum triadic cardinality in Guu (Guc).

The importance of the triadic cardinality distribution lies
in its capability of providing succinct summary information
to characterize burst patterns in a large scale OSN. By track-
ing triadic cardinality distributions, we will discover burst
occurrences in an OSN.

2.3 Overview of Our Solution
We propose an on-line solution capable of tracking the

triadic cardinality distribution from a high-speed social ac-
tivity stream, as illustrated in Fig. 3.

Our solution consists of sampling a social activity stream
in a time window maintaining only summary statistics, and
constructing an estimate of the triadic cardinality distribu-
tion from the summary statistics at the end of a time win-

OSN

social
activities

sample estimate

proposed solution triadic cardinality
distribution

Figure 3: Overview of our sample-estimate solution

dow. The advantage of this approach is that it is unneces-
sary to store all of the samples in the stream, and enables
us to detect bursts in a near-real-time fashion.

3. STREAM SAMPLING METHOD
In this section, we introduce the sampling method in our

solution. The purpose of sampling is to reduce the compu-
tational cost in handling the massive amount of data in a
high-speed social activity stream.

3.1 Sampling Stream with a Coin
The stream sampling method works as follows. We toss a

biased coin for each social activity a ∈ S. We keep a with
probability p, and ignore it with probability 1 − p. Hence,
each social activity is independently sampled, and at the end
of the time window, only a fraction p of the stream is kept.
We use these samples to obtain a summary statistics of the
stream in the current window, which we describe later.

3.2 Probability of Sampling a Triangle
When social activities in the stream are sampled, trian-

gles in Guu and Guc are sampled accordingly. Obviously, the
probability of sampling a triangle depends on p. In what
follows, we analyze the relationship between triangle sam-
pling probability and p, for an interaction triangle and an
influence triangle, respectively.

Probability of sampling an interaction triangle. Sam-
pling an interaction triangle, which consists of three user-
user interaction edges in Euu, is equivalent to all its three
edges being sampled. Because each interaction edge is in-
dependently sampled with probability p, then an interac-
tion triangle is sampled with probability p3, as illustrated in
Fig. 4(a).

p

p p

(a) interaction tri-
angle

u v

c

p′

p
t1

p
t2

(b) influence tri-
angle (t1 < t2)

(c) triangles having
shared edges

Figure 4: Sampling triangles. A solid edge repre-
sents an interaction, and a dashed edge represents
a user relation in E (i.e., a social edge). Figure (c)
illustrates two cases of two interaction triangles hav-
ing shared edges.

Probability of sampling an influence triangle. Cal-
culating the probability of sampling an influence triangle is
more complicated. First, we know that an influence triangle
consists of two user-content interaction edges in Euc and one
social edge in E. Second, we note that stream sampling only
applies to edges in Euc ∪ Euu; edges in E are not sampled as
they do not appear in the social activity stream.

In Fig. 4(b), suppose we have sampled two user-content
interaction edges uc and vc, and assume user u interacted



with content c earlier than user v. To determine whether
content c has an influence triangle formed by u and v, we
need to check whether (directed) edge (v, u) exists in E.
This can be done by querying neighbors of one of the two
users in the OSN. For example, in Twitter, we query fol-
lowees of v and check whether v follows u; or in Facebook,
we query friends of v and check whether u is a friend of v.

Suppose we observe nc sampled users that all interact
with c during the current time window, denoted by Vc =
{u1, . . . , unc} where ui interacted with c earlier than uj ,
i < j. To verify every sampled triangle related to c, we need
to query the OSN nc(nc − 1)/2 times. This query cost is
obviously expensive when nc is large. To reduce this query
cost, instead of checking every possible user pair, we check a
user pair with probability p′. This is equivalent to sampling
a social edge in E with probability p′, conditioned on the
two associated user-content interactions having been sam-
pled. Then, it is easy to see that an influence triangle is
sampled with probability p2p′.

We summarize the above discussions in Theorem 1.

Theorem 1. If we independently sample each social ac-
tivity in stream S with probability p, and check the existence
of a user relation in the OSN with probability p′, then each
interaction (influence) triangle in graph Guu (Guc) is sampled
with identical probability

pδ =

{
p3 for an interaction triangle,

p2p′ for an influence triangle.
(1)

Remark. Although triangles of the same type are sampled
identically, they may not be sampled independently, such as
the cases two triangles have shared edges in Fig. 4(c). We
will consider this issue in detail in Section 4.

3.3 Statistics of Sampled Data
The above sampling process is equivalent to sampling edges

in multi-graphs Guu and Guc: an activity edge e ∈ Euu ∪ Euc
is independently sampled with probability p; a social edge
e′ ∈ E is sampled with conditional probability p′.

At the end of the time window, we obtain two sampled
multi-graphs G′uu and G′uc1. Calculating the triadic cardinal-
ities for nodes in these reduced graphs is much easier than
on the original unsampled graphs. For G′uu, we calculate
triadic cardinality for each user node, and obtain statistics
g = (g0, . . . , gM ), where gj , 0 ≤ j ≤M , denotes the number
of nodes with j triangles in G′uu. Similar statistics are also
obtained from G′uc, denoted by f = (f0, . . . , fM′) (where fj
is the number of content nodes with j influence triangles in
G′uc). We only need to store g and f in computer memory
and use them to estimate θ and ϑ in the next section.

4. ESTIMATION METHODS
We are now ready to derive a maximum likelihood es-

timate (MLE) of the triadic cardinality distribution using
statistics obtained in the sampling step. The estimation in
this section can be viewed as an analog of network flow size
distribution estimation [11, 26] in which a packet in a flow
is viewed to be a triangle of a node. However, in our case,

1In G′uc, each sampled social edge e′ needs to be marked with
the influence triangle which e′ belongs to, corresponding to
the two user-content interactions that e′ is checked for.

triangle samples are not independent, and a node may have
no triangles. These issues complicate estimation, and we
will describe how to solve these issues in this section.

Note that we only discuss how to obtain the MLE of θ
using g, as the MLE of ϑ using f is easily obtained using a
similar approach. To estimate θ, we first consider the easier
case where graph size |V | = n is known. Later, we extend
our analysis to the case where |V | is unknown.

4.1 MLE when Graph Size is Known
Recall that gj , 0 ≤ j ≤M , is the number of nodes with j

sampled triangles in G′uu. First, note that observing a node
with j sampled triangles in G′uu implies that the node has at
least j triangles in Guu.

We also need to pay special attention to g0, which is the
number of nodes with no triangle in G′uu. Due to sampling,
some nodes may be unobserved (e.g., no edge attached to
the node is sampled), and these unobserved nodes also have
no sampled triangle. We include these in g0; the advantage
of this inclusion will be seen later. Since we have assumed a
total of n nodes in Guu, the number of unobserved nodes is
n−

∑M
j=0 gj . Therefore, we calibrate g0 by

g0 , n−
M∑
j=1

gj .

Our goal is to derive an MLE of θ. To this end, we need to
model the sampling process. For a randomly chosen node,
let X denote the number of triangles to which it belongs
in Guu, and let Y denote the number of triangles observed
during sampling. Then P (Y = j|X = i), 0 ≤ j ≤ i, is the
conditional probability that a node has j sampled triangles
in G′uu given that it has i triangles in Guu. The sampling
of a triangle can be viewed as a Bernoulli trial with a suc-
cess probability of pδ, according to Theorem 1. If Bernoulli
trials are independent, which means triangles are indepen-
dently sampled, then P (Y = j|X = i) follows a binomial
distribution. However, independence does not hold for tri-
angles having shared edges, as illustrated in Fig. 4(c). As a
result, it is non-trivial to derive P (Y = j|X = i) with the
existence of dependence. To deal with this dependence, we
approximate sums of dependent Bernoulli random variables
by a Beta-binomial distribution [40], which yields

P (Y = j|X = i) = BetaBin(j|i, pδ/α, (1− pδ)/α)

=

(
i

j

)∏j−1
s=0(sα+ pδ)

∏i−j−1
s=0 (sα+ 1− pδ)∏i−1

s=0(sα+ 1)
, bji(α)

where
∏−1

0 , 1. The above Beta-binomial distribution
parameterized by α allows pairwise identically distributed
Bernoulli trials to have covariance αpδ(1 − pδ)/(1 + α). It
reduces to a binomial distribution when α = 0. We have car-
ried out χ2 goodness-of-fit tests and the results demonstrate
that the above model indeed fits well the observed data on
many graphs (and is always better than the binomial model,
of course).

Using this model, we easily obtain the likelihood of ob-
serving a node to have j sampled triangles, i.e.,

P (Y = j) =

W∑
i=j

P (Y = j|X = i)P (X = i) =

W∑
i=j

bji(α)θi.

Then, the log-likelihood of all observations {Yk = yk}nk=1,



where Yk = yk denotes the k-th node having yk sampled
triangles, yields

L(θ, α), logP ({Yk=yk}nk=1)=

M∑
j=0

gj log

W∑
i=j

bji(α)θi. (2)

The MLE of θ can then be obtained by maximizing (2)

with respect to θ and α under the constraint that
∑W
i=0 θi =

1. Note that this is non-trivial due to the summation in-
side the log operation. In the next subsection, we use the
expectation-maximization (EM) algorithm to obtain the MLE
in a more convenient way.

4.2 EM Algorithm when Graph Size is Known
If we already know that the k-th node has xk triangles in
Guu, i.e., Xk = xk, then the complete likelihood of observa-
tions {(Yk, Xk)}nk=1 is

P ({(Yk, Xk)}nk=1) =

n∏
k=1

P (Yk = yk, Xk = xk)

=
M∏
j=0

W∏
i=j

P (Y = j,X = i)zij =
M∏
j=0

W∏
i=j

[bji(α)θi]
zij

where zij =
∑n
k=1 1 (xk = i ∧ yk = j) is the number of nodes

with i triangles and j of them being sampled (and 1 (·) is
the indicator function). The complete log-likelihood is

Lc(θ, α) ,
M∑
j=0

W∑
i=j

zij log [bji(α)θi] . (3)

Here, we can treat {Xk}nk=1 as hidden variables, and apply
the EM algorithm to calculate the MLE.

E-step: We calculate the expectation of the complete log-
likelihood in Eq. (3) with respect to hidden variables {Xk}k,

conditioned on data {Yk}k and previous estimates θ(t) and

α(t). That is

Q(θ, α; θ(t), α(t)) ,
M∑
j=0

W∑
i=j

Eθ(t),α(t) [zij ] log [bji(α)θi] .

Here, Eθ(t),α(t) [zij ] can be viewed as the average number of
nodes that have i triangles in Guu, of which j are sampled.
Because

P (X = i|Y = j, θ(t), α(t))

=
P (Y = j|X = i, α(t))P (X = i|θ(t))∑
i′ P (Y = j|X = i′, α(t))P (X = i′|θ(t))

=
bji(α

(t))θ
(t)
i∑

i′ bji′(α
(t))θ

(t)

i′

, pi|j

and we have observed gj nodes with j sampled triangles,
then Eθ(t),α(t) [zij ] = gjpi|j .

M-step: We now maximize Q(θ, α; θ(t), α(t)) with respect

to θ and α subject to the constraint
∑W
i=0 θi = 1. After the

log operation, θ and α are well separated. Hence, we obtain

θ
(t+1)
i = arg max

θ
Q(θ, α; θ(t), α(t))

=

∑i
j=0 Eθ(t),α(t) [zij ]∑M

j=0

∑W
i′=j Eθ(t),α(t) [zi′j ]

, 0 ≤ i ≤W,

and α(t+1) = arg maxαQ(θ, α; θ(t), α(t)), which can be solved
using gradient descent methods.

Multiple iterations of the E-step and the M-step, EM al-
gorithm converges to a solution, which is a local maximum
of (2). We denote this solution by θ̂ and α̂.

4.3 MLE when Graph Size is Unknown
When the graph size is unknown, one can use probabilistic

counting methods such as loglog counting [12] to obtain an
estimate of graph size from the stream, and then apply our
previously developed method to obtain estimate θ̂. Note
that this introduces additional statistical errors to θ̂ due to
the inaccurate estimate of the graph size. In what follows,
we slightly reformulate the problem and develop a method
that can simultaneously estimate both the graph size and
the triadic cardinality distribution from the sampled data.

When the graph size is unknown, we cannot calibrate g0
because we do not know the number of unsampled nodes. A
node of degree d is not sampled with probability (1 − p)d.
There is no clear relationship between an unsampled node
and its triadic cardinality. As a result, we cannot easily
model the absence of nodes by θ, and this complicates esti-
mation design.

To solve this issue, we need to slightly reformulate our
problem: (i) instead of estimating the total number of nodes
in Guu, we estimate the number of nodes belonging to at
least one triangle in Guu, denoted by n+; (ii) we estimate the
triadic cardinality distribution θ+ = (θ+1 , . . . , θ

+
W ), where θ+i

is the fraction of nodes with i triangles over the nodes having
at least one triangle in Guu.

Estimating n+. Under the Beta-binomial model, the prob-
ability that a node has i triangles in Guu, of which none are
sampled, is

qi(α) , P (Y = 0|X = i) =

i−1∏
s=0

(
1− pδ

sα+ 1

)
.

Then, the probability that a node has triangles in Guu, of
which none are sampled, is

q(θ+, α) , P (Y = 0|X ≥ 1) =

W∑
i=1

qi(α)θ+i .

Because there are
∑M
j=1 gj nodes having been observed to

have at least one sampled triangle. Hence, n+ can be esti-
mated by

n̂+ =

∑M
j=1 gj

1− q(θ+, α)
. (4)

Note that estimator (4) relies on θ+ and α, and we can
obtain them using the following procedure.

Estimating θ+ and α. We discard g0 and only use g+ ,
(g1, . . . , gM ) to estimate θ+ and α. The basic idea is to
derive the likelihood for nodes that are observed to have at
least one sampled triangle, i.e., {Yk = yk : yk ≥ 1}. In this
case, the probability that a node has X = i triangles, and
Y = j of them are sampled, conditioned on Y ≥ 1, is

P (Y = j|X = i, Y ≥ 1)

=
BetaBin(j|i, pδ/α, (1− pδ)/α)

1−BetaBin(0|i, pδ/α, (1− pδ)/α)
, aji(α), j ≥ 1.



Then the probability that a node is observed to have j sam-
pled triangles, conditioned on Y ≥ 1, is

P (Y = j|Y ≥ 1)

=

W∑
i=j

P (Y =j|X= i, Y ≥1)P (X= i|Y ≥1)=

W∑
i=j

aji(α)φi,

where

φi , P (X = i|Y ≥ 1) =
θ+i [1− qi(α)]∑W
i′=1 θ

+
i′ [1− qi′(α)]

, i ≥ 1. (5)

Now it is straightforward to obtain the previously mentioned
likelihood. Furthermore, we can leverage our previously de-
veloped EM algorithm by replacing θi by φi, bji by aji, to
obtain MLEs for φ and α. We omit these details, and di-
rectly provide the final EM iterations:

φ
(t+1)
i =

∑i
j=1 Eφ(t),α(t) [zij ]∑M

j=1

∑W
i′=j Eφ(t),α(t) [zi′j ]

, i ≥ 1,

where

Eφ(t),α(t) [zij ] =
gjaji(α

(t))φ
(t)
i∑W

i′=j aji′(α
(t))φ

(t)

i′

, i ≥ j ≥ 1,

and α(t+1) = arg maxαQ(φ, α;φ(t), α(t)) is solved using gra-
dient decent methods.

Once EM converges, we obtain estimates φ̂ and α̂. The
estimate for θ+ is then obtained by Eq. (5), i.e.,

θ̂+i =
φ̂i/[1− qi(α̂)]∑W

i′=1 φ̂i′/[1− qi′(α̂)]
, 1 ≤ i ≤W. (6)

Finally, n̂+ is obtained by the estimator in Eq. (4).

5. EXPERIMENTS
In this section, we first empirically verify the claims we

have made. Then, we validate the proposed estimation meth-
ods on several real-world networks. Finally, we illustrate our
method to detect bursts in Twitter during the 2014 Hong
Kong Occupy Central movement.

5.1 Analyzing Bursts in Enron Dataset
In the first experiment, we use a public email communi-

cation dataset to empirically show how bursts in networks
can change the triadic cardinality distribution, and verify
our claims previously made.

Enron email dataset. The Enron email dataset [18] in-
cludes the entire email communications (e.g., who sent an
email to whom at what time) of the Enron corporation from
its startup to bankruptcy. The used dataset is carefully
cleaned by removing spamming accounts/emails and emails
with incorrect timestamps. The cleaned dataset contains
22, 477 email accounts and 164, 081 email communications
between Jan 2001 and Apr 2002. We use this dataset to
study patterns of bursts caused by email communications
among people, i.e., by user-user interactions.

Observations from data. Because the data has been
cleaned, the number of user-user interactions (i.e., number
of sent emails2) per time window reliably indicates burst oc-
currences. We show the number of emails sent per week in

2If an email has x recipients, we count it x times.
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Figure 5: Email and triangle volumes per week

Fig. 5, and observe at least two bursts that occurred in Jun
and Oct 2001, respectively. We also show the number of
interaction triangles formed during each week. The Pearson
correlation coefficient (PCC) between the email and triangle
volum series is 0.8, which reflects a very strong correlation.
The sudden increase (or decrease) of email volumes during
the two bursts is accompanied with the sudden increase (or
decrease) of the number of triangles. Thus, this observation
verifies our claim that the emergence of a burst is accompa-
nied with the formation of triangles in networks.

How bursts change triadic cardinality distributions.
Our burst detection method relies on a claim that, when
a burst occurs, the triadic cardinality distribution changes.
To see this, we show the triadic cardinality distributions be-
fore and during the bursts in Fig. 6. For the first burst,
due to the sudden decrease of email communications from
week 23 to week 24, we observe in Fig. 6(a) that the distri-
bution shifts to the left. While for the second burst, due to
the gradual increase of email communications, we observe
in Fig. 6(b) that the distribution in week 43 shifts to the
right in comparison to previous weeks. Again, the observa-
tion verifies our claim that triadic cardinality distribution
changes when a burst occurs.
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Figure 6: Bursts change distribution curves.

Impacts of spam. As we mentioned earlier, if spam exists,
simply using the volume of user interactions to detect bursts
will result in false alarms, while the triadic cardinality distri-
bution is a good indicator immune to spam. To demonstrate
this claim, suppose a spammer suddenly becomes active in
week 23, and generates email spams to distort the original
triadic cardinality distribution of week 23. We consider the
following two spamming strategies:

• Random: The spammer randomly chooses many target
users to send spam.

• Random-Friend : At each step, the spammer randomly
chooses a user and a random friend of the user3, as two

3We assume two Enron users are friends if they have at least
one email communication in the dataset.



targets; and sends spams to each of these two targets.
The spammer repeats this step a number of times.

In order to measure the extent that spams can distort
the original triadic cardinality distribution of week 23, we
use Kullback-Leibler (KL) divergence to measure the differ-
ence between the original and distorted distributions. The
relationship between KL divergence and the number of in-
jected spams is shown in Fig. 7(a). For both strategies, KL
divergences both increase as more spams are injected into
the interaction network, which is expected. The Random-
Friend strategy can cause larger divergences than the Ran-
dom strategy, as Random-Friend strategy is easier to intro-
duce new triangles to the interaction network of week 23 for
the reason that two friends are more likely to communicate
in a week. However, even when 104 spams are injected, the
spams incur an increasing KL divergence of less than 0.04.
From Fig. 7(b), we can see that the divergence is indeed
small. (This may be explained by the “center of attention”
phenomenon [3], i.e., a person may have hundreds of friends
but he usually only interacts with a small fraction of them
in a time window. Hence, Random-Friend strategy does not
form many triangles.) Therefore, these observations verify
that triadic cardinality distribution is robust against com-
mon spamming attacks.
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Figure 7: Impacts of spam.

5.2 Validating Estimation Methods
In the second experiment, we demonstrate that our pro-

posed estimation methods produce good estimates of triadic
cardinality distributions using sampled data while reducing
computational cost.

Datasets. Because the input of our estimation methods
is in fact a sampled graph, we use several public available
graphs of different types and scales from the SNAP graph
repository (snap.stanford.edu/data) as our testbeds. We
summarize statistics of these graphs in Table 1.

Table 1: Network statistics
Network Type Nodes Edges
HepTh directed, citation 27, 770 352, 807
DBLP undirected, coauthor 317, 080 1, 049, 866
YouTube undirected, OSN 1, 134, 890 2, 987, 624
Pokec directed, OSN 1, 632, 803 30, 622, 564

For each graph, we sample an edge with probability p,
and obtain a sampled graph. We then calculate the tri-
adic cardinality for each node in the sampled graph, and
obtain statistics g. Note that the estimator uses g to ob-
tain an estimate of the triadic cardinality distribution for
each graph, which is then compared with the ground truth
distribution, i.e., the triadic cardinality distribution of the
original unsampled graph, to evaluate the performance of
the estimation method.

(a) HepTh (b) DBLP

(c) YouTube (d) Pokec

Figure 8: Estimates of θ when graph size is known. α̂
corresponding to each graph and p is typically small,
ranging from 0.00015 to 0.028. W =104 and each result
is averaged over 100 runs.

Validation when graph size is known. We first evalu-
ate the estimation method when the graph size is known in
advance, as is the assumption of our first method. The first
method outputs estimate θ̂ = (θ̂0, . . . , θ̂W ).

The estimates on the four graphs and comparisons with
ground truth distributions are depicted in Fig. 8. For each
graph, we set p = 0.05, 0.1 and 0.15, respectively. From
these results, we show that when more data is sampled the
estimate generally improves, but even when p = 0.05 is suf-
ficient to obtain a good estimate. The sampled triadic car-
dinality distribution of g for p = 0.15 is also shown for each
graph. It is clear to see that the estimator has the ability
to “correct” this distribution to approach the ground truth
distribution.

We also compare the computational efficiency of our sam-
pling approach against a naive method that uses all of the
original graph to calculate θ in an exact fashion. The results
are depicted in Fig. 9. Obviously, the naive method is very
inefficient and our sample-estimate solution is at least about
50 times faster with p = 0.3 on all of the four graphs.
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(a) HepTh (b) DBLP

(c) YouTube (d) Pokec

Figure 10: Estimates of θ+ when |V | is unknown.
α̂ for each graph and p ranges from 0.0001 to 0.01.
W =104 and each result is averaged over 100 runs.

Validation when graph size is unknown. When the
graph size is unknown, the second method in Subsection 4.3
provides estimates for the number of nodes with at least one
triangle in the graph n̂+ and triadic cardinality distribution
θ̂+ = (θ̂+1 , . . . , θ̂

+
W ) for the nodes with at least one triangle.

The results are shown in Fig. 10, using three sample rates
p = 0.05, 0.1 and 0.15, respectively. It is clear that the
second method also provides good estimates. Using a frac-
tion of 5% of the data is sufficient to obtain good estimates.
The computational efficiency is similar to results depicted
in Fig. 9.

The estimate of n+ for each graph is shown in Fig. 11.
Because the majority of the nodes have small triadic cardi-
nalities, good estimates of θ+i for small values of i are crit-
ical for a good estimate of n+ using estimator (4). For the
HepTh graph, estimate n̂+ is very accurate even with small
p. While for the other three graphs, accurate estimates of
n+ require relatively large sample rates, and n̂+ is usually
an underestimate of n+ on DBLP and Pokec due to a slight
underestimate of θ+i for small values of i on the two graphs.
Nevertheless, using a sample rate p = 0.3, the relative esti-
mation error for n̂+ is less than 20% for all four graphs. The
design of a better estimator for n+ is left for future work.

5.3 Application: Burst Detection in 2014 Hong
Kong Occupy Central Movement

In the third experiment, we apply our solution to detect
bursts in Twitter during the 2014 Hong Kong Occupy Cen-
tral movement.

2014 Hong Kong Occupy Central movement a.k.a.
the Umbrella Revolution, began in Sept 2014 when activists
in Hong Kong protested against the government and occu-
pied several major streets of Hong Kong to go against a
decision made by China’s Standing Committee of the Na-
tional People’s Congress on the proposed electoral reform.
Protesters began gathering from Sept 28 on and the move-
ment was still ongoing while we were collecting the data.

Building a Twitter social activity stream. The in-
put of our solution is a social activity stream from Twitter.
For Twitter itself, this stream is easily obtained by directly
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Figure 11: Estimates of n+. W = 104 and each result
is averaged over 100 runs.

aggregating tweets of users. While for third parties who do
not own user’s tweets, the stream can be obtained by follow-
ing users using a set of Twitter accounts, called detectors,
and aggregating tweets received by detectors (i.e., detectors’
timelines) to form a social activity stream. Since the move-
ment had already begun prior to our starting this work, we
rebuilt the social activity stream by searching tweets con-
taining at least one of the following hashtags: #OccupyCen-
tral, #OccupyHK, #UmbrellaRevolution, #UmbrellaMove-
ment and #UMHK, between Sept 1 and Nov 30 using Twit-
ter search APIs. This produced 66, 589 Twitter users, and
these users form the detectors from whom we want to detect
bursts. Next, we collect each user’s tweets between Sept 1
and Nov 30, and extract user mentions (i.e., user-user inter-
actions) and user hashtags (i.e., user-content interactions)
from tweets to form a social activity stream, with a time
span of 91 days.

Settings. We set the length of a time window to be one
day. In a time window, we sample each social activity with
probability p = 0.3 and check a social relation with prob-
ability p′ = 0.3. For interaction bursts caused by user-
user interactions, because we know the user population, i.e.,
n = 66, 589, we apply the first estimation method to ob-
tain θ̂ = (θ̂0, . . . , θ̂W ) for each window. For cascading bursts
caused by user-content interactions, as we do not know the
number of hashtags in advance, we apply the second method
to obtain estimates n̂+, i.e., the number of hashtags with at
least one influence triangle, and ϑ̂+ = (ϑ̂+

1 , . . . , ϑ̂
+
W ) for each

window. Combining n̂+ with ϑ̂+, we use n̂+ϑ̂
+, i.e., frequen-

cies, to characterize patterns of user-content interactions in
each window. For both θ̂ and ϑ̂+, W is set to be 104.

Results. We first answer the question: are there significant
differences for the two distributions before and during the
movement? In Fig. 12, we compare the distributions before
(Sept 1 to Sept 3) and during (Sept 28 to Sept 30) the move-
ment. We can find that when the movement began on Sept
28, the distributions of the two kinds of interactions shift
to the right, indicating that many interaction and influence
triangles form when the movement starts. Therefore, these
observations confirm our motivation for detecting bursts by
tracking triadic cardinality distributions.



(a) Interaction burst (b) Cascading burst

Figure 12: Triadic cardinality distributions before
and during the movement.

Next, we track the daily triadic cardinality distributions
for the purpose of burst detection. To characterize the sud-
den change in the distributions, we use KL divergence to cal-
culate the difference between θ̂ and a base distribution θbase.
The base distribution θbase represents a distribution when
the network is dormant, i.e., no bursts are occurring. For
simplicity, we average the triadic cardinality distributions
from Sept 1 to Sept 7 to obtain an approximate base distri-
bution θ̂base, and show the KL divergence DKL(θ̂base ‖ θ̂) in
Fig. 13.

We find that the KL divergence exhibits a sudden increase
on Sept 28 when the movement broke out. The movement
keeps going on and reaches a peak on Oct 19 when repeated
clashes happened in Mong Kok at that time. The move-
ment temporally returned to peace between Oct 22 and Oct
25, and restarted again after Oct 26. In Fig. 13, we also
show the estimated number of hashtags having at least one
influence triangle. Its trend is similar to the trend of KL di-
vergence which indicates that the movement is accompanied
with rumors spreading in a word-of-mouth manner.

In conclusion, the application in this section demonstrates
that the using of the triadic cardinality distribution is very
useful for detecting bursts from social activity streams.

6. RELATED WORK
Kleinberg first studied this topic in [17], where he used

a multi-state automaton to model a stream consisting of
messages. The occurrence of a burst is modeled by an un-
derlying state transiting into a bursty state that emits mes-
sages at a higher rate than at the non-bursty state. Based
on this model, many variant models are proposed for de-
tecting bursts from document streams [39, 22], e-commerce
queries [24], time series [41], and social networks [13]. Al-
though these models are theoretically interesting, some as-
sumptions made by them are inappropriate, such as the Pois-
son process of message arrivals (see [4]) and nonexistence of
spams/bots, which may limit their practical usage.

The topic of event detection is also related to our work.
Recently, Chierichetti et al. [9] found that Twitter user tweet-
ing and retweeting count information can be used to detect
sub-events during some large event such as the soccer World
Cup of 2010. Takahashi et al. [32] proposed a probabilistic
model to detect emerging topics in Twitter by assigning an
anomaly score for each user. Sakaki et al. [28] proposed a
spatiotemporal model to detect earthquakes using tweets.
Different from theirs, we exploit the triangle structure ex-
isting in user interactions which is robust against common
spams and can be efficiently estimated using our method.

The triangle structure can be considered as a type of net-
work motif, which is introduced in [23] when the authors

were studying how to characterize structures of different
types of networks. Turkett et al. [36] used motifs to ana-
lyze computer network usage, and [37] proposed sampling
methods to efficiently estimate motif statistics in a large
graph. However, both the motivation in [36] and subgraph
statistics defined in [37] are different from ours.

Recently, there are many works on estimating the num-
ber of triangles [35, 8, 25, 16, 2] or clustering coefficient [29]
in a large graph. However, these methods cannot be used
to estimate the triadic cardinality distribution. Becchetti
et al. [5] used a min-wise hashing method to approximately
count triangles for each individual node in an undirected
simple graph. Our method does not rely on counting tri-
angles for each individual node. Rather, we use a carefully
designed estimator to estimate the statistics from a sampled
graph, which is demonstrated to be efficient and accurate.

7. CONCLUSION
Online social networks provide various ways for users to

interact with other users or media content over the Internet,
which bridge the online and offline worlds tightly. This pro-
vides an opportunity to researchers to leverage online user
interactions so as to detect bursts that may cause impact
to the offline world. We find that the emergence of bursts
caused by either user-user interaction or user-content inter-
action are accompanied with the formation of triangles in
users’ interaction networks. This finding prompts us to de-
vise a new method for burst detection in OSNs by introduc-
ing the triadic cardinality distribution. Triadic cardinality
distribution is demonstrated to be robust against common
spams which makes it a more suitable indicator for detect-
ing bursts than the volume of user activities. We design a
sample-estimate solution that can efficiently and accurately
estimate triadic cardinality distribution from high-speed so-
cial activity streams in a near-real-time fashion, which makes
it applicable in practice.
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