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ABSTRACT
Information sharing dynamics of social networks rely on a
small set of influencers to effectively reach a large audi-
ence. Our recent results and observations demonstrate that
the shape and identity of this elite, especially those con-
tributing original content, is difficult to predict. Informa-
tion acquisition is often cited as an example of a public good.
However, this emerging and powerful theory has yet to prov-
ably offer qualitative insights on how specialization of users
into active and passive participants occurs.

This paper bridges, for the first time, the theory of pub-
lic goods and the analysis of diffusion in social media. We
introduce a non-linear model of perishable public goods,
leveraging new observations about sharing of media sources.
The primary contribution of this work is to show that shelf
time, which characterizes the rate at which content get re-
newed, is a critical factor in audience participation. Our
model proves a fundamental dichotomy in information dif-
fusion: While short-lived content has simple and predictable
diffusion, long-lived content has complex specialization. This
occurs even when all information seekers are ex ante iden-
tical and could be a contributing factor to the difficulty of
predicting social network participation and evolution.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems

General Terms
Theory, Economics, Measurement

Keywords
Online diffusion; Economics of information; Social net-
works

1. INTRODUCTION
In social network services, such as Twitter and Face-

book, the primary commodity produced and exchanged
is content and information. While, arguably, much of
this process is solely hedonic, these social conversations
play an increasingly larger role in today’s economy. The
revenue of content publishers is now primarily driven by

audience originating from online social networks [30];
brands increasingly channel their products to a targeted
audience alongside content exchange [27]; new business
models aim at integrating with peer connections, some-
times competing with traditional firms in providing ac-
commodation, car ride, or financial services [12, 16, 5].
This is unsurprising since decades of empirical studies,
predating any online conversation, have shown how in-
dividuals rely on their peers or contacts to acquire in-
formation before making a choice. It could be to cast a
vote [26], to keep up to date with new products [20], or
to gather important data in the working place [17].

Our goal is to understand how individual choices gov-
ern how original information is produced and acquired
in today’s social networks. We focus on the domain of
identification of news content worth reading, where so-
cial connections are massively used. As we are all aware,
acquiring original information requires effort and some
time investment. Social networks benefit users by mak-
ing the result of this effort available to more people.
Previous studies highlighted that most of the popula-
tion receives original information from a small set of
opinion leaders or influentials. To put it bluntly, only a
minority of participants add information to those net-
works, as opposed to simply listening or passing it on
(via, e.g., retweets, likes). Many important open ques-
tions remain: In a given network, which users have an
incentive to produce more original content? Previous
studies have shown that influencers are not easy to dif-
ferentiate from ordinary users. Can we predict the out-
come of such a mechanism, where some users specialize?
Are there types of content or networks that favor the
formation of an elite?

To answer the above questions, we first conduct an
empirical study of original information in news diffu-
sion on social media. We then show how they relate to
mathematical analysis of a variant of public goods. In
contrast with some other goods, most online news are
tailored for a particular shelf-life. Our results show that
this appears to be one of the primary factors which gov-
erns both how activity is distributed, and how multiple
types of specialization appear in a dynamic non linear
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public goods model. We show the following contribu-
tions:

1. We analyze data from multiple online sources ex-
changed through Twitter, highlighting the produc-
tion of original content remains extremely concen-
trated. Barring institutional accounts, the major-
ity of the original content comes from users with
mid-range popularity rather than just the just well
known people. In fact, counterintuitively, original
content production is skewed towards less active
and connected people. We also make the follow-
ing observations: the size of this active minority in
proportion to the audience appears to follow pri-
marily from the shelf-life of the content exchanged.
Long term content appears to favor a smaller elite,
while short-lived information expands the size of
active participants. (Section 2).

2. Since the availability of news worth reading in a
social network exhibits the property of a public
good, we propose a simple model that extend pub-
lic good theory to accommodate investment made
by individual players towards a perishable good.
We show that it reproduces previous observations
and does correlate with the activity we empirically
observed. (Section 3).

3. This model allows us to answer how specialization
occurs in knowledge sharing, even where players
are ex ante identical. We first prove that a unique
Nash Equilibrium exists for sufficiently short-lived
content, under a condition related to spectral prop-
erties of the social network. However, we prove
that when content is long-lived, specialization is
unavoidable, even with identical players on a sym-
metric graph. Given the presence of multiple equi-
libria and sensitivity to initial conditions, predic-
tions are complex. (Section 4).

To the best of our knowledge, our paper is the first ex-
ample that bridges predictions of the behavior of players
in a public good game, with empirical evidence from one
of its motivating example: information acquisition. The
main novelty of our approach is to model information as
a public good with decaying value over time i.e., they
are perishable goods. As a public good, the utility of
information to a user comes from her own contributions
as well as those of her neighbors. This new approach al-
lows theory and practice to qualitatively align, in spite
of simplistic modeling of user behavior. Perishable pub-
lic goods create non-linear best response, which makes
the analysis more complex, but we hope that this first
step can motivate more work in this area. Our work
is also, to the best of our knowledge, the first one that
analyzes the characteristics and shape of the group of
users with an original contribution. This addresses a

critical problem as social media are typically described
as full of noise and redundancy. Our results may fur-
ther inform how to promote and reward users for their
participation, and mechanisms to design social media
which makes user well informed.

2. WHO IS ACQUIRING NEW INFORMA-
TION?

Early studies consider information diffusion as two-
step model of information flow, with large cascades orig-
inating at institutional sources, followed by a series of
connectors. However, more recent results [21] proved
that the vast majority of content is received directly
from one content originator. Knowledge sharing in so-
cial media hence depends on some users to exert effort
to acquire original information. Original content is ob-
tained externally to the social network, either through
search engines, time spent on informal web browsing,
or offline conversations. To the best of our knowledge,
little is known about the characteristics of the users per-
forming that task, although one expects them to be a
minority.

To better understand these dynamics, we analyze two
complementary datasets: (1) The KAIST dataset
(see [14] for more details) contains the entire Twitter
graph from August 2009 and consists of 8m users and
700m links. Taken over the course of a month, the
dataset contains 183m tweets. Of these tweets, we con-
sidered only those with urls (37m) since those are the
tweets that provide an indication of sharing media on
twitter. Further, we filtered the tweets by news domains
(e.g., nytimes.com). The classification of a domain as
news was obtained from the Open Directory Project
(http://www.dmoz.org/), a volunteer edited directly
of Web links. Each link in the directory is annotated
with a top level categories and multiple levels of sub-
categories. In our analysis, we only took into account
the top level category. We kept all the domains with a
reasonable number of posts (> 2000 posts) resulting in
31 domains. We removed domains which did not seem
to follow the same definition of news as others (aggre-
gators such as e.g. news.google.com and reddit.com,
weather services such as weather.gov, and region spe-
cific domains such as thehindu.com). While the KAIST
dataset provides a holistic view of the media landscape,
we complement it with a denser, newer snapshot we
collected ourselves: (2) The NYT dataset (see [29]
for more details) contains all the Twitter posts contain-
ing a URL from the nytimes.com domain during a full
week of December 2011. In parallel, we crawled the
follower-followee relationship at the same time in order
to construct the URLs that each user received. The
final dataset totals 346k unique users receiving a to-
tal 22m tweets with URL (including multiplicity). Of
these, there are 70k unique links.
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2.1 Imbalanced content creation
Unsurprisingly, in social media like Twitter, a small

fraction of users are responsible for a large part of the
activity. To quantify this concentration, we use the
Lorenz curve [28], or the cumulative share of the top
x% of users as a function of x, in Figure 1. Since
some domains only cater to niche groups, the fraction
x here is measured relative to the domains audience
size (i.e., anyone who received or sent at least one such
URL). A quick glance at the plot confirms that the size
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Figure 1: Lorenz curve (i.e., cumulative share of
the top x% nodes in the audience seen as a func-
tion of x): (top) comparing production of tweets
and original content for cnn.com from KAIST;
(bottom) comparison of Lorenz curve for “first
local tweets in two different domains.

of passive and active audience differ by orders of mag-
nitude (e.g., as seen here and in other domains, 99% do
not tweet a single URL. Equivalently, 1% of the audi-
ence produces almost all the new tweets in the network).

In addition to examining how users post in general
(red solid line), we also look at how they acquire origi-
nal information for the network. We, hence, looked at
users who were the first on twitter to post a url link
(global first represented by the short green dotted line)
and users who were the first in their local network, i.e.
they did not receive the url from anyone they followed
before they sent the url (local first represented by the
long blue dashed line). Note that in each of these cases,
the overall audience remains the same - those who have
received the link either directly or indirectly from an
originator. Here, in the left figure, 0.1% of the cnn.com

audience produces half of all tweets. But the same
number of people produce 60% of the globally original
content and almost 90% of the locally original content.
Perhaps unsurprisingly, while only a small minority of
nodes repost articles, it is an even smaller minority that
introduces original content in the network.

Specialization is the phenomenon of users taking ex-
treme positions - in our case, some users expend a lot of
effort while others are on the other extreme of expend-
ing almost no effort. To help quantify this phenomenon,
we introduce the 90%-volume originators measure. This
is the fraction of the audience that together produce
90% of the volume. While we later study how this met-
ric of specialization varies with different content type,
we first study the minority of originators in more detail.

2.2 Characterizing content originators
It has been shown (see, e.g., [29]) that a user’s tweet-

ing activity is strongly correlated with their in- and
out-degree. Intuitively, an active online presense is re-
quired to gather many followers. Having many followers
encourages a return connection by other users. Most
Twitter users remain passive in diffusing information,
and those promoting original content are a tiny minor-
ity. One hypothesis of a simple hierarchy of social media
emerges: the content producers responsible for new con-
tent creation, the power users and intermediaries who
drive the traffic and the passive consumers. As we see
here, reality is at odds with this expectation when it
comes to production of original content.

Figure 2 (left) presents, for users binned according
to their activity on the x-axis, the distribution of the
fraction of local first content they produce with median
and various percentiles. To help interpretion, we rep-
resent qualitatively with a thin solid line the number
of users in each bin, where the first bin contains ap-
proximately 129k users. On the right we observe the
effects of a few heavy nodes: there are in total 90 users
posting more than 400 URLs in a month, who are pri-
marily either institutional accounts or professional jour-
nalists and are almost always original. However, those
are exceptions: among the active users, originators are
generally a minority typically the 25% most original
chosen across all activity levels. On the contrary, this
trend proves that a URL is most likely to be locally
original when it is posted by less active users. Equiva-
lently, if the authors of that tweet post approximately
50 URLs in a month, it is likely to be one she has previ-
ously received. Another concurring observation, shown
in Figure 2 (right), presents the same distribution where
users are binned on the x-axis according to the number
of people they follow. The trend here is even more pro-
nounced as users belonging to the less connected half
are much more likely to produce original information.

While, at first, this trend appears relatively surpris-
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Figure 2: Fraction of locally original activity,
presented as percentiles among users population
binned according to (top) activity and (bottom)
number of accounts they follow.

ing, the theory of public goods offers a simple explana-
tion that we leverage later: that the effort exerted by
others creates a disincentive for a well connected player
to acquire new information. It seems in particular that
50% of users with larger than average degree rely en-
tirely on the information they receive for their posts.

2.3 Effect of Time
Finally, we study the factors quantitatively affecting

specialization. To take an example, first, we show in
Figure 3 a comparison between the Lorenz curves for
two news media domains: New York Times and The
Atlantic. These are different in multiple ways: The

New York Times is a daily newspaper with a very large
readership while the Atlantic is a monthly magazine
with a smaller readership. Within the KAIST dataset,
111k nytimes.com tweets were posted (and an audience
of 2.6m users) while 4.7k theatlantic.com tweets were
posted (audience of 400k users). Of these tweets only a
small fraction are unique links (5917 for nytimes.com

vs 891 for theatlantic.com) [31]. When comparing
lorenz curves, the Atlantic is more specialized than the
New York Times with 0.4% of the audience accounting
for 75% of theatlantic.com tweets while 0.8% of the
audience accounts for 75% of nytimes.com tweets. This
indicates that audiences of different sources specialize in
different ways.
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Figure 3: Lorenz curve for “first local tweets in
two different domains.
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domain
# unique

URLs
# users

(who receive or post)
# users
posting

# posts
expiration time
estimate (min)

bbc.co.uk 19600 3252997 6248 113693 2.20
businessweek.com 777 622615 927 9405 55.60
cnn.com 10255 3026569 4458 94965 4.21
csmonitor.com 337 460161 492 3561 128.19
economist.com 232 802242 922 3714 186.21
forbes.com 1934 921576 1198 12375 22.34
foxnews.com 1529 510935 2845 19383 28.25
ft.com 6750 1373373 2647 28497 6.4
guardian.co.uk 5612 2106241 2294 45911 7.70
huffingtonpost.com 3742 1443562 2492 36974 11.54
mirror.co.uk 1306 638255 708 4863 33.08
news.yahoo.com 7684 1467238 5227 65734 5.62
newsweek.com 517 783171 679 3465 83.56
newyorker.com 299 754866 656 2444 144.48
npr.org 447 1220573 1066 12100 96.64
nytimes.com 5917 2677563 4085 111674 7.30
online.wsj.com 5077 1394111 2075 37581 8.51
reuters.com 16634 1435299 2621 61955 2.60
salon.com 803 1082391 745 4501 53.80
slate.com 518 676407 897 3097 83.40
theatlantic.com 5917 489222 804 4670 7.30
theonion.com 795 1427288 1238 11969 54.34
time.com 2293 530981 4370 14299 18.84
usatoday.com 3281 1141070 1570 20912 13.17
usnews.com 1089 580657 373 4222 39.67
vanityfair.com 162 598879 743 2261 266.67
washingtonpost.com 2886 1755915 2051 35554 14.97
wired.com 1751 1325465 2307 17640 24.67

Table 1: Expiration times of different news
sources
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Our main observation is as follows: the degree of spe-
cialization is related to the temporal dynamics of the
content, with remarkable regularity. In the same time
period, more new content is introduced by nytimes.com,
indicating that the content becomes stale quicker than
for atlantic.com. This is consistent with nytimes.com

being a daily news source. For every media, we mea-
sure its average shelf life by using the number of unique
URLs produced over a month. We define the shelf life
of an article to be the amount of time for which it is rel-
evant i.e., it continues to be shared among users. This
captures the fact that, since all media compete for at-
tention within the same online network, one producing
ten times more content expects the content to be re-
newed ten times faster. Figure 4 shows the 90%-volume
originator (i.e., the percentage of the audience produc-
ing 90% of tweet volumes) for 31 media sources. There
is a fairly large range of shelf life from approximately
2 minutes to over 2 hours. However, we consistently
observe that domains with long shelf times tend involve
a smaller fraction of the population to produce most of
the content. Note that the x- and y-axis are in logscale.
This temporal dynamics affects all tweets and original
content similarly. After renormalization, this seems not
be affected much by audience size, although we did ob-
serve the smaller effect of the fraction of active users
grows slowly with the audience.

We also examined the effect of different measures of
shelf lives in Figure 5. We calculate the diffusion life
as the length of time that the article is shared (time of
last post - time of first post). The y-axis is a measure of
concentration, fraction of locally first posts of the total
number of people receiving the article. We normalized
by the number of users posting the article, in order to
better account for larger cascades. Other measures of
concentration, such as the fraction of first local posts
by the total number of posts of an article, also exhibit
similar trends, albeit in a more muted fashion. We con-
tinue to see the trend of articles with longer shelf lives
tend to be more concentrated in sharing.

In summary, we have made several observations. (1)
The presence of specialization where a small number of
individuals are responsible for most of the original con-
tent produced on Twitter. (2) These individuals who
produce most of the original content are not, as ex-
pected at first glance, the most well connected or the
highest degree nodes. Rather, they are average-degree
nodes in the network. (3) There is a correlation be-
tween the shelf life of an article, the time for which it is
relevant, and the degree of specialization. To the best
of our knowledge, there does not exist a previous model
with reproduces these characteristics. In the following
section, we present an idealized model which retains the
flavor of the problem of information search.

Figure 5: Concentration of sharing compared to
the diffusion-life for each article. Each article’s
diffusionlife is the total active time (in minutes)
of the article.

3. PERISHABLE PUBLIC GOODS MODEL
While information diffusion on social media is com-

plex and topic dependent, our goal in this section is to
provide a simple model with which previous observa-
tions of information acquisition can be predicted. We
leverage the economic theory of public goods – goods
that are non-rivalrous where use by one individual does
not reduce availability to others. In fact, in many public
goods models, the ownership of the good by on individ-
ual has an impact on the utility of his neighbors. Fur-
ther, we consider news as a perishable good, i.e. a good
that needs to be used within a short period of time and
bought again (such as milk or produce). While news
does not spoil in the same sense as produce does, the
value of news does decrease with time due to updated
information and later events occurring. In both cases,
since the product is short-lived and the demand is per-
sistent, there is a time dynamic to renew it.

3.1 A Public Good Approach to Original Con-
tent Production

As content online is vast and not easy to navigate,
we assume that player i seeks knowledge at a given
rate. This results in content being discovered by her
at random times with an intensity yi, forming a Pois-
son process of discovery times. The effort of that user
to individually achieve a discovery rate yi has a convex
cost c(yi). This captures the fact that as more effort
is exerted, or time is invested, worthwhile information
becomes rare and harder to find. The utility of infor-
mation is represented as being in an informed state. In
this state, a user has an additional unit of return com-
pared to being uninformed. Upon a discovery, a user
remains in the informed state for a time τ equal to the

6
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Figure 4: Concentration of sharing compared to the shelf-life for each media source. Each point is
the fraction of the audience responsible for 90% of the tweet volume of the media source.

shelf time of this item. We assume τ is a constant.
There is a social component to the interaction: users

make the results of their work available to neighbors in a
social network graph. We denote the adjacency matrix
of the social network as G = (V,E) and it can either be
undirected (e.g., Facebook) or directed (e.g., Twitter).
Without loss of generality, we assume that the effort
of a user only affects its direct neighbors. The general
case simply requires redefining neighboring relations to
include future descendents.

Let us denote y−i =
∑
j∈N(i) yj as the rate of content

discovery that a user i in the network receives at no cost
from her neighbors. Then, including her own effort cost
c(yi), the average utility received per unit of time can
be written as:

U(yi, y−i) = 1− e−τ(yi+y−i) − c(yi) .

At time t = T , the probability to have received one
content item within ]T − τ ;T ] is the probability that
a Poisson process of rate (yi + y−i) creates no point in
that interval.

Note here, that discovering multiple content simulta-
neously creates no additional benefit to the user since
the user is already in the informed state. Note also
that having content items of various shelf-lives would
result in the same dynamics as long as those durations
are chosen independently of the discovery process. Fi-
nally, while most of the properties of the model we show

generalizes to general convex cost, we are primarily in-
terested in polynomial cost (c : yi 7→ θ

α+1y
α+1
i ), α > 0.

We can think of θ as the reference time period. A re-
ward of 1 is equivalent to the effort spent to produce
content once every θ time. In this work, we assume, in
general, that the cost is normalized such that θ = 1hr.
This means that the reward exactly compensates for the
search effort incurred to produce original content every
hour. More general models, especially ones with hetero-
geneous costs and a matrix of benefits transfer between
users, are likely to perfect realism of this model, but we
leave them for future work.

3.2 Best Response
We first analyze a single individual response of a

player to her neighbors’ efforts. Even with non-linear
dynamics is non-linear, we can represent this best re-
sponse action in a simple closed form.

Theorem 1. For a node, i, of G = (V,E), the best
response to i’s neighbors’ efforts, y−i, is given by

φ(y−i, τ) = α
τW ( τ

α+1
α

α e−
τy−i
α ), where W is the Lambert

function defined on [0;∞[ as the inverse of the function
x 7→ x exp(x).

Proof. For an individual, i, their best response to
their neighbors efforts occurs when i’s utility is maxi-

7



mized w.r.t. the amount of effort i invests, yi.

max
yi

U(yi, y−i) s.t. yi ≥ 0 , i.e., ,
∂U(yi, y−i)

∂yi
= 0 .

This yields τe−τ(yi+y−i) − yαi = 0.

Hence τyi = αW ( τ
α+1
α

α e−
τy−i
α ) where W denotes the

Lambert function, which proves the result.

The Lambert function W (Figure 6) is a positive in-
creasing function, that is asymptotically equivalent to
the identity near 0 and comes within a negligible dis-
tance of the function x 7→ ln(x)− ln ln(x) as x becomes
large. The last two decades has found numerous appli-
cations of this function to differential equation, combi-
natorics, theoretical physics and others. Its computa-
tion, both through formal calculus and numerical ap-
proximation can be done fast.

Our closed form implies the bound for any y : 0 =

limx→∞ φ(x) ≤ φ(y) ≤ φ(0) = α
τW (τ

α+1
α ) .

0

1

2

3

4

0 1 2 3 4
x

f(
x)

Function
Lambert W(x)
sqrt(x)
log(x)
x

0.0

2.5

5.0

7.5

10.0

1 10 100
x

f(
x)

Function
Lambert W(x)
sqrt(x)
log(x)

Figure 6: Comparison of the Lambert function
(W (z) where z = W (z)eW (z)) to the common func-
tion of x, log (x), and

√
x in the range (left) [0,4]

and (right) [1,100].

3.3 Nash Equilibrium
We initially focus on analyzing the Nash equilibrium

in symmetric graphs.

Definition 1. A graph G is symmetric if, given any
two pairs of edges (u1, v1) and (u2, v2) of G, there is an
automorphism f : V (G) → V (G) such that f(u1) = u2
and f(v1) = v2.

In a symmetric graph, in a unique Nash Equilibrium,
all nodes exert the same amount of effort. Observe that
if this were not the case, a transformation of the graph
results in another equilibrium.

Lemma 2. For a D-regular graph, a symmetric Nash
Equilibrium always exists and is given by

yi =
α

τ(1 +D)
W (τ

α+1
α

(1 +D)

α
),∀i.

Proof. In a symmetric equilibrium, yi = y,∀i ∈ G.

Also, for a node i, y−i = Dy.

At equilibrium y =
α

τ
W (

τ
α+1
α

α
e−

τDy
α )

τ

α
ye

τ
αy =

τ
α+1
α

α
e−

τDy
α

y
τ

α
(1 +D) = W (

τ
α+1
α

α
(1 +D))

y =
α

τ(1 +D)
W (

τ
α+1
α

α
(1 +D))

The case of symmetric graphs is interesting because, as
we show in Section 4.1, this symmetric equilibrium need
not always be a unique or stable equilibrium.

3.4 Model Validation
Real world graphs are, of course, more complex than

the above symmetric graph models. We validate our
model on a subset of the NYT graph (a random sam-
ple of 10% of the edges). We use an iterative update
method (described in the long version of this paper [31])
to find the Nash equilibrium numerically. In these sim-
ulations, we used a range of shelf-life times ranging from
short (τ = 1) to long (τ = 1000).

Matching our observations from the KAIST dataset,
users with larger degree have less “information seeking
activity”. This is reflected in a smaller amount of effort
spent in the Nash Equilibrium. Figure 7 (left) shows
the correlation of the Nash Equilibrium effort with out-
degree of a node (τ = 0.5 on a sample of 0.1% of the
NYT graph). Here, we see a very strong relationship
between the degree and the amount of effort expended
in the Nash Equilibrium. Thus, our model yields pre-
dictive power for relation of connection and investment
in information search
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Figure 7: The Nash Equilibrium (as a function
of (left) node degree and (right) fraction of first
local activity) in a sample of the NYT graph

We then observe that the elite in the modeled equi-
librium share similar structure to those observed empir-
ically (Figure 8). A small subset of individuals are re-
sponsible for a large fraction of the effort spent – mimic-
ing the behavior of individuals with original content.
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for 50%, 75% and 90% of the effort in the Nash
Equilibrium in sample of NYT graph.

Lastly, we examine how the effort in the Nash equi-
librium of our model correlates to the fraction of local
original activity vs total activity observed in the NY-
Times dataset (Figure 7 right). Ideally, we would expect
to see perfect correlation since the effort in our model
captures exactly this, the effort you spent to bring new
content to your neighbors. We see that individuals who
in the real world had no effort (the left most group)
expend low effort in the Nash Equilibrium. Those who
posted at least one article expended more effort and the
amount of effort steadily rises.

4. EQUILIBRIUM AND SPECIALIZATION

4.1 Conditions for a Unique Nash Equilibrium
Different classes of goods exhibit different types of

behavior. In economic theory, one of these classifica-
tions are that of a normal good is a good for which de-
mand increases with increased wealth. Mathematically,
if γ : R≥0 → R≥0 is a differentiable function represent-
ing the income elasticity of demand (the responsiveness
of the demand to a change in the income), then the
good is normal iff the derivative satisfies 0 < γ′ < 1. A
network normal good carries that idea to a networked
case where there is a income elasticity of demand func-
tion for each player i in the network. The consumption
γi is defined in terms of the wealth of i (set externally),
wi, and i’s “social income”, the income from neighbors
of i, y−i. A network normal good satifies the condi-
tion: 1 + 1

λmin
< γ′i(wi + y−i) < 1 [3]. We can also

express these conditions in terms of the best response
φ(y−i) = γi(wi + y−i)− wi as follows.

Fact. In the above notation, a good is network normal
iff for every player i, 1

λmin
< φ′(y−i) < 0.

In our model, there can exist multiple equilibria for
the effort that individuals expend. Using network nor-
mality conditions, we now give a condition involving
the expiration time parameter, τ under which the Nash
equilibrium for the system will be unique.

Lemma 3. ∂φ
∂y = − W (τ2e−τy)

1+W (τ2e−τy)

Proof.

∂φ

∂y
=
∂
(
1
τW (τ2e−τy)

)
∂y

=
1

τ
· τ2 · (−τ) · e−τy ·W ′(τ2e−τy)

= −τ2e−τy · W (τ2e−τy)

τ2e−τy(1 +W (τ2e−τy))

= − W (τ2e−τy)

1 +W (τ2e−τy)

Theorem 4. [Short-Lived Content Exhibits Less Spe-
cialization] Let λmin be the minimum eigenvalue of the
adjacency matrix of the network, G = (V,E), and let τ
be the expiration time parameter of the system. Then,
a unique Nash Equilibrium exists if

τ < τ̂ =def
( α

−λmin − 1

) α
α+1 e

α
(α+1)(−λmin−1) .

Proof. We will prove the theorem by using the pre-
viously established connection between network nor-
mality of the system and the existence of a unique Nash
equilibrium [3, 10, 11, 9]. Hence we only need to show
that the network normal conditions hold under the as-
sumptions of the theorem.

We will show that the condition holds for every player,
i. For ease of notation, let φ = φi and x = y−i.

Observe that since W is an increasing function, we
have φ′(x) is a non-decreasing function. Hence the
derivative only takes values in [φ′(0), limx→∞ φ′(x)] =

[− τ
α+1
α

α W ′( τ
α+1
α

α ), 0]. Now, the network normality con-
dition simplifies to verifying

1

λmin(G)
< −τ

α+1
α

α
W ′(

τ
α+1
α

α
) < 0.

Simplifying the first inequality, we get:

τ <
( α

−λmin − 1

) α
α+1 e

α
(α+1)(−λmin−1) = τ̂

Thus, the network normality conditions holds and a
unique Nash equilibrium exists for any τ < τ̂ .

Here, we show the conditions necessary for a unique
Nash Equilibrium to exist for various graph families.
Let λmin be the minimum eigenvalue of the adjacency
matrix of the network, G = (V,E), and let τ be the ex-
piration time parameter of the system. Then, a unique
Nash Equilibrium exists if

τ < τ̂ =def
( 1

−λmin − 1

) α
α+1 e

α
(α+1)(−λmin−1) .

Lemma 5. A complete graph always has a unique Nash
equilibrium

Proof. In a complete graph, λmin = −1. Thus,
for any value of τ , there exists a unique Nash equi-
librium.

9



Lemma 6. In a star graph with n − 1 leaf nodes, a

unique Nash equilibrium for τ < τ̂ = ( 1√
n−1−1 )

1
2 e

1
2(
√
n−1−1) ,

Proof. In a star graph of size n, λmin = −
√
n ([?]).

W (τ2) <
1√
n− 1

τ2 <
1√
n− 1

e
1√
n−1

Lemma 7. An even cycle graph of size n has a unique
Nash equilibrium for τ < τ̂ =

√
e.

Proof.

λmin = −2 ([?]).

W (τ2) < 1

τ =
√
e

Lemma 8. An odd cycle graph of size n has a unique

Nash equilibrium for τ < τ̂ = n

(n2−π2)
1
2
e

n2

2(n2−π2) .

Proof.

λ = 2 cos
2πj

n
([?]) (j = 0, 1, ..., n− 1)

λmin = 2 · cos (π − π

n
) (j =

n− 1

2
)

λmin = −2 · cos
π

n
(∵ cos(π − θ) = − cos(θ))

λmin = −2 ·
∞∑
n=0

(−1)n
π
n
2n

(2n)!
(Taylor expansion)

λmin ≈ −2 · (1− π2

2!n2
+

π4

4!n4
)

λmin ≈ −2 +
π2

n2

Substituting the value for λmin,

W (τ2) <
1

1− π2

n2

τ2 <
n2

n2 − π2
e

n2

n2−π2

τ <
n

(n2 − π2)
1
2

e
n2

2(n2−π2)

Lemma 9. An Erdös-Renyi graph with constant p has

a unique Nash equilibrium for τ < τ̂ = ( 1
2
√
np−1 )

1
2 e

1
2(2
√
np−1) .

Proof. For a Erdös-Renyi graph, with constant p
([?])

λmin = −c
√
n

max |λmin| = 2σ
√
n+O(n

1
3 log n) where σ =

√
p

λmin > −2
√
np

Substituting the value for λmin,

W (τ2) <
1

2
√
np− 1

τ2 <
1

2
√
np− 1

e
1

2
√
np−1

Lemma 10. A complete bipartite graph of size n has

a unique Nash equilibrium for τ < τ̂ = ( 2
n−2 )

1
2 e

1
n−2 .

Proof.

λmin = −n
2

W (τ2) <
2

n− 2

τ < (
2

n− 2
)

1
2 e

1
n−2

The quantity τ̂ of G specifies the condition under
which a unique Nash equilibrium exists. Table 2 details
the value of τ̂ for various regular graphs ([31]).

Table 2: Conditions for unique Nash Equilib-
rium (τ < τ̂) for graphs with n nodes (α = 1)

Graph λmin τ̂

Complete −1 ∀τ (∞)
Cycle (Even) −2

√
e

Cycle (Odd) −2 + π2

n2
n

(n2−π2)
1
2
e

n2

2(n2−π2)

Erdös-Renyi −2
√
np ( 1

2
√
np−1 )

1
2 e

1
2(2
√
np−1)

Star −
√
n− 1 ( 1√

n−1−1 )
1
2 e

1
2(
√
n−1−1)

Complete Bipartite −n2 ( 2
n−2 )

1
2 e

1
n−2

Our observations on simple regular graphs give us
an understanding of the behavior of the Nash Equi-
librium in differnet types of settings. We see that for
shorter lived information (content with smaller τ), the
process of sharing is relatively straightforward. In most
graphs, for small τ < τ̂ , there exists a unique equilib-
rium. In symmetric graphs, this equilibrium is symmet-
ric. In non-regular graphs, the equilibrium response is
inversely related to the degree of a node since higher
degree nodes can rely on good quality content through
their many neighbors. Conversely, lower degree nodes
tend to expend more effort since they have few neigh-
bors that they can free ride on.

In general, more balanced graphs (with larger λmin)
have less sensitivity to the ephemeral nature of infor-
mation i.e., the conditions for a unique equilibrium en-
compass a larger range of shelf life values. In more
segregated graphs (with smaller λmin), the efforts of a
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few people can be enough for the graph as a whole and
the equilibrium is less balanced in nature.

Understanding the dependencies of the equilibrium
in real world graphs is a little more challenging. Since
these are not d-regular graphs, we do not expect sym-
metric equilibria to occur. In the case of the real world
NYTimes graph, λmin ≈ −70 (computed with python’s
sparse matrix package). Considering that the size of
the NYTimes graph is n = 346k users, this case more
closely resembles a balanced graph, like an Erdös-Renyi
graph. For α = 1, a case where there is a relatively low
cost of finding information, τ̂ ≈ 0.12 of the reference
time period. For θ = 1hr (i.e., ., assuming readers’ util-
ity for content roughly compensate an effort to search
every hour for new information), τ̂ ≈ 7min which is
close to the empircally estimated shelf life of τ = 7.30
min.

4.2 Tuning Shelf Life to Maximize Original
Information

A media source would want to encourage users to
spend more time on their site. Thus, they might be
interested in tuning their parameter to maximize user
effort. In a disconnected setting, each person is respon-
sible for finding and consuming their own content. In
this case, y−i = 0 and the best response simplifies to

φ(0) = α
τW ( τ

α+1
α

α ). At the value τ = τ∗, an individual
is incentivitized to expend maximal effort.

Claim 11. For an isolated node, i, the effort is max-

imized at τ∗ = e
1

α+1 .

Proof. The τ that corresponds to the maximum
effort satisfies ∂φ

∂τ = 0. Further, since i is isolated,
y−i = 0. Hence,

∂φ

∂τ
=
∂ 1
τW ( τ

α+1
α

α )

∂τ
= 0

α

τ
· 1

α
· α+ 1

α
τ

1
α ·W ′(τ

α+1
α

α
) +W (

τ
α+1
α

α
) · (−1)

α

τ2
= 0

Simplifying, W (
τ
α+1
α

α
) =

1

α

τ = e
1

α+1

It is easy to verify that this critical point is a max-
ima.

In the case of symmetric graphs, there is always a sym-
metric equilibrium (Lemma 2). We can calculate, for
symmetric graphs, the τ∗ that maximizes the amount
of effort by any node in a symmetric equilibrium.

Claim 12. For an symmetric graph of degree D, the
effort in a symmetric equilibrium, yi, is maximized at

τ∗ = e
(1+D)α

1
α+1

Proof. Note that y−i = α
τ(1+D)W ( τ

α+1
α

α (1 + D))

since i has degree D and the equilibrium is symmet-
ric. Again, the τ that corresponds to the maximum
effort satisfies ∂φ

∂τ = 0. By evaluating these expressions,
we get

W (
τ
α+1
α

α
(1 +D)) = 1 =⇒ τ =

e

(1 +D)α

1
α+1

4.3 Specialization and Symmetry
We use simulations to examine how these theoreti-

cal results translate to various graph families, like com-
plete graphs, star graphs, cycle graphs, complete bi-
partite graphs and Erdös-Renyi random graphs. For a
graph family, we look at graphs of sizes ranging from
n = 4 to n = 400 and edge density from p = 0.0001
to p = 0.5 (for Erdös-Renyi graphs). We then run an
iterative algorithm that updates the best response until
convergence [31] . The point of convergence (when it
converges) is the Nash equilibrium. In the cases that
we examined, the best responses converged to an equi-
librium within 20 steps (though our algorithm does not
guarantee convergence).

ALGORITHM 1: Finding the Nash Equilibrium by Iterative

Update

Input: Graph G = (V,E), Shelf-life τ , initialization value
(optional)

Output: The amount of effort y∗ = y∗1 , ..y
∗
I , ..y

∗
N

y = 0; repeat
for each node i ∈ V do

y−i =
∑
j∈N(i) yj ;

bestResponse = 1
τ
W (τ2e−τy−i );

δ = abs(yi−bestResponse);
yi =bestResponse;

end

until δ > 0;

Considering, first, the case of symmetric graphs (fig-
ure 9), each line in the graph is the effort made by
a particular node. Note that since many nodes have
the same effort across different regimes of τ , those lines
overlapping each other and are hence not visible. In
both the bipartite and cycle graph, in the specialized
equilibrium, half the nodes overlap and expend most
of the effort and the remaining half free-ride on those
nodes. We see that, with shorter shelf-lives, individu-
als are more self-reliant. Conversely, longer shelf lives
result in individuals relying on others efforts. Both cy-
cle graphs and complete bipartite graphs exhibit the
property that when content is long-term, the equilibria
becomes more specialized with some individuals doing
the majority of the work and others doing almost no
work. Bipartite graphs split into their two partitions
where those in one partition do all the work while those
in the other do none.
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Figure 9: Differing effort levels in the Nash
Equilibrium (y-axis) with different τ (x-axis) in
symmetric graphs. Each node (of n = 20 nodes)
is represented by a line in the figure. The unique
equilibrium (τ < τ̂) is always symmetric. (left)
Complete bipartite graph (right) Cycle graph.

The story is more complex in the case on assymetric
graphs (figure 10). We consider the case of a star graph
and an Erdös-Renyi graph, which gives us simple cases
without the effect of heterogeneity. We also looked at a
10% subset of a real world graph.
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Figure 10: Differing effort levels with different
τ in assymetric graphs. Each bar represents the
distribution of the amount of effort by all the
nodes. The pink line is the average effort of all
the nodes. (top-left) Star graph. (bottom-left)
Erdös-Renyi graph (n = 1000, p = 0.01). (right)
Randomly sampled NYTimes graph with 243k
nodes.

In several of these graph families, we see that special-
ized equilibria occur. In the case of the star graph, the
single central node does almost no work while all of his
neighbors overlap and have much higher effort. In the
case of random graphs or real world networks, it seems
likely that a specialized equilibrium arises from the de-
gree distribution of the nodes. However, in symmetric
graphs, with all nodes having the same degree, clearly
that is not the case. From lemma 2, we know that a
symmetric Nash equilibrium exists, but we observe that
the system converges to a specialized Nash equilibrium.
In the following section, we show that symmetric equi-
libria are not stable for large τ .

4.4 Theoretical Proof of Specialization
When a unique Nash equilibrium exists, we under-

stand the convergent network configuration. However,
when there are multiple equilibria, it is not clear which
of these configurations are realized — for instance, some
of these Nash equilibria can be unstable and, hence,
never realized in practice. Here, we use the same def-
inition of stability as in [10, 11]. A Nash equilibrium
is stable if a small change in the strategy of one player
leads to a situation where two conditions hold: (i) the
player who did not change has no better strategy in the
new circumstance (ii) the player who did change is now
playing with a strictly worse strategy.

Empirically, we observe that for longer-term content,
the equilibrium for a cycle graph and a bipartite graph
are specialized (figure 9), inspite of them being sym-
metric graphs. This indicates that the stability of the
Nash equilibrium has some dependency on τ .

Theorem 13. [Specialization for Longer Shelf-Life]
There exists an shelf-life τ , such that, for any symmet-
ric graph G of degree D ≥ 3, the symmetric equilibrium
is not stable.

Proof. The proof follows the outline of the Proof of
Theorem 2 in [10]. It has two steps. The first step is a

simple observation: If ~y < ~y′, then φ ◦ φ(~y) < φ ◦ φ(~y′).
This follows because the response function φ(y) is a
decreasing function of y.

The second step is to show that under some small
perturbation ~ε > 0, we have φ◦φ(~y+~ε) > ~y+~ε (here the
vector inequality ~x > 0 corresponds to coordinate wise
inequality xi > 0 ∀i). In other words, with any small
change from the equilibrium, the best response moves
further away (strictly) from the equilibrium. This shows
that the equilibrium is not stable in the sense of [10, 11].
For simplicity’s sake, we consider only a quadratic cost
function.

Let ỹ be the symmetric equilibrium in the symmetric
graph of degree D. Then, ỹi = ỹ,∀i. Note that ỹ = φ(ỹ)
because it is an equilibrium. Here, we perturb all the
responses by some ε > 0

φ(~y + ~ε) = φ(~y) +∇φ · ~ε

φi(~y + ~ε) = φi(~y) +D
∂φi
∂yj

ε for some j ∈ N(i)

since ∂φi
∂yj

= 0 if j /∈ N(i) and equal otherwise. Simi-

larly,

φi ◦ φ(~y + ~ε) = φi([. . . , φj(~y + ~ε), . . . ])

= yi +D2
(∂φi
∂yj

)2
ε any j ∈ N(i)

To show that the symmetric equilibrium is not stable,
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we need

yi +D2
( −W (τ2e−τỹ)

1 +W (τ2e−τỹ)

)2
ε > yi + ε

W (τ2e−τỹ) >
1

D − 1

In other words, we want τ2e−τỹ > 1
D−1e

1
D−1 . Substi-

tuting for ỹ (lemma 2) and simplifying, we get that the
symmetric Nash equilibrium is not stable when

2 ln τ − 1

(D + 1)
W (τ2(D+ 1)) > − ln (D − 1) +

1

D − 1
.

Setting τ to be a constant (e.g., τ = 10), one only
needs to verify that the following holds: W (D + 1) <
(D + 1)(ln (D − 1) + 2 ln τ) − D+1

D−1 , which is true for
D > 3.

5. RELATED WORK
Our contributions relate and contribute to several di-

rections of research:
(1) Studies of online diffusion of information

have previously established the importance of content
produced by mass media in online diffusion. They high-
light in particular that news typically reaches a large
audience not directly but through a set of influencers
or connectors [13, 33]. This result confirms the classical
hypothesis of a two-step information flow [24], and was
shown to have additional benefits, such as broadening
the range of opinions seen by a user [4]. However, the
dynamics of participation and influence remains elusive.
For instance, relying on number of followers to judge
an influencer can be misleading [14, 6] and predicting
who is successful at an individual level was shown to
be generally unreliable [6]. Our work takes a different
starting point: We follow evidence that a large fraction
of diffusion cascades occur close to a seed node [21].
Hence we focus on identifying those who contribute in
adding original content in the network, and how this
relates to temporal characteristics of the content being
exchanged. Previous studies of temporal properties of
diffusion typically focused on leveraging that those are
short-lived [15, 32], or on using patterns in the time
series for better classification [25, 23, 34].

(2) Analysis of the private provision of public
goods, or investments made by players that more gen-
erally affect the outcome of others, originally emerged
to inform public policy. Its most celebrated result, the
neutrality principle [9], states that the investment pro-
duced by a group is entirely carried by most wealthy
individuals, and is insensitive to income redistribution.
This, however, holds only for a global public good in
which all players are equally affected by others, and
recently was shown not to generalize beyond regular
graphs [3]. The general network case was studied more
recently [8, 10, 11], typically in a model assuming that a

players best response follows from other players actions
in a linear matrix form. Even for that simple case, pre-
dictions vastly differ: On the one hand, a study of small
effects [11] proves that the system converges to a unique
equilibrium in which all participate. On the other hand,
more general cases prove that specialization is unavoid-
able, and that multiple equilibria can be attained [10].
Our analysis extends those results by providing the first
non-linear dynamics for which a similar dichotomy can
be proved; in particular, it proves that a simple model
of perishable public goods leads to either of these be-
haviors depending on the product lifespan.

(3) The role of elites in information acquisi-
tion has been studied in very different contexts such
as social learning [7, 1] and opinion formation [22, 2].
Those results are different in spirit as they typically
focus on aggregation of multiple contributions on the
same specific topic, either within a social networks or
in the presence of a kernel of experts. For that reason,
they typically assume specific types of information or
interactions. Our model focuses on a simpler model in
which information can be produced under some exerted
effort, but is free to reproduce within a given network.
The work motivated similarly to ours considers a simi-
lar process in an endogenous network where players may
create new links at a fixed cost [19]. It was shown that
these dynamics typically lead to extreme specialization,
even among ex ante identical players. However, Hetero-
geneous systems can’t be analyzed in the same manner,
and networks produced are typically very schematic (bi-
partite). Our work proves that specialization emerges
in an exogenous network, even without the reinforcing
process of strategic link formation.

6. CONCLUSION
Knowledge sharing has been greatly facilitated by so-

cial network services. Increasingly, it affects businesses,
political debates and public services. Yet, after years of
measurements, the structure of online diffusion remains
complex and was shown to vary across media and topics.
Our results identify, for the first time, how the shelf life
of information affects its diffusion. This leads to various
types of specialization that can all be described in the
unifying theory of public good.

While we empirically observe a remarkable match to
the theoretical predictions on a qualitative level, we
would like to point out that the current model of public
good we introduce is highly idealized, especially as it
assumes homogeneous cost of information acquisition.
Proving that specialization occurs even in such sym-
metric cases is, in a sense, a worst-case result. In re-
ality, several other factors contribute to users exerting
higher effort in information acquisition including enjoy-
ment [18], which typically varies across users depend-
ing on topics. However, our results generalize to het-
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erogeneous perishable public goods to predict, for in-
stance, that a single equilibrium exists whenever shelf
life is sufficiently small. The qualitative effect of shelf
life should also remain since our empirical observations
prove it, even in a large number of very different mass
media sources. We do, however, observe some amount
of variance within this trend and accounting for other
previously identified factors to predict span of content
diffusion more accurately seems a promising direction.

Whenever public good theory allows for simple equi-
librium computation, i.e. for short lived content, it also
yields additional insight on how to locally or globally
optimize content to encourage more participation. Ul-
timately, testing if those insights provide algorithms to
design effective incentives to users for enhanced partic-
ipation offers a way to validate those claims.
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