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ABSTRACT

Existing malware defenses are primarily reactive in nature,
with defenses effective only on malware that has previously
been observed. Unfortunately, we are witnessing a genera-
tion of stealthy, highly targeted exploits and malware that
these defenses are unprepared for. Thwarting such malware
requires new defenses that are, by design, secure against
unknown malware. In this paper, we present SPIF, an ap-
proach that defends against malware by tracking code and
data origin, and ensuring that any process that is influenced
by code or data from untrusted sources will be prevented
from modifying important system resources, and interacting
with benign processes. SPIF is designed for Windows, the
most widely deployed desktop OS, and the primary platform
targeted by malware. SPIF is compatible with all recent Win-
dows versions (Windows XP to Windows 10), and supports a
wide range of feature rich, unmodified applications, including
all popular browsers, office software and media players. SPIF
imposes minimal performance overheads while being able
to stop a variety of malware attacks, including Stuxnet and
the recently reported Sandworm malware. An open-source
implementation of our system is available.

1. INTRODUCTION

The scale and sophistication of malware continues to grow
exponentially. The reactive approach embodied in malware
scanners and security patches is no match for today’s stealthy,
targeted attacks. Recognizing this fact, researchers as well as
software vendors have been developing proactive techniques
that can protect against previously unseen exploits and/or
malware attacks. These techniques can be classified into
three main categories: sandboxing, privilege separation, and
information flow control.

Sandbozing techniques [13, 35, 45, 49] mediate all security-
relevant operations performed by applications, permitting
only those deemed “safe” by a sandboxing policy. The scope
of damage that can result from a malicious (or compromised)
application is hence limited by this policy. On UNIX, appli-
cations frequently targeted by attacks are typically protected
using SELinux [24] or AppArmor policies [45]. Microsoft Of-
fice used a sandbox for its protected view [27]. This sandbox
ensures that a compromised process cannot overwrite system
or user files or registry entries.
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Privilege separation techniques [36] refine the sandboxing
approach to support applications requiring significant access
to realize their functionality. The application is decomposed
into a small, trustworthy component that retains significant
access, and a second larger (and less-trusted) component
whose access is limited to that of communicating with the
first component in order to request security-sensitive oper-
ations. While sandboxes can confine malicious as well as
frequently targeted benign applications (e.g., browsers), priv-
ilege separation is applied only to the latter class. Chromium
browser [38], Acrobat Reader and Internet Explorer are some
of the prominent applications that employ privilege separa-
tion, more popularly known as the broker architecture. Both
applications sandbox their renderers, which are complex and
are exposed to untrusted content. As a result, vulnerabilities
in the renderer (or more generally, a worker) process won’t
allow an attacker to obtain all privileges of the user running
the application.

Information flow control (IFC) techniques [2, 50, 19, 21, 42,
25, 44, 43] maintain labels on files and processes to keep track
of the flow of sensitive and/or untrusted information in the
system. Classical integrity policies such as the Biba policy [2]
enforce both no-read-down (i.e., integrity-critical applications
cannot read untrusted data) and no-write-up (i.e., untrusted
applications cannot create or overwrite high-integrity files)
policies. In contrast, Windows Integrity Mechanism (WIM)
[28] enforces just the no-write-up policy. Indeed, WIM is
primarily deployed as a sandboxing mechanism: progres-
sively more restrictive policies are enforced on lower integrity
processes, while high-integrity processes are unconfined. In
contrast, the strength of integrity protection in IFC stems
from policy enforcement on high-integrity processes, which
prevents them from compromised by consuming untrusted
data or code.

1.1 Challenges

Application of these three approaches for malware defense
poses several technical as well as practical challenges.

Policy development. Policy affects both usability and
functionality of applications. Restrictive policies can block
more attacks, but they also tend to break applications. More-
over, policy development requires not only a good under-
standing of applications, but also the OS semantics. A recent
Adobe Reader XI vulnerability [14] exploits the semantics
of junctions on NTFS, where the broker process failed to
sanitize paths and ended up allowing workers to create files
at arbitrary locations.

Application and OS compatibility. To run successfully
with a policy and its enforcement framework, applications
need to be re-architected, or at a minimum, be made aware of
the confined environment. Most IFC approaches require non-
trivial changes to applications as well as the OS. There have
been efforts to automate some of the steps (e.g., automating
privilege separation [4]) or to minimize application changes
for IFC (e.g., PPI [42] and PIP [44]), but in practice, most
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techniques end up requiring substantial effort in rewriting or
porting applications or the OS.

Sandbox escape attacks. Given the large effort needed to
(a) develop policies and (b) modify applications to preserve
compatibility, it is no wonder that in practice, confinement
techniques are narrowly targeted at a small set of highly ex-
posed applications. This naturally leads attackers to target
sandbox escape attacks: if the attacker can deposit a file
containing malicious code somewhere on the system, and
trick the user into running this file, then this code is likely to
execute without confinement (because confinement is being
applied to a small, predefined set of applications). Alterna-
tively, the attacker may deposit a malicious data file, and
lure the user to open it with a benign application that isn’t
sandboxed. In either case, the attacker is in control of an
unconfined process that is free to carry out its malicious acts.

As a result of these factors, existing defenses only shut out
the obvious avenues, while leaving the door open for attacks
based on evasion (e.g., Stuxnet [10]), policy/enforcement
vulnerabilities (e.g., sandbox escape attacks on Adobe Reader
[11], IE [20] and Chrome [7]), or social engineering. Stuxnet
[10] is a prime example here: one of its attacks lures users
to plug in a malicious USB drive into their computers. The
drive then exploits a link vulnerability in Windows Explorer,
which causes it to resolve a crafted Ink file to load and execute
attacker-controlled code in a DLL.

1.2 Approach overview and key features

We present a new approach and system called SpiF, which
stands for Secure Provenance-based Integrity Fortification, to
achieve OS-wide integrity protection on Microsoft Windows.
Unlike previous approaches, SPIF:

e Requires no manual effort for policy development.

e Requires no application or OS modifications, being able
to support all major versions of Windows since Windows
XP, and feature-rich, unmodified applications such as MS
Office, IE, Chrome, Firefox, Skype, Photoshop, and VLC.

e Confines all applications, thereby taking away the motiva-
tion for sandbox escape attacks.

SpPIF defends against unknown malware attacks targeting

integrity', including stealthy malware such as Stuxnet and

Sandworm [46].

SPIF uses information-flow tracking to track provenance.
We define provenance as the origin (“where”) of a piece of
information. The classical notion of data provenance includes
a history of transformations (“how”) performed on the data.
Although the availability of such information could lead to
more sophisticated integrity policies, for simplicity and per-
formance, we don’t currently capture this “how” information.
Indeed, our implementation classifies origins into just two
categories: benign and untrusted. Effectively, provenance in
our implementation corresponds to just 1-bit of data.

Figure 1 summarizes some of the key terms defined in
previous works [42, 44] that we reuse in this paper. Below,
we summarize the key features of our approach.

1.2.1 Reliable provenance tracking system

Existing provenance tracking systems either develop brand
new OSes [50, 9] or instrument OSes [21, 42, 25] to label every

L Although SPIF does not focus on confidentiality, note that most
malware needs to embed itself into the system in such a man-
ner that it would be invoked automatically. This step requires
compromising system integrity, and will be caught by SpIF.
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I Term | Explanation I

malicious
untrusted
benign code
benign process

intentionally violate policy, evade enforcement
possibly malicious

non-malicious but potentially vulnerabilities
process whose code and inputs

are benign, i.e., non-malicious

Figure 1: Key terminology

subject (process) and object (file) in the system. Developing
such a system-wide tracking mechanism can be error-prone
and involve substantial engineering challenges. This problem
is particularly serious in the context of Windows because
its source code is unavailable. SPIF therefore realizes prove-
nance tracking using an existing security mechanism, namely,
multi-user protection and discretionary access control (DAC).
Unlike Android, which uses a different userid for each app,
our design creates one new userid for each existing user.
While Android’s goal is to isolate different apps, we use DAC
to protect benign processes/files from untrusted code/data.
(We discuss the alternative of using Windows integrity labels
in Section 4.5.)

Files coming from untrusted sources are owned by a “low-
integrity” user, a new user from the OS perspective.

File download is the most common way to introduce new
files. SPIF utilizes the Windows Security Zones [26] informa-
tion filled by most browsers and email readers to identity file
integrity. As these files are used in the system, any subjects
and objects derived from these untrusted files will also be
labeled as low-integrity.

1.2.2  Robust policy enforcement

Experience with various containment mechanisms such as
sandboxie [39], Bufferzone [5] and Dell Protected Workspace
[8], as well as the numerous real-world sandbox escape at-
tacks [11, 20, 7], have demonstrated the challenges of building
effective new containment mechanisms for malicious code
[37]. We therefore resolved to rely on (a) simple policies,
and (b) time-tested security mechanisms for sandboxing un-
trusted code. Specifically, SPIF relies on multi-user protection
mechanism for policy enforcement. By relying on a mature
protection mechanism that was designed into the OS right
from the beginning, and has withstood decades of efforts to
find and exploit vulnerabilities, SPIF side-steps the challenges
of securely confining malicious code.

To protect overall system integrity, it is necessary to sand-
box benign processes as well: otherwise, they may get com-
promised by reading untrusted data, which may contain
exploits. SPIF therefore enforces a policy on benign processes
as well. Among other restrictions, this policy prevents benign
processes from reading untrusted data. Note that, since be-
nign processes have no incentive to actively subvert or escape
defenses, it is unnecessary for this enforcement mechanism
to be resilient against adversaries.

1.2.3  Application and OS transparency

Today’s OSes do not distinguish users from processes run-
ning on behalf of users. Every operation performed by a
process owned by user R is considered to be endorsed by
user R. Compromising a single user process can therefore
compromise all other processes and files owned by that user,
and possibly, the entire OS. As a result, the system can be
considered secure only if no application is vulnerable or is
malicious. This is virtually impossible to ensure.

SPIF embraces the fact that applications will have vul-
nerabilities, and shifts the responsibility of system integrity



protection to an OS-wide mechanism. Hence SPIF can treat
applications as blackboxes, requiring no changes. It can
support feature-rich unmodified applications such as Pho-
toshop, Microsoft Office, Adobe Reader, Windows Media
Player, Internet Explorer, and Firefox.

1.2.4 Usable policy

One of the design goals of SPIF is to preserve normal
desktop user experience. Unprotected systems impose no
constraints on interactions between subjects (processes) and
objects (files). While this allows maximum compatibility
with existing software, malware can exploit this trust to
compromise system integrity. Preventing such compromise
requires placing some restrictions on the interactions. Simply
blocking such interactions can lead to application failures,
and hence impact user experience. SPIF comes pre-configured
with policies targeted at preserving user experience.

1.2.5 Implementation on Windows

We have implemented Spir on Windows, supporting XP,
7, 8.1, and 10. Implementing such a system-wide provenance
tracking system on closed-source OSes is challenging. We
share our experiences and lessons on implementing SPIF on
Windows.

Research efforts in developing security defenses have been
centered on Unix systems. Prototypes are developed and
evaluated on open-source platforms like Linux or BSD to
illustrate feasibility and effectiveness. While these open-
source platforms simplify prototype development, they do not
mirror closed-source OSes like Windows. First, these closed-
source OSes are far more popular among end-users. They
attract not only application developers, but also malware
writers. Second, there is only a limited exposition on the
internals of closed-source OSes. Very few researchers are
aware of how the mechanisms provided in these OSes can
be utilized to build systems that are secure, scalable, and
compatible with large applications. For this reason, we
believe the design and experience presented in this paper
is valuable. To be helpful to a broad audience, we describe
SPIF in terms of concepts and features of Unix. We hope this
will enable more of the systems community that is rooted
in Unix to develop solutions for commercial OSes, where far
more vulnerabilities are being exploited in the wild.

2. THREAT MODEL

We assume users of the system are benign. Any benign
application invoked by a user will therefore be non-malicious.
If a user is untrusted, SPIF can simply treat the user as a
low-integrity user and every subject created by that user is
of low-integrity.

SPIF assumes that any files received from unknown or
untrusted sources will be labeled as low-integrity. This can be
achieved by exclusion: Only files from trusted sources like OS
distributors, trustworthy developers and vendors are labeled
as high-integrity. All files from unverifiable origins (including
network and external drives) are labeled as untrusted. As
described later, SPIF’s labeling of incoming files has been
seamlessly coupled with Windows Security Zones, which has
been adopted by all recent browsers and email clients. An
administrator or a privileged process can upgrade these labels,
e.g., after a signature or cryptographic hash verification. We
may also permit a benign process to downgrade labels.

SpIF focuses on defending attacks that compromise the
system-integrity, i.e., performing unauthorized modifications
to the system (such as malware installing itself for auto-
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starting) or environment that enables the malware to subvert
other applications or the OS. Although SPIF can be con-
figured to protect confidentiality of user files, this requires
confidentiality policies to be explicitly specified, and hence
we did not explore it further in this paper. It should be
noted that files containing secrets useful to gain privileges
are already protected from reads by normal users. This policy
could be further tightened for untrusted subjects.

We assume that benign programs rely on system libraries
(i.e., ntd11l.d11 and kernel32.d11) to invoke system APIs.
SPIF intercepts API calls from the libraries to prevent high-
integrity processes from accidentally consuming low-integrity
objects. We do not make any such assumptions about un-
trusted code or low-integrity processes, but do assume that
OS permission mechanisms are secure. Thus, attacks on the
OS kernel are out of scope for this paper.

3. PROVENANCE-BASED SANDBOXING

SPIF relies on DAC for secure tracking of provenance of
processes and objects (Section 3.1). Moreover, it sandbozes
all processes, using provenance to determine whether to use
low-integrity sandbox (Section 3.2) or high-integrity sandbox
(Section 3.3). A high-integrity subject may choose to run in
a low-integrity sandbox so that it can process low-integrity
files (Section 3.4). Finally, policy choices to preserve user
experience are discussed in Section 3.5.

3.1 Secure provenance tracking

SPIF tracks subject- and object-provenance by re-purposing
multi-user support. For each real user R on the system, SPIF
creates a low-integrity user Ry to represent untrusted sub-
jects executing on behalf of R. Subjects owned by R are
deemed benign, so all untrusted subjects must be owned by
Ry . Objects such as files, registry contents, pipes and vari-
ous IPC objects are untrusted if they are owned by (or are
writable by) Ry ; otherwise they are considered benign. Ob-
jects are labeled as low-integrity automatically when created
by low-integrity processes.

3.2 Sandboxing low-integrity subjects

A security mechanism should mediate all possible attack
paths. Developing such enforcement mechanisms can be
tricky [3], especially when we are seeking a system-wide
enforcement solution against stealthy malware. Developers
of such malware are experts at finding vulnerabilities in either
the sandbox design or the policy, and exploiting them. For
this reason, we build our sandbox for low-integrity subjects
over time-tested DAC mechanisms. The following policies
are enforced by the sandbox on subjects of Ry:

e Read permission: By default, Ry is permitted to read
every object (file, registry, pipe, etc.) readable by R.
This policy can be made more restrictive to achieve some
confidentiality objectives, but we have not pursued this
avenue currently.

o Write-permission: By default, Ry subjects are not per-
mitted to write objects that are writable by R. However,
SPIF provides a utility library that can instead perform
shadowing [23] of a file. Shadowing causes the original file
F' to be copied to a new location where Ry maintains its
shadowed files. Henceforth, all accesses by Ry-subjects to
access F' are transparently redirected to this shadow file.

By avoiding permission denials, shadowing enables more
applications to successfully execute. But this may not



always be desirable, so we describe in Section 3.5 how to
decide between denial and shadowing.

Object creation: New object creation is permitted if R has
permission to create the same object. Ry owns these new
object and high-integrity processes will not be permitted
to read them. If R creates an object whose name collides
with a low-integrity object, the low-integrity object will
be transparently shadowed.

Operations on R’s subjects: Ry-subjects are not allowed
to interact with R-subjects. These include creating re-
mote threads in or sending messages to R’s processes, or
communicating with R’s processes using shared memory.

Other operations. Ry-subjects are given the same rights as
those of R for the following operations: listing directories,
executing files, querying registry, renaming low-integrity
files inside user directories, and so on. Operations that
modify high-integrity file attributes are automatically de-
nied.

All these rights, except that of shadowing, are granted to
Ry-subjects by appropriately configuring permissions on
objects. On Windows, object permissions are specified using
ACLs, which can encode arbitrary number of principals.
Moreover, there are separate permissions for object creation
versus writing, and permissions can be inherited, e.g., from
a directory to files in the directory. These features give SPIF
the flexibility needed to implement the above policies.

File shadowing is implemented using a utility library that
is loaded by default by low-integrity subjects. All shadow
files are created within a specific directory created for this
purpose. Ry is given full access permissions for this directory.
3.3 Sandboxing high-integrity subjects

Windows Integrity Mechanism (WIM) enforces no-write-
up policy to protect higher-integrity processes from being
attacked by lower-integrity processes. However, WIM does
not enforce no-read-down. A higher-integrity process can
read lower-integrity files and hence get compromised. This is
well illustrated by the Task Scheduler XML Privilege Esca-
lation attack [17] in Stuxnet, where a user-writable task-file
is maliciously modified to allow the execution of arbitrary-
commands with system privileges. Hence, it is important to
protect benign processes from consuming untrusted objects
accidentally.

While policy enforcement against low-integrity processes
has to be very secure, policies on high-integrity subjects can
be enforced in a more cooperative setting. High-integrity sub-
jects do not have malicious intentions and hence they can be
trusted not to actively circumvent enforcement mechanisms?.

In this cooperative setting, it is easy to provide protection—
SPIF uses a utility library that operates by intercepting calls
to DLLs used for making security-sensitive operations, and
changing their behavior so as to prevent attempts by a high-
integrity process to open low-integrity objects. In contrast, a
non-bypassable approach will have to be implemented in the
kernel, and moreover, will need to cope with the fact that
the system call API in Windows is not well-documented.

2 Although benign applications may contain vulnerabilities, exploit-
ing a vulnerability requires providing a malicious input. Recall
our assumption that inputs will be conservatively tagged, i.e., any
input that isn’t from an explicitly trusted source will be marked
as untrusted. Since a high-integrity process won’t be permitted to
read untrusted input, it follows that it won’t ever be compromised,
and hence won’t actively subvert policy enforcement.

214

Similar to performing file shadowing transparently for low-
integrity processes, SPIF intercepts low-level Windows APIs,
checks if an object about to be consumed is untrusted, and
if so, the API calls returns a failure immediately.

3.4 Transitioning between integrity-levels

Users may wish to use benign applications to process un-
trusted files. Normally, benign applications will execute
within the high-integrity sandbox, and hence won’t be able
to read untrusted files. To avoid this, they need to preemp-
tively downgrade themselves and run within the low-integrity
sandbox. The (policy) decision as to whether to downgrade
this way is discussed in Section 3.5.

For a high-integrity process to run a low-integrity program,
it needs to change its userid from R to Ry. On Unix, this
is performed using setuid, but Windows only supports an
impersonation mechanism that temporarily changes security
identifiers (SIDs) of processes. This is insecure for confining
untrusted processes as they can re-acquire privileges. The
secure alternative is to change the SID using a system library
function CreateProcessAsUser to spawn new processes with
a specific SID. SPIF uses a Windows utility RunAs to perform
this transition. RunAs behaves like a setuid-wrapper that
runs programs as a different user. It also maps the desktop
of Ry to the current desktop of R so that the transition to
user Ry is seamless.

In the context of information flow based systems, SPIF
adopts the early downgrading model, which allows a process
to downgrade itself just before executing a program image.
When compared to the strict Biba [2] policy, early downgrad-
ing is strictly more usable [43]. While dynamic downgrading
[12, 42] is more general, it requires changes to the OS [42,
43], whereas early downgrading does not.

3.5 Policies

In the design described above, there were two instances
where a policy choice needed to be made: (a) whether to
deny a write request, or to apply shadowing, and (b) whether
to execute a benign application at low-integrity. Below we
describe how these choices are automated in SPIF.

Deny Vs Shadow. Shadowing converts write-denials into
successful operations, but this is not always desirable. For
instance, if a user attempts to overwrite a benign file H
with untrusted data L, it would be preferable to inform the
user that the operation failed, instead of creating a shadow.
Otherwise, the user will be confused when she opens the file
subsequently using a benign application: she finds that it
does not have the content of L, and wonders why her data
was lost®.

For this reason, SPIF applies shadowing only to files that
users are largely unaware of. This choice is similar to previous
systems such as PIP [44] where shadowing is primarily applied
to preference files. Specifically, SPIF applies shadowing to
files in %USER PROFILEY\AppData, HKEY_CURRENT_USER and
files in all hidden directories.

Sandbox selection for benign applications. If a benign
application expects to consume untrusted inputs, then it
should be run as a low-integrity process. Otherwise it should
be run as a high-integrity process. Thus, to determine the
sandbox that should be used, we need to know in advance
whether a benign application will open a low-integrity file.

3The data is not actually lost: if she used an untrusted application
to open the file, then she would see L.



While there is no general way to make this prediction, there
are important use cases where it is indeed possible to do so.
In particular, users most often run applications by double-
clicking on a data file, say F'. Windows Explorer will spawn
a child process to run the designated handler program for
this file. This child process will inherit the high-integrity
label from Windows Explorer. However, it is clear that the
application is being invoked to open F'. Thus, if F' is a high-
integrity file, then the handler program (usually a benign
application), should be executed as a high-integrity process.
If F' is a low-integrity file, then the only sensible choice is to
run the handler as a low-integrity file, or else the application
won’t execute successfully.

Note that if the handler is a low-integrity application, then
there is no choice except to run it within the low-integrity
sandbox. Thus, this form of user intent inference [44] is
necessary only for benign applications.

4. SPIF SYSTEM

4.1 [Initial file labeling using security zones

An important requirement for enforcing policies is to label
new files according to their provenance. Some files may arrive
via means such as external storage media. In such a case,
we expect the files to be labeled as untrusted (unless the
authenticity and/or integrity of files could be verified using
signatures or other means). However, we have not imple-
mented any automated mechanisms to ensure this, given that
almost all files arrive via the Internet. To enable tracking of
the origin of such files, Windows provides a mechanism called
Security Zones. Most web browsers and email clients such
as Internet Explorer, Chrome, Firefox, MS Outlook, and
Thunderbird assign security zones when downloading files.
The origins-to-security zones mapping can be customized.
Windows provides a convenient user-interface for users to con-
figure what domains belong to what security zones. Microsoft
also provides additional tools for enterprises to manage this
configuration across multiple machines with ease.

Windows has used security zone to track provenance, but
in an ad-hoc manner. When users run an executable that
comes from the Internet, they are prompted to confirm that
they really intend to run the executable. Unfortunately,
users tire of these prompts, and tend to grant permission
without any careful consideration. While some applications
such as Office make use of the zone labels to run themselves
in protected view, other applications ignore these labels and
hence may be compromised by malicious input files. Finally,
zone labels can be changed by applications, providing another
way for malware to sneak in without being noticed.

SPIF makes the use of security zone information manda-
tory. SPIF considers files from URLZONE_INTERNET and URL-
ZONE_UNTRUSTED as low-integrity. Applications must run as
low-integrity in order to consume these files. Moreover, since
SPIF’s integrity labels on files cannot be modified, attacks
similar to those removing file zone labels are not possible.

4.2 Relabeling

SPIF automatically labels files downloaded from the Inter-
net based on its origin. However, it is possible that high-
integrity files are simply hosted on untrusted servers. As
long as their integrity can be verified (e.g., using checksum),
SpPIF would allow users to relabel a low-integrity file as high-
integrity. Changing file integrity level requires copying the
file from shadow storage to its normal location, while the file
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ownership is changed from Ry to R. We rely on a trusted
application for this purpose, and this program is exempted
from the information flow policy. Of course, such an applica-
tion can be abused: (a) low-integrity programs may attempt
to use it, or (b) users may be persuaded, through social
engineering, to use this application to modify the label on
malware. The first avenue is blocked because low-integrity
applications are not permitted to execute this program. The
second avenue can be blocked by setting mandatory policies
based on file content, e.g., upgrading files only after signature
or checksum verification.

4.3 Windows API hooking

Utility libraries used by low- as well as high-integrity pro-
cesses operate by hooking on Windows APIs. The hooking
mechanisms used are bypassable, but the libraries themselves
possess the exact same privileges that the process already has.
Thus, there is no reason for any process to evade hooking.

Hooking methodology. One way to hook on Windows
APIs is to modify DLLs statically. However, Windows pro-
tects DLLs from tampering using digital signatures, so we
cannot modify them. Instead, SPIF relies on a dynamic
binary instrumentation tool Detours [30]. Detours works
by rewriting in-memory function entry-points with jumps
to specified wrappers. SPIF builds these wrappers around
low-level APIs in ntd11.d11 to modify API behaviors.

To initiate API-hooking, SPIF injects a SPIF-DLL into every
process. Upon injection, the DLLMain routine of SPIF-DLL
will be invoked, which, in turn, invokes Detours.

SPIF relies on two methods to inject the SPIF-DLL into
process memory. The first one is based on AppInit_DLLs [29],
which is a registry entry used by user32.d11. Whenever
user32.d11 is loaded into a process, the DLL paths specified
in the registry AppInit_DLLs will also be loaded.

A second method is used for a few console-based applica-
tions (e.g., the SPEC benchmark) that don’t load user32.d11.
It relies on the ability of processes to create a child process
in suspended state (by setting the flag CREATE_SUSPENDED).
The parent then writes the path of the SPIF-DLL into the
memory of the child process, and creates a remote thread to
run LoadLibraryA with this path as argument. After this
step, the parent releases the child from suspension.

We rely on the first method to bootstrap the API inter-
ception process. Once the SPIF-DLL has been loaded into
a process, the library can ensure that all its descendants
are systematically intercepted by making use of the second
method. Although our approach may miss some processes
started at the early booting stage, most processes (such as
the login and Windows Explorer) are intercepted.

API interception. SPIF intercepts mainly the low-level
functions in kernel32.d1ll and ntdll.d11l. Higher-level
Windows functions such as CreateFile(A/W)* rely on a few
low-level functions such as NtCreateFile, NtSetInforma-
tionFile and NtQueryAttributes. By intercepting these
low-level functions, all of the higher-level APIs can be han-
dled. Our experience shows that changes to these lower level
functions are very rare®. Moreover, some applications such
as cygwin don’t use higher-level Windows APIs, but still rely

4Calls ending with “A” are for ASCIT arguments, “W” are for wide
character string arguments.

5We did see new functions in Windows 8.1 that SPIF needed to
handle.



API Type | APIs

File NtCreateFile, NtOpenFile, NtSetInformationFile,
NtQueryAttributes, NtQueryAttributesFile,
NtQueryDirectoryFile,...

Process CreateProcess (A/W)
Registry NtCreateKey, NtOpenKey NtSetValueKey,
NtQueryKey, NtQueryValueKey,...

Figure 2: API functions intercepted by SpIF

on the low-level APIs. By hooking at the lower-level API,
SPIF can handle such applications as well.

Figure 2 shows a list of API functions that SPIF intercepts.
Note that we intercept a few higher-level functions as they
provide more context that enables better policy choices. For
example, SPIF intercepts CreateProcess(A/W) to check if a
high-integrity executable is being passed a low-integrity file
argument, and if so, create a low-integrity process.

4.4 Handling Registry

To provide a consistent user-experience when benign appli-
cations are used to process high- as well as low-integrity files,
shadowing is applied on the registry as well. User settings
from a high-integrity application can be read when using
that application as a low-integrity process. SPIF handles
registry shadowing as follows: if a low-integrity process tries
to read a registry, it is first checked from Ry’s registry. Only
if such a registry-entry does not exist, SPIF reads from the
R’s registry. Registry writes by low-integrity processes are
always directed to Ry’s registry.

4.5 Alternative choices for enforcement

SPIF could be designed to use WIM labels instead of userids
for provenance tracking and policy enforcement. WIM en-
forces a no-write-up policy that not only prevents a low-
integrity process from writing to high-integrity files, but also
to processes. Although WIM does not enforce no-read-down,
we can achieve it in a co-operative manner using an utility
library, the same way how SPIF achieves it now.

With userids, SPIF gets more flexibility and functionality
by using DAC permissions to limit the access of untrusted
processes. For instance, files that can be read by low-integrity
applications can be fine-tuned using the DAC mechanism.
Moreover, SPIF can be easily generalized to support the no-
tion of groups of untrusted applications, each group running
with a different userid, and with a different set of restrictions
on the files they can read or write. Achieving this kind of
flexibility would be difficult if WIM labels were used instead
of userids. On the positive side, WIM can provide better
protection on desktop/window system related attacks. The
transition to lower-integrity is also automatic when a process
executes a lower-integrity image, whereas this functionality
is currently implemented in our utility library. For added
protection, one could combine the two mechanisms — this is
a topic of ongoing research.

4.6 Limitations

Our WinAPIT interception relies on the AppInit_DLLs mech-
anism, which does not kick in until the first GUI program
runs. Furthermore, libraries loaded during the process ini-
tialization stage are not intercepted. This means that if a
library used by a benign application is somehow replaced by
a low-integrity version, a malicious library could be silently
loaded into a high-integrity process. Our current defense
relies on the inability of untrusted applications to replace a
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high-integrity file, but subtle attacks may be possible where
an application loads a DLL from the current directory if
the DLL is present, but if the DLL is not found, it starts
normally. A better solution is to develop a kernel driver to
enforce a no-read-down policy on file loads.

Our prototype does not consider IPC that takes place
through COM and Windows messages. COM supports ACL,
so it may be easy to handle. Windows messages cannot be
protected using userids because any process with a handle
to the desktop can send message to any other process on the
desktop. This is known as a shatter attack. As a result, an
untrusted process can send Windows messages to a benign
process. There are two ways to solve the problem: The first
method is to apply job control in Windows to prevent un-
trusted processes from accessing handles of benign processes.
By setting the JOB_OBJECT_ULIMIT_HANDLES restriction, a
process cannot access handles outside of the job. The other
method is to run untrusted processes as low WIM integrity
processes. WIM already prevents lower integrity processes
from sending messages to higher integrity processes.

Our prototype does not support untrusted software whose
installation phase needs administrative privileges. If we en-
force the no-read-down policy, the installation won’t proceed.
If we waive it, then malicious software will run without any
confinement, and can damage system integrity. Techniques
for secure software installation [41] can be applied to solve
this problem, but will need to be implemented for Windows.

S. EXPERIMENTAL EVALUATION

In this section, we first discuss the implementation com-
plexity of SPIF, and then proceed to evaluate its performance,
functionality, and security.

5.1 Implementation complexity

SPIF consists of 4000 lines of C++ and 1500 lines of header.
This small size is a testament to the design choices made in
our design. A small code size usually translates to a higher
level of assurance about safety and security.

5.2 Performance

All performance evaluation results were obtained on Win-
dows 8.1. (Performance does not vary much across different
versions of Windows.) Figure 3 shows that on the CPU-
intensive SPEC2006 benchmark, SPIF has negligible over-
head. This is to be expected, as the overhead of SPIF will
be proportional to the number of intercepted Windows API
calls, and SPEC benchmarks make very few of these.

We also evaluated SPIF with Postmark [18], a file I/O
intensive benchmark. To better evaluate the system for
Windows environment, we tuned the parameters to model

Base (s) | Benign (%) | Untrusted (%)
401.bzip2 1785.9 -0.33% 0.26%
429.mcf 716.4 -1.69% -0.96%
433.milc 3314.1 1.15% -0.53%
445.gobmk 1094.9 0.26% -0.08%
450.soplex 1108.0 0.58% 2.34%
456.hmmer 2386.2 0.02% 0.13%
458.sjeng 1442.5 -0.25% 0.20%
470.1bm 1203.0 -1.51% -0.32%
471.omnetpp 750.9 0.96% 1.83%
482.sphinx3 2653.6 -2.55% -3.45%

[| Mean Overhead | | -0.336% | -0.059% |

Figure 3: SPEC2006 ref benchmark



File Size 500B to 5 KB 5KB to 300KB 300KB to 3MB

Operations Base | Benign | Untrusted Base | Benign | Untrusted Base | Benign | Untrusted
Files Created per Second 351.14 | -5.02% -10.45% 68.00 | -2.79% -2.02% 8.00 | -1.25% -1.56%
File Read per Second 350.14 | -5.18% -10.59% 67.64 | -3.02% -2.34% 7.60 | -3.95% -1.97%
File Appended per Second 344.79 | -5.19% -10.58% 67.64 | -3.02% -2.61% 8.00 | -2.50% -2.34%
File Deleted per Second 350.21 | -5.17% -10.57% 67.86 | -3.03% -2.00% 8.00 | -1.25% -2.34%
Total Transaction Time (s) 285.36 6.53% 12.38% 367.29 3.05% 4.58% 308.67 1.27% -0.62%

Figure 4: Postmark overhead for high and low integrity processes in SPIF

files on a Windows 8.1 system. There were 193475 files on
the system. The average file size is 299907 bytes, and the
median is a much smaller 5632 bytes. We selected 3 size
ranges based on this information: small (500 bytes to 5KB),
medium (5KB to 300KB), and large (300KB to 3MB) bytes.
Each test creates, reads, writes and deletes files repeatedly
for about 5 minutes. We ran the tests multiple times and the
average is presented in Figure 4. There are three columns
for each file size, showing (a) the base runtime obtained on
a system that does not have SPIF, (b) the overhead when
the benchmark is run as a high-integrity process, and (c)
the overhead when it is run as a low-integrity process. As
expected, the system shows higher overhead for small files.
This is because there are more frequent file creation and
deletion operations that are intercepted by SPIF. For larger
files, relatively more time is spent on reads and writes, which
are not intercepted by SPIF.

We also benchmarked SpiF with Firefox. Specifically, the
time required to load webpages. We used a standard test
suite [31] to perform page load tests. We fetched Alexa top
1000 pages locally to eliminate network variances. Figure 5
shows the correlation between unprotected page load time
with protected benign Firefox and untrusted Firefox. The
overheads for benign Firefox and untrusted Firefox are 3.32%
and 3.62% respectively.

5.3 Functionality evaluation

Figure 6 shows a list of unmodified applications that can
run successfully at high- and low-integrity in SPIF. We used
them to perform basic tasks. These applications span a
wide range of categories: document readers, editors, web
browsers, email clients, media players, media editors, maps,
and communication software.

World-writable files. Some applications intentionally leave
some directories and files as writable by everyone. As such,
low-integrity processes can also write to these locations. SPIF
prevents low-integrity processes from writing into these loca-
tions by revoking write permissions from low-integrity users.
This is achieved by explicitly denying writes in ACLs.
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Figure 5: Firefox page load time correlation
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Readers Adobe Reader, MuPDF

Documen MS Office, OpenOffice, Kingsoft Office, Notepad 2,

Proces- Notepad++, CppCheck, gVim, AklelPad, IniTranslator,

sor KompoZer

Internet | Internet Explorer, Firefox, Chrome, Calavera UpLoader,
CCProxy, Skype, Tor + Tor Browser, Thunderbird

Media Photoshop CC, Picasa, GIMP, WinAmp, Total Video
Player, VLC, Picasa, Light Alloy, Windows Media

Player, SMPlayer, QuickTime
Other Virtual Magnifying Class, Database Browser, Google
Earth, Celestia

Figure 6: Sample applications supported by SpiF

Some system files are writable by all users, yet they are
protected by signatures. SPIF currently does not consider
digital signatures as integrity label, and hence we grant
benign processes exceptions to read these “untrusted” files.
A better approach is to incorporate signatures into integrity
label so that no exception has to be granted.

Apart from files, there are also other world-writable re-
sources such as named pipes and devices for system-wide
services. SPIF grants exceptions for these resources as none of
them can be controlled by low-integrity processes and hence
do not carry low-integrity information.

Reading both high and low integrity files. Applica-
tions that only read, but not modify files can always start as
low-integrity, so that they can consume both high and low
integrity files.

Editing both high and low integrity files. SPIF does
not allow a process to edit files of different integrity simul-
taneously as this can compromise the high-integrity files.
However, SPIF allows files to be edited in different processes—
edit high-integrity files in high-integrity processes, and edit
low-integrity files in low-integrity processes. As these pro-
cesses are running as different users, different instances of
the same application can run simultaneously in SPIF.

When it is the users’ intention to open low-integrity files,
SPIF opens the files with low-integrity processes. However,
when users do not expect opening the low-integrity files,
such openings would be denied. SPIF considers user-actions
such as double-clicking on the files, selecting files from a file-
dialog box, or explicitly typing the file names as indications
of their intents. When intent is inferred in this manner,
SPIF runs the applications as low-integrity. SPIF currently
captures such intents via user interaction with the Windows
Explorer: when users double-clicked to open a file, Windows
Explorer will execute the handler programs with the file-
path as an argument. When the file-path corresponds to a
low-integrity file, SPIF considers this as a user-consent for
starting a program as a low-integrity process.

Low-integrity processes writing high-integrity files.
Applications like OpenOffice maintain runtime information
in user profile directories. Applications expect these files to be



[ CVE/OSVDB-ID Application [ Attack Vector
2014-0568 Adobe Reader Code
CVE-2010-2568 Windows Explorer Data (Ink)
(Stuxnet)

2014-4114/113140 Windows Data (ppsx)
(Sandworm)
104141 Calavera UpLoader Preference (dat)
100619 Total Video Player Preference (ini)
2013-6874,/100346 Light Alloy Data (m3u)
2013-3934 Kingsoft Office Data (wps)
‘Writer
102205 CCProxy Preference (ini)
2013-4694/94740 WinAmp Preference (ini)
2014-2013,/102340 MuPDF Data (xps)

Figure 7: Exploits defended by Spir

both readable and writable— otherwise they will simply fail
to start and crash. Having these files as high-integrity would
prevent low-integrity processes from being usable. Letting
these files become low-integrity would break availability of
high-integrity processes.

Spir shadows accesses to these files inside user-profile
directories, hence high- and low-integrity processes can both
run without significant usability issues. One problem is
that profiles for high and low integrity sessions are isolated.
There is no safe way to automatically merge the shadowed
files together.

5.4 Security evaluation

We evaluated the security of SPIF against malware from
Exploit-DB [34] on Windows XP, 7 and 8.1. We selected all
local exploits targeting Windows platform, mostly released
between January and October of 2014. Since these exploits
work on specific versions of software, we only included mal-
ware that “worked” on our testbed, and their results were easy
to verify. Figure 7 summarizes the CVE/OSVDB-ID, vulner-
able applications, and the attack vectors. We classify attacks
into three types: data input attacks, preference/configuration
file attacks, and code attacks.

Note that by design, SPIF protects high-integrity processes
against all these attacks. Since high-integrity processes can-
not open low-integrity files, only low-integrity applications
can input any of the malware-related files. In other words,
attackers can only compromise low-integrity processes. More-
over, there is no mechanism for low-integrity processes to
“escalate their privilege” to become high-integrity processes.
Note that since low-integrity processes can only modify files
within the shadow directory, they cannot affect any user or
system files. For this reason, SPIF stopped all of the attacks
shown in Figure 7.

Both data and preference/configuration file attacks concern
inputs to applications. When applications fail to sanitize
malicious inputs, attackers can exploit vulnerabilities and
take control of the applications. Data input attacks involve
day-to-day files like documents (e.g., wps, ppsx, xps). They
can be exploited by simply tricking users to open files. On
the other hand, attacks using preference/configuration files
are typically hidden from users, and are trickier to exploit
directly. These exploits are often chained together with
code attacks to carry out multi-steps attacks to circumvent
sandboxes.

Code attacks correspond to instances where the attacker
is already able to execute code but with limited privileges,
e.g., inside a restrictive sandbox. For instance, in the Adobe
Reader exploit [11], it is assumed that an attacker has al-
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ready compromised the sandboxed worker process. Although
attackers cannot run code outside of the sandbox, they can
exploit a vulnerability in the broker process. Specifically,
the attack exploited the worker-broker IPC interface — the
broker process only enforced policies by resolving the first
level NTFS junction. A compromised worker can use a chain
of junctions to bypass the sandbox policy and write arbitrary
file to the file system with the broker permissions. Since
the broker ran with user privilege, attackers could therefore
escape the sandbox and modify any user files. SPIF ran both
the broker and worker as untrusted processes. As a result,
the attack could only create or modify low-integrity files,
which means that any subsequent uses of these files were also
confined by the low-integrity sandbox.

SPIF stopped Stuxnet [10] by preventing the Ink vulnerabil-
ity from being triggered. Since the Ink file is of low-integrity,
SpiF prevented Windows Explorer from loading it, and hence
stopped Windows Explorer from loading any untrusted DLLs.

We also tested the Microsoft Windows OLE Package Man-
ager Code Execution vulnerability, called Sandworm [46]. It
was exploited in the wild in October 2014. When users view
a malicious PowerPoint file, OLE package manager can be
exploited to modify a registry in HKLM, which subsequently
triggers a payload to run as system-administrator. SPIF ran
PowerPoint as low-integrity when it opened the untrusted
file. The exploit was stopped as the low-integrity process
does not have permissions to modify the system registry.

The most common technique used to exploit the remain-
ing applications was an SEH buffer overflow. The upload
preference file uploadpref.dat of Calavera UpLoader and
Setting.ini of Total Video Player were modified so that
when the applications ran, the shell-code specified in the
files would be executed. Similarly, SEH buffer overflow can
also be triggered via data input, e.g., using a multimedia
playlist (.m3u) for Light Alloy or a word document (.wps) for
Kingsoft Office Writer. Other common techniques include
integer overflow (used in CCProxy.ini for CCProxy) and
stack overflow (triggered when MuPDF parsed a crafted xps
file or when WinAmp parsed a directory name with invalid
length). In the absence of SpIF, these applications ran with
user’s privileges, and hence the attackers could abuse user’s
privileges, e.g., to make the malware run persistently across
reboots.

Although preference files are specific to applications, there
exists no permission control to prevent other applications
from modifying them. SPIF makes sure that preference
files of high-integrity applications cannot be modified by
any low-integrity subject. This protects benign processes
from being exploited, and hence attackers cannot abuse
user privileges. On the other hand, SPIF does not prevent
low-integrity instances of the applications from consuming
low-integrity preference or data files. While attackers could
exploit low-integrity processes, they only had privileges of
the low-integrity user. Furthermore, all attackers’ actions
were tracked and confined by the low-integrity sandbox.

6. RELATED WORK

The first step in most malware attacks is an exploit, typ-
ically targeting a memory corruption vulnerability to gain
arbitrary execution capability. Widespread deployment of
ASLR and DEP have raised the bar, but in the end, attackers
always seem to be able to bypass these defenses. Compre-
hensive memory corruption defenses [48, 33] can stop these



exploits, but they introduce some incompatibilities in large
and complex software. Light-weight bounds-checking [15]
avoids this problem by trading off off some protection for
increased compatibility and performance.

Instead of focusing on the exploit mechanism, most mal-
ware defenses target the payload execution phase. The pay-
load may be an exploit payload, or it may refer to installed
malware. These defenses can be partitioned into several
categories discussed below.

6.1 Sandboxing and Isolation

Various sandboxing techniques [13, 35, 45, 24, 49] have
been discussed earlier in the paper. A central challenge here
is policy development: how to identify a policy that effec-
tively blocks attacks without unduly degrading functionality.
Although some techniques (e.g., model-carrying code [40])
have been devised to ease application-specific policy develop-
ment, they require some level of trust on the software. If one
suspects that it could be truly malicious, then a secure policy
will likely preclude all access, thus causing the application
to fail.

Full isolation is a more realistic alternative for software
that could be malicious. Android apps, by default, are fully
isolated from each other, thereby preventing one malicious
app from compromising another. This approach is so popular
that vendors back-ported the idea to recent desktop OSes
(Windows 8 and Mac OS X). Unfortunately, full isolation
means that no data can be shared. As a result, an untrusted
application cannot be used to view or process user files that
may have been created by another application. This difficulty
can be solved using the concept of one-way isolation [22],
which allows untrusted applications to read user files but not
overwrite them. The idea of shadowing files was proposed
in that work to permit untrusted applications to run safely
without experiencing any security failures.

In practice, full isolation proves to be too restrictive, so mo-
bile OSes such as Android permit apps to communicate with
each other, or with system applications, using well-defined
interfaces. Unfortunately, the moment such interactions take
place, security can no longer be guaranteed: if a benign
process receives and processes a request or data from an
untrusted process, it is entirely up to the benign process
to protect itself from damage due to this interaction. It is
in this context that information-flow based techniques such
as SPIF help: by keeping track of the provenance of input,
SPIF can either prevent a benign process from consuming
the input, or downgrade itself into a low-integrity process
before consuming it.

6.2 Information flow techniques

These techniques label every object and subject with an
integrity (and/or confidentiality) label, and globally track
their propagation. The earliest works in this are date back
to the 1970s, and rely on centralized IFC, where the labels
are global to the system. In contrast, some recent efforts
have focused on decentralized IFC (DIFC) [50, 9, 19], which
allows any principal to create new labels. This flexibility
comes with the responsibility to make nontrivial changes to
application and/or OS code. Since backward compatibility
with existing code is a high priority for SPIF, we have not
pursued a DIFC model.

Several recent works [42, 25, 21, 44] focused on making
IFC work on contemporary OSes, specifically Linux. Of these
PPI [42] specifically targeted the same problem as us, namely,
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integrity protection for desktop systems against malware and
exploits. Unlike Spir, PPI relies on kernel modifications
(implemented using LSM hooks) for label propagation as
well as policy enforcement. While such an approach provides
more flexibility and hence supports a wider range of policies,
its downside is that it is difficult to port to other OSes. In
contrast, PIP [44] avoids OS changes and is hence most
closely related to Spir. Like Spir, PIP also re-purposes
multi-user protection for information-flow tracking. But its
design, targeted at Unix, necessarily differs from SPIF that
targets Windows. SPIF can take advantage of mechanisms
specific in Windows (such as ACLs and WIM) to remove
the need of helper process or the need for a separate display
server. Moreover, SPIF’s design provides a greater degree of
portability across different OS versions, and a higher-level
of application compatibility, having been applied to a much
larger range of complex, feature-rich applications. SPIF’s
integration with the security zone in Windows also provides
a better end-to-end protection.

6.3 Provenance

Data provenance has become an important consideration
in many domains, including scientific computing, law and
health care. In these domains, provenance captures not only
the origin of date (“where”), but also how it was generated [6].
Securing data provenance [16] is an important concern in
many domains. Some recent efforts have incorporated secure
provenance tracking into OSes, e.g., Linux [1].

Other works in security have been focused on (security)
applications of provenance. Reference [47] associates every
network packet with a keystroke event. These keystroke
events serve as provenance labels of a packet. This enables
the detection of malware-generated network packets that
won’t have these provenance labels. Reference [32] uses
provenance-tracking to correlate malicious network traffic to
the application that generated it. SPIF combines the idea of
provenance and information flow tracking to protect system
integrity against unknown malware.

7. CONCLUSION

In this paper, we presented SPIF, a comprehensive system
for integrity protection on Windows that is based on system-
wide provenance tracking. Unlike existing malware defenses,
which are reactive in nature, SPIF is pro-active, and hence
works against unknown and stealthy malware. We described
the design of SpPIF, detailed its security features, and features
designed to preserve application usability. Our experimental
results show that SPIF imposes low performance overheads,
almost negligible on many benchmarks. It works on many
versions of Windows, and is compatible with a wide range
of feature-rich software, including all popular browsers and
Office software, media players, and so on. We evaluated it
against several malware samples from Exploit Database [34],
and showed that it can stop a variety of highly stealthy
malware.

We certainly don’t claim at this point that our proto-
type is free of vulnerabilities, or that it can stand up to
targeted attacks. But we do believe that any such weak-
nesses are the result of limited resources expended so far
on its implementation, and are not fundamental to its de-
sign. Hardening it to withstand targeted, real-world mal-
ware attacks will require substantial additional engineering
work, but we do believe that SPIF represents a promising
new direction for principled malware defense. An open-



source implementation of our system is available from http:

//seclab.cs.stonybrook.edu/download.
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