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ABSTRACT 
We present the development and evaluation of a situated 
crowdsourcing mechanism that estimates queue length in 
real time. The system relies on public interactive kiosks to 
collect human estimations about their queue waiting time. 
The system has been designed as a standalone tool that can 
be retrospectively embedded in a variety of locations 
without interfacing with billing or customer systems. An 
initial study was conducted in order to determine whether 
people who just joined the queue would differ in their 
estimates from people who were at the front of the queue. 
We then present our system’s evaluation in four different 
restaurants over 19 weekdays. Our analysis shows how our 
system is perceived by users, and we develop 2 ways to 
optimise the waiting time estimation: by correcting the 
estimations based on the position of the input mechanism, 
and by changing the sliding window considered inputs to 
provide better prediction. Our analysis shows that 
approximately 7% of restaurant customers provided 
estimations, but even so our system can provide predictions 
with up to 2 minute mean absolute error. 
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INTRODUCTION 
Queues are logistic mechanisms in which a group of 
individuals wait in order, using a first-in first-out procedure, 
generally with the goal of obtaining a good or service [23].  
Studies have repeatedly shown that waiting time has a 
substantial impact on the perception of that service [33], 
and therefore individual establishments are motivated to 
reduce their waiting times and/or providing an enhanced 

queuing experience. This is especially true in environments 
where a single service provider owns multiple service 
points that are not in direct competition with each other 
over customer volumes. Examples of such are hospitals, 
universities, industrial complexes, etc. where one operator 
is often responsible for providing restaurant services for the 
entire establishment. In such settings, both customers and 
service providers will benefit from an approach such as the 
one presented here, since it can help distribute the customer 
load more evenly between locations.  

Existing queue prediction tools such as those utilising 
cameras [1], sensors deployed in the environment [2] or 
WiFi and Bluetooth signals coming from queuing 
individuals’ mobile devices [4,36], while potentially 
accurate have a number of drawbacks. For instance, while 
systems that utilise WiFi signals have reported the lowest 
estimation error [36], they have three important drawbacks. 
First, they require that a large number of people in the 
queue have a specific application installed in their mobile 
devices in order to contribute data to the crowd-sensing 
system. Second, they usually assume that people 
automatically join a queue when they enter a particular 
premise. They do not consider situations in which people 
just meet other individuals that are, for example, already 
having coffee or lunch without participating in the queue. 
Third, they do not consider multi-queuing environments. 

We argue that a user-centric approach involving situated 
crowdsourcing kiosks can assist in mitigating these 
drawbacks: customers can generate and share queue 
information amongst themselves with low effort and, as a 
by-product, also help the service points to provide a better 
experience for the customers. The main objective of our 
research is to test the above assertion: can crowdsourcing 
provide a method for generating reliable waiting time 
estimates for services in close physical proximity? Would 
individuals be willing to contribute to such a crowdsourcing 
service, and how would they perceive its usefulness? 
Would they provide reliable data, or would they vent their 
frustration by providing erroneous data?  

To answer these questions, we designed a study using four 
in-campus restaurants as research case studies. The 
restaurants were retrofitted with public interactive kiosks 
where customers waiting in the queue could input their 
estimation of the current waiting time. To determine 
whether a person’s position in the queue affects their 
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estimation, we conducted an initial study, which informed 
us how to calibrate the collected crowdsourcing data to 
account for individuals’ bias. Subsequently, we evaluated 
the accuracy of the system and its reception by customers 
during a 19-day deployment.  
RELATED WORK 

Queuing: Social Aspects, Modelling and Quantifying 
Techniques 
Due to the human factor in queuing, many disciplines have 
studied such mechanisms. Sociologists and psychologists 
are mainly concerned with the behaviour and attitude 
patterns arising in physical queues [24], as well as how 
different social values affect people’s perception in queuing 
environments. For instance, Larson [21] analyses different 
psychological and physiological factors that might affect 
customers’ perceptions and attitudes experienced in a queue 
setting, such as social justice and use of time. Sociologists 
are also interested in studying this phenomenon to better 
understand other broader subjects such as crowd behaviour 
and cultural values regarding public behaviour [32]. 

On the other hand, business psychologists and marketing 
researchers have also developed a rich and detailed 
literature on queues. It has been often reported that the 
waiting time in a queue affects the customer’s evaluation of 
the quality of a service [5,33]. However, social and 
psychological factors may influence one’s perception of 
waiting time, and therefore perceived quality of service 
[28]. Maister [22] enumerates multiple psychological 
factors such as anxiety, fairness, and social interaction in 
queues that also effect one’s perception of waiting time. In 
addition, Taylor [32] discusses the effects of filled waiting 
time on evaluations of service. A substantial number of 
studies in literature aim to analyse queuing and its 
implications for quality of service perception in very 
specific contexts such as supermarkets [3], airports [19], 
tourist services [9] and tolls [34]. The finding that reducing 
waiting time improves quality of service is common. 
Hence, it is has become a priority to reliably model the 
queuing environment so that service providers can estimate, 
for example, the number of service points necessary to 
achieve a determined quality of service, thereby balancing 
cost versus quality of service. 

To this end, queuing theory provides the mathematical 
background in order to create such models, and has its 
origin in the field of telecommunications. Queuing theory is 
an extensive field and a useful overview is provided by 
Gross [15]. It is important to highlight that, as noted by 
Bulut et al. [4], queuing theory cannot be applied without 
knowledge of the arrival process, the service distribution 
time, and the number of servers. For such cases they point 
to other alternatives for estimating the waiting time, 
particularly using data mining. Alternatively, in certain 
cases it is not necessary to predict the behaviour of the 
queue in the future, and it suffices to simply determine the 
behaviour queue at the moment. For this purpose it is 

possible to adapt methodologies used to measure crowd 
collectiveness, whereby we effectively consider queues as a 
particular case of crowd collectiveness [39]. 

Previous work has utilised several technologies such as 
wireless sensor technologies [29] or computer vision 
algorithms [18] to quantify crowd size and queue size. Choi 
et al. [7] present a method to detect collective activity 
recognition (talking, queuing) using computer vision 
algorithms. Zhou et al. [39] use a similar approach, but with 
emphasis on analysing how individuals move in a crowd. In 
contrast, Aubert used computer vision algorithms to 
measure the length of a queue (not the number of 
individuals) with high accuracy [1]. Finally, Hsieh et al. 
used a Kinect system above a business’ doorway to capture 
the situation of the pedestrian flow [18]. They report 
measuring bidirectional flow of people with almost 100% 
of accuracy in real time. 

However, there are certain drawbacks to using computing 
vision methods to estimate amount of individuals in a 
queue. First, the cameras need to be placed in optimal 
positions to minimize algorithm errors. Sometimes, 
especially for long queues, computer vision systems face 
occlusion problems requiring multiple cameras for 
measuring the real length of a queue. In addition, queue 
cameras raise privacy concerns similar to surveillance 
cameras. Finally, computer vision algorithms can be 
complex and computationally intensive, and subject to 
lighting conditions during the day. 

Wireless sensor technologies have also been used to 
estimate crowd sizes. For instance, RFID has been proposed 
to measure the length of a supermarket’s line [3].  
Alternatively, O’Neill et al. [28] tried to predict the crowd 
density that crossed certain street section and classify the 
pedestrian flow by a combination of human observation and 
Bluetooth scanning. In more recent work, Kostakos et al. 
[20] measured the time a single passenger spent on a bus, 
and hence collect data about passengers’ end-to-end trips. 
The system detected when a passenger’s mobile device was 
discoverable using a Bluetooth scanner. When the phone is 
not discoverable anymore, the system can infer that the 
owner has left the bus. In combination with GPS 
technology it was possible to know the route a single 
passenger had taken with high accuracy. 

Estimating the queue length in restaurants using Bluetooth 
technology is quite challenging. On one hand, we must 
assume that a majority of customers have their Bluetooth 
transceiver activated. On the other hand, we only can 
calculate the number of customers that are in the restaurant; 
we cannot guarantee that the customer is waiting in the 
queue or just having some coffee.  
Crowdsourcing Waiting Times 
Crowdsourcing has seldom been reported in the literature in 
conjunction with estimating queue waiting times. In 
principle, crowdsourcing relies on gathering contributions 



from a large population or a large group of users or 
consumers. Typically, the objective of crowdsourcing is to 
divide large amount of work into small tasks that can be 
performed by individuals [11,16]. Crowdsourcing has been 
used to create new content collectively [29], for 
humanitarian aid [10], collecting public opinion [17] and 
for solving complex problems that either are difficult for 
machines to solve or would otherwise take too long [12,31]. 

Some prior work has attempted to measure queue sizes by 
combining the potential of crowdsourcing with the power of 
social media [25].  For instance, publications in a social 
media can be used to geolocate their authors and forward 
them unsolicited questions regarding to aspects of that 
particular location (e.g. the weather conditions, or queue 
length in a nearby cinema). In many ways our work 
resembles this approach: we use public interactive kiosks to 
solicit input, rather than users’ personal devices. This has 
the benefit of avoiding unsolicited requests, and at the same 
time overcomes many privacy concerns, which arise from 
the fact that one’s location may be revealed once they 
provide an assessment of the queue at a particular 
establishment. Any customer is able to use (but also to 
game) this system, since it is not linked to any id or 
application. 

Crowdsourcing to estimate waiting times has been used in 
conjunction with wireless technologies. For example, 
Weppner et al. [37] have shown how to estimate the crowd 
density using Bluetooth and leveraging collaboration 
between close-by devices. They claim to improve the 
recognition rate by 30% when compared to just using the 
absolute number of discovered devices, Furthermore, Bulut 
et al. [4] developed a system that approximates the queue 
waiting time in a university cafeteria using indoor 
positioning methods (WiFi Access Point, GPS and cell 
tower triangulation). The system measures the time that a 
person stays in the cafeteria, and the authors use this to 
approximate the waiting time.  Their system is able to 
predict the actual waiting time using the historical data and 
using heuristics based on time-series estimation. They 
managed to reduce mean absolute error to be less than 2-3 
minutes. Their underlying assumption is that waiting time is 
somehow correlated with the time they spent in the 
cafeteria. To account for this, some follow-up work [5] has 
made use of devices’ accelerometers to determine whether 
the user is in a queue or not. A similar approach by Wang et 
al. [36] used WiFi signal strengths from a WiFi monitor 
located at the service area. Analysing the signal strength 
patterns of the WiFi signal from restaurant client’s mobile 
phones, authors claim that they are able to measure the 
queuing waiting time with a maximum estimation error of 
10 seconds.  
SYSTEM DESCRIPTION 
Based on the reviewed literature, there are three main 
alternatives to improve user’s satisfaction in queue 
environments: careful control of the waiting environment, 

promoting social interaction, and reducing queuing time. 
The first strategy is not feasible for ad-hoc approaches such 
as our own, and the second beyond our scope. Therefore, 
we aim to ultimately reduce waiting time by giving reliable 
information to customers who are trying to decide which 
restaurant to visit on our campus. 

Our system consists of interactive kiosks (Figure 1) that 
were installed in four restaurants on a university campus. 
Each kiosk consists of a touch-enabled Android tablet with 
a 10.1” touch-screen at approximately 1.1 meters from the 
ground and WiFi connectivity. The software running on the 
kiosks serves a single purpose: it invites customers to enter 
their assessment of how long the actual waiting time in the 
restaurant queue is. Users’ inputs are given with a single 
touch, and are forwarded to a back-end system (Figure 2) 
which produces a prediction of the queue waiting time in 
each restaurant. This information is made publicly available 
through several large displays across the campus, and via a 
website that users can visit on their mobile phone.   

 
Figure 1. A kiosk that collect crowd estimations (left), and a 

public display displaying real-time predictions (right). 

 
Figure 2. The main components of our system. 

Crowd Input and Queue Visualisation 
The kiosk application has a single screen with the sole 
purpose of collecting queue waiting time estimations from 
restaurant customers (Figure 3). The interface was designed 
to minimise any affordance of exploration, the tablet’s 
operating system was locked to “kiosk mode”, and the 
physical buttons of the tablet were physically obstructed by 
the kiosk enclosure. All these decisions were intended to 
discourage users from appropriating the kiosk otherwise, 
therefore ensuring that the kiosk did not cause delays to the 
queue in itself.  



Interaction with the tablets is touch-based, and customers 
waiting in the queue indicate their estimation of the current 
waiting time using a visual scale (Figure 3 top). An A4 
sheet of paper with further instructions was placed below 
each tablet (Figure 1). These instructions can be seen in 
Figure 3 bottom. Each touch event is timestamped and 
converted to a granular number between 0 and 15 based on 
the screen coordinates of the touch (i.e. the scale is granular 
despite visual appearance). Once user input is collected, the 
application gives immediate acknowledgement to the user 
and disables input for 3 seconds to avoid accidental input or 
abuse. The scale was purposely constrained to minimise 
explicit input since actually typing a number would take 
more time, and be prone to errors and misappropriation in a 
public setting as suggested in other situated crowdsourcing 
deployments [13,14]. 

 

 
Figure 3. Top: The kiosk app UI. Bottom: A4 sheet with 

instructions that was place below each tablet. 

The web page shown on public displays (and accessible to 
users’ own devices) was built to visualise the queue 
prediction for all restaurants. It included real time estimates 
of queueing times, the opening hours, the daily menu of 
each restaurant, and a graphical and textual representation 
of the current queue situation (Figure 4). We note that the 
number of coloured silhouettes either always precisely 
represents the current queue prediction, or a slight 
overestimation of it (e.g., if the current estimated queue 
waiting time is 10 minutes, then 4 silhouettes would appear 
coloured). This decision was based on literature, which 
states then when providing queue predictions, one should 
always meet them or exceed them [27]. 

 
Figure 4. Webpage UI. 

Queue Estimation 
As Bulut notes [4], we cannot use traditional queue models 
a priori since we do not have an estimation on the arrival 
rate or service time in the restaurants [15]. Instead, we have 
a crowdsourced set of queue estimations contributed by 
users with an irregular sampling rate. The most important 
parameters that can influence prediction performance are:  

x The true arrival rate of customers. This depends on 
the time of the day, the day of the week, the season 
and the University’s teaching schedule, among 
others, and is beyond our control. 

x The error in customers’ estimations (in minutes). 
This can depend on the customers’ attention, the 
position of the kiosk, and its usability. We assess 
this factor in Study 1. 

x The function used to generate an estimate from the 
crowdsourcing contributions. We assess this factor 
in Study 2. 

Thus, to actually predict the waiting times from 
crowdsourcing input, we first need to account for errors and 
bias in customers’ estimations, and then determine an 
optimum way to convert the crowd’s estimates into a 
prediction. The former is determined in Study 1. For the 
latter, we opted to apply a weighted average function so 
that the weight of user estimations decreases over time, 
placing more emphasis on more recent data. In Study 2, we 
determine the ideal window size.  Equation 1 shows the 
formulation of the weight function. 

∑ 𝑤𝑖 .  𝐶(𝑥𝑖)𝑛
𝑖=0

∑ 𝑤𝑖
𝑛
𝑖=0

 (1) 

where wi = f(number of close samples, data age), and C(xi) 
is a correction function. 
The Restaurants 
The on-campus restaurants where we deployed our system 
are all characterized as mostly lunch restaurants, serving 
mainly students and faculty members of the university. All 
restaurants follow a self-service model, where customers 
first obtain a tray, flatware, etc., and then proceed to take 
food from large containers. Customers then pay for their 
meal and proceed to seat themselves within the restaurant 
main dining area. Restaurant R1 is the largest of the four 
(550 seats), located at the heart of the university, and visited 



by students from all faculties. Restaurant R2 has 200 seats, 
and is located near the Faculty of Education. Restaurant R3 
has 150 seats and is located near the Faculty of Humanities 
and a zoological museum that is also open to the general 
public. Finally, R4 has 125 seats and is located near the 
Faculty of Technology. All restaurants are closed on 
weekends. 

EVALUATION 
We conducted two studies. In Study 1 we evaluate how the 
placement of the input device affects users’ bias in queue 
estimation. We then conducted in-situ observations and 
interviews to understand how queues form in the various 
restaurants on campus. Then, in Study 2 we ran a field trial 
lasting 19 weekdays, collecting detailed log data of system 
usage and ground truth data. At the end of the deployment, 
we interviewed a number of customers to assess their 
opinions of our system. Finally, a survey was launched to 
gather additional data regarding the routines of customers 
(in addition to the interviews and observations in Study 1), 
as well as provide more insights regarding the use of the 
system and any changes in behaviour (in addition to the 
interviews conducted in Study 2).  
Study 1: Kiosk Positioning and Estimation Errors 
In Study 1 we sought to determine whether kiosk placement 
(near the front or back of the queue) had an effect on the 
queue waiting time prediction. We decided against having 
two kiosks on each restaurant (one for when customer 
arrives and one for when they pay) to calculate precisely the 
amount of time spent in the queue as this would require 
tracking individuals and would likely increase the barriers 
to contribution. Previous research has highlighted the 
importance of kiosk placement, for example in healthcare 
and supermarkets [3,34]. Further, Tom & Lucey [34] 
demonstrate that the location of a kiosk influences the types 
of tasks performed on it, the services activated, and the 
accuracy of the estimations. Therefore, in Study 1 we 
wanted to establish whether placing the kiosks at the back 
or front of the queue had an impact on the error in 
estimation customers made. 
Method 
A version of the kiosk application was installed on a 
Samsung Galaxy Tab Pro 8.4’’ tablet. While carrying this 
tablet, we asked 42 distinct participants to estimate the 
current queue waiting time in minutes (i.e. what the current 
situation was, not how long it took them to get serviced) 
using our interface. Half of the participants were 
approached at the back of the queue (the last person who 
just joined the queue, N=21) while the other half were 
approached at the front of the queue (just after paying the 
cashier, N=21). We avoided having participants make 
several estimations, as we wanted their selections to be as 
organic as possible. For each data point we also collected 
ground truth data manually. In both cases we measured how 
much time it took from the moment they used our tablet 
until the last person in the queue (at the time) was 
eventually served. 

The measurements were carried out in the different 
restaurants during two different periods of the day: during 
lunch (10:30 till 12:00) and early dinner (15:00 - 16:00). 
This study was designed to ensure extensive customer 
population sampling (i.e. people from different faculties), 
and varying queue sizes. One researcher carried the tablet 
and asked random people in the queue to estimate the 
waiting time using the application, while simultaneously 
another researcher measured ground truth values for the 
waiting time. We made sure that all data was independent 
by ensuring that one person’s answer does not affect 
another's (e.g. a friend). Waiting time was measured from 
the time a person arrived to the queue, until s/he had paid at 
the cashier. 
Results 
Figure 5 shows the error in estimation (minutes) for 
participants in the back and front of the queue. An 
independent-samples t-test indicated that there was a 
statistically significant difference of estimated error 
between the two groups when compared to the ground truth 
(t(40) = 3.45, p < .01). Participants who provided 
estimations at the back of queue overestimated the waiting 
time (error: M = .89, SD = 1.76) while those at the front of 
the queue underestimated the waiting time (error: M = -
1.51, SD = 2.66). 

 
Figure 5. Estimated error (minutes) for participants in the 

back and front of the queue. 

Interviews, Survey and Observations 
We conducted in-situ interviews and observations to 
understand how queues form in all four restaurants on 
campus (designated R1-R4). We later added data from a 
survey. We observed the queue formation and dynamics 
throughout the opening hours of the restaurants (from 10 
am till 5 pm), focusing on how people arrived to the 
restaurants (in groups or alone), and whether certain 
behaviours were frequent during queuing.  We also 
interviewed 8 students and collected survey answers from 
an additional 24 participants (21 students, 3 staff) about 
their lunch-related routines, including restaurant selection, 
the time they usually have lunch and the social context in 
which they usually eat. The interviewees were approached 
at the restaurant, and then moved towards a more secluded 
area to minimise any disruption, while the survey was 
distributed via internal mailing lists. No rewards were given 
to the participants. 



Observation data showed that during the morning hours 
people are more likely to have lunch in small groups 
(Figure 6). Conversely, in the afternoons we observed more 
individuals queuing and eating alone. Typically, the 
observed groups were rather small, up to 4 individuals, 
although on some occasions we noticed larger groups (up to 
10). This was confirmed by our survey results in which 
83% of participants reported eating with friends or 
colleagues. However, it seemed that these groups were 
created ad-hoc in the restaurant when friends or 
acquaintances happened to meet, rather than purposefully 
coming together for lunch.  

Further, in the interviews and survey, participants reported 
a wide range of reasons why they chose a particular 
restaurant. These reasons were socially-driven (their friends 
are usually there), location-driven (the distance from their 
classroom to the restaurant), based on the length of the 
queues or simply based on their everyday routine. The 
majority of participants reported having lunch between the 
hours of 11am and 1pm (only one participant reported 
normally going for lunch after 1pm). While some 
respondents noted that rush hours are unavoidable, others 
remarked that they prefer to delay their lunch to avoid 
queues altogether which ultimately leads to suboptimal 
eating patterns. In general, participants were quite open and 
interested in our proposed system, particularly if 
information about queue predictions in distant restaurants is 
made available online. 

 
Figure 6. Queuing and ambient at one of the restaurants 

during lunch time. 

Study 2: Field Trial 
We deployed the system for 19 weekdays in the four 
restaurants.  The kiosks were placed on the natural path of 
the queue in each restaurant, typically at the entrance of the 
restaurant (normally the back of the queue), but the 
selection of potential locations was naturally constrained by 
architectural qualities, accessibility issues, or lack of 
utilities such as power sockets. 

Additionally, we placed four 46” public displays (Figure 1, 
right) throughout the university campus to provide passers-
by with up-to-date information on the queuing times in the 
restaurants. Because we needed to generate queue 
predictions for the public displays, but did not yet have 
enough data to determine the ideal window size for 
Equation 1, we used an arbitrary window of 15 minutes. 
Thus, we consider the crowdsourced data from each 

restaurant for the last 15 minutes and derive a weighted 
average. Our subsequent analysis shows that this arbitrary 
choice was not far from an optimal value. We also collected 
detailed log data from the system, including: input from the 
kiosks, webpage visits, number of touches on the public 
displays to access menu information. We also obtained 
revenue data from each restaurant, collected through their 
till system. In addition, on 2 days we manually collected 
ground truth data on queue waiting times for the whole day 
(10am to 4.30pm). 

Quantitative Results 
The four kiosks collected a total of 3633 user inputs during 
the 19-day deployment. The largest restaurant (R1) 
accounted for 53% of the inputs, R2 for 29%, while R3 and 
R4 accounted for 9% each (Figure 7). A Pearson’s two-
tailed test showed a significant correlation between the 
estimations by users and volume of inputs for R1 (r(562) = 
.19, p<.01), R2 (r(298) = .5, p<.01), R3 (r(168) = .24, 
p<.01), but not R4. This suggests that higher waiting time 
predictions were associated with more crowdsourcing 
contributions, which is consistent with our expectations: as 
queues get longer we expect more input to our system and 
longer waiting times.  

Using the revenue data provided by each restaurant during 
the field trial, and the average number of estimations in 
each kiosk collected by the system, we can calculate the 
kiosk usage rate. This reflects the percentage of the 
restaurant customers that clicked in the kiosks. Overall, our 
system was used by 7% of the campus restaurants 
customers. Table 1 presents usage rate per restaurant, 
excluding days where there were technical difficulties (e.g., 
lack of WiFi connectivity). Figure 7 shows the cumulative 
number of data points collected by each kiosk during 
deployment.  

Figure 8 summarises the intermittency of the data collected 
by the kiosk: it shows a histogram of the time between 
subsequent estimations on kiosks for each restaurant. 
Unsurprisingly, the larger restaurants had lower 
intermittency between customer inputs. The graphs follow 
an exponential distribution, which is consistent with the 
theoretical assumption of a Poisson distribution of arrivals 
per unit of time [15]. This suggests that the rate of data 
collection on kiosks is similar to the rate of customers’ 
arrivals, suggesting that the sampling rate of 7% (Table 1) 
is consistent over time. 

 R1 R2 R3 R4 Total 

Average daily customers 1176 655 787 525 3143 

Average daily estimations 
collected 101 57 21 26 205 

Usage rate (%) 9% 9% 3% 5% 7% 

Table 1. Kiosk use in different restaurants. 

 



 
Figure 7. Cumulative number of estimations collected by each 

kiosk. 

 
Figure 8. Distribution of time delay (minutes) between 

subsequent inputs on each restaurant. 

To assess how many people utilized the public displays for 
checking queue lengths in different restaurants, we rely on 
quantitative data from server logs as a proxy for perceived 
interest in the system. The web page was loaded from 446 
unique IP-addresses, and during the field trial it was 
accessed a total of 1796 times. Figure 9 shows the 
distribution of webpage hits over the 19 days of deployment 
and time of day. There is a significant peak on the first day 
of deployment. This can be mostly attributed to the novelty 
effect and users experimenting with the webpage, i.e. 
loading the page multiple times during the day to check the 
estimations, later stabilising on a certain user base. We note 
that these graphs only show webpage hits and not total 
amount of people that checked the estimations daily, i.e. it 
does not account for those that got this information from the 
public displays around campus. Different restaurant menus 
were loaded 3119 times, with R1 menu being the most 
popular (1117 hits), then R4 (785), R2 (667) and R3 (545). 

 
Figure 9. Distribution of webpage hits over the 19 days of 

deployment (left) and time of day (right).  
Next, we assess the accuracy of our system’s prediction. 
This required us to collect ground truth manually, since no 
restaurant collected this information. In total we collected 
381 ground truth measurements, of which 189 were 

collected on day 13 and 192 on day 17 of our deployment. 
The measurements were conducted in the most popular 
restaurant (R1), from 10am till 4:30pm. In both days the 
queue waiting time was measured with sampling rate of two 
minutes.  

Every two minutes we “marked” the last customer in the 
queue, and when the customer eventually paid we recorded 
the time in the original 2-minute slot. 

Using the ground truth we are able to estimate the accuracy 
of our system’s predictions. On day 13 the kiosk was 
located at the back of the queue, and on day 17 the kiosk 
was located at the front of the queue (next to the cashier). 
We moved the kiosk to the front of the queue on day 17 in 
order to test if we could improve the estimations based on 
the results of Study 1 depending on the positioning of the 
kiosk. Since the back of the queue is a moving target, we 
positioned the kiosk where the flow of customers funnelled 
towards the queue and where said queue was fully visible. 
We found that the mean absolute error in our system’s 
prediction was 2.9 minutes on day 13, and 3.6 minutes on 
day 17. Figure 10 shows the real waiting time and the 
absolute estimation error on day 17.  

 
Figure 10. Real waiting time and absolute estimation error on 

day 17 over time of the day. 
However, during our deployment we did not actively 
calibrate the estimation data from kiosks, and had used an 
arbitrary window of 15 minutes to generate our predictions. 
Therefore, we expect that our system should be able 
perform much better. In Figure 11 we show the accuracy of 
our system under varying window sizes (Equation 1), and 
after calibrating according to the findings of Study 1. The 
calibration process involves either subtracting .89 minutes 
from each kiosk estimation from the back of the queue or 
adding 1.59 minutes to each kiosk estimation from the front 
of the queue. 

This process helped us identify the optimum performance 
that the system can achieve. When the kiosk is positioned at 
the back of the queue, we can correct the crowd estimation 
by subtracting .89 minutes from each estimation and use a 
sliding window of 10 minutes (Figure 11), achieving a 
mean absolute error of 121.45 seconds (p < .05). Similarly, 
when the kiosk is positioned at the front of the queue we 
can correct the crowd estimation by adding 1.59 minutes to 



each estimation and use a sliding window of 8 minutes 
(Figure 11), achieving a mean absolute error of 126.26 
seconds (p < .05). Thus, our system can make predictions 
with an error of about 2 minutes after calibration and 
optimisation. 

 
Figure 11. For varying sliding window length (x-axis) we 

calculate the error in our system’s prediction (y-axis). The 
dashed line indicates the window length that produces the 
smallest error. Blue: assuming kiosk is at the front of the 
queue. Green: assuming kiosk is at the back of the queue. 

Interview and Survey Results 
During Study 2 we interviewed (N=27) and collected 
survey answers (N=24) from customers of the participating 
restaurants about their overall experience with the system. 
We approached interviewees as they moved away from the 
displays after they spent a few seconds looking at the 
screen, while the survey was sent through internal mailing 
lists. We inquired about the their use of the kiosks, changes 
to their decision making on where to go have lunch, their 
adopted strategies regarding the use of the system, and 
finally how the system could be improved. The consensus 
was that the concept was intriguing and useful, and 
something they would like to use frequently.  

The majority of respondents reported having used the 
kiosks multiple times and were happy with the ease and 
effortlessness of the interaction. Others stated only being 
consumers of the system by checking the estimations via 
the public displays/webpage. Participants reported that the 
queue estimations were easy to comprehend. Further, 
participants reported that they initially looked at the 
graphical representation and reverted to the textual 
representation when two or more restaurants showed the 
same amount of coloured silhouettes. Participants also felt 
that the graphical method of representing queue size 
worked well with public displays allowing for quick at-
glance information acquisition. 

As mentioned by participants in our initial on-site 
interviews before Study 2, the decision on which restaurant 
to visit was mainly influenced by proximity. However, most 
participants felt that the projected waiting time does have 
an effect when deciding the optimal period to have lunch. 
Participants stated that this decision is often based on 
personal experience, but with the deployed system they 
were able to make better informed decisions and avoid 
having to come back later. Further, restaurant proximity 

was a negotiable attribute if projected waiting time in a 
more distant restaurant was significantly lower. A waiting 
time of 5 to 7 minutes was perceived acceptable, with 
anything above that leading to reconsidering the 
destination. Ultimately, 40% of participants reported having 
changed, at least once, the restaurant or time they went for 
food. 

Participants reported mostly using personal computers to 
check the queue situation before deciding where to go to 
have lunch. The public display’s queue estimations were 
considered a valuable addition when participants forgot to 
check the queue situation beforehand. Participants reported 
changing their mind on which restaurant to go as they were 
heading for lunch, if the queue in their chosen restaurant 
was long (over 7 minute waiting time), or simply deciding 
where to go on the first encountered display. One 
participant mentioned the possibility of adding more public 
displays:   

“It would need more visibility in the hallways, so you can 
evaluate how the queues are while walking around the 
campus, without having to pick up the phone.” 

When asked about how the system could be improved, 
some participants expressed hopes that the queue 
information could be integrated to the restaurants’ front-
page.  

The importance of having a large user base was highlighted 
by one respondent:  

“More people should use it so that the information would be 
more accurate.” 

Similarly, another respondent hypothesised about the effect 
of a permanent deployment on queue sizes:  

“If it were in use in larger scale,[...], I am hoping it would 
make people notice that you can go eat earlier or later, and 
create a balance in the queues throughout the day.”  

One respondent suggested changing the UI into a map 
where people can mark where the queue is right now. Based 
on this indication the system should be able to estimate the 
waiting time assuming that queue speed is consistent. 
Another respondent suggested a native smartphone app to 
request queue size and provide recommendation based on 
personal preferences. 

When discussing about additional features, one participant 
suggested including a food rating functionality to help 
visitors decide where to have lunch. Finally, participants 
agreed that there was no need to add social networking 
features, as there are other channels to ask people when and 
where they want to go to have lunch. 
DISCUSSION 
In the New York Times article ‘Why Waiting is Torture’ 
[38], Richard Larson explains how “the psychology of 
queuing is more important than the statistics of the wait 
itself”. People’s expectations affect their feelings about 



lines, uncertainty can magnify the stress of waiting, while 
feedback on the expected wait times can conversely 
improve the experience [22]. Obtaining feedback in a 
queueing situation is extremely challenging, and thus likely 
to compound the stress associated with waiting. 

With this is mind, we set out to create a queue estimation 
system for collaborative environments where a single 
service provider is responsible for multiple service points. 
The system was trialled in a university environment where 
customers could choose amongst four separate restaurants. 
The main goal was to assess the feasibility and accuracy of 
our system in its projection of waiting time, and to establish 
whether this would help customers make an informed 
decision on where to eat. Providing wait time projections in 
restaurant settings can be difficult and expensive to realize 
using automated tools such as sensor networks or machine 
vision based systems [18,29]. For this reason, we wanted to 
investigate the feasibility of using the actual people in the 
queue, the crowd, as providers of waiting time estimations. 
We now assess our system in terms of the following 
criteria: 

x Feasibility: Can crowdsourcing provide a method 
for generating reliable wait time estimations for 
service providers residing in close physical 
proximity to one another?  

x User perceptions & appropriateness: Would 
individuals be willing to contribute to such a 
crowdsourcing service, and how would they 
perceive its usefulness? 

Feasibility of Crowdsourced Queue Predictions 
One of the main focus points of this paper was to determine 
users’ willingness to input waiting time estimates. The two 
main issues with utilising crowd-contributed queue length 
estimations are: i) the frequency with which inputs are 
received (i.e. does intermittency play a role in generating 
accurate predictions), and ii) the accuracy of the estimations 
that people make. 

Regarding the first point, we found that overall about 7% of 
customers are willing to input estimations. This ratio was 
sufficient for our system to generate predictions. However, 
we found that the physical location of the kiosks can 
substantially affect the number of user inputs. This became 
prominent in R4, when on day 13 (Figure 7) the kiosk was 
moved to a location with better visibility, increasing the 
number of user inputs considerably. While a higher number 
of inputs will naturally improve the reliability of the 
estimation, larger queues can also make it more difficult for 
customers to correctly estimate the queue size (as seen in 
Figure 10).  

As for the second point, a key pitfall of any crowdsourcing-
based system is the reliability of the contributed data [8]. 
The data received from customers of the restaurants are 
subjective and, as demonstrated in Study 1, the estimates 

are biased depending on the position on the kiosk relative to 
the queue. Specifically, Study 1 showed that participants 
who provided estimations at the back of queue 
overestimated the waiting time, while those at the front of 
the queue underestimated the waiting time. Carmon & 
Kahneman [6] have noted that positive emotions (like 
finally leaving the queue) can influence people’s view on 
their queuing experience towards a more positive 
perspective. Therefore, this can explain why participants in 
our study underestimate queue waiting time behind them 
after they had been served. On the contrary, those who just 
joined the queue may be pessimistic and therefore 
overestimate the waiting time. Further, we note that our 
presented approach is better suited for collaborative service 
environments, which customers visit frequently (e.g., 
campuses, industrial complexes). For locations in which 
there is a lower ratio of customers that visit frequently (e.g., 
large malls), it may be useful to provide users with some 
hints to help them make a more informed estimate (e.g., 
average time to serve a customer). 

Crucially, the bias we identified in people’s estimation can 
be corrected automatically, and we showed how this can 
lead to a substantial improvement in our system’s accuracy, 
ultimately minimizing its error to approximately 2 minutes. 
This result improves on previous findings on automatic 
waiting time estimations using mobile phones, which have 
reported 2-3 minutes mean absolute error [4]. Even when 
considering our arbitrarily chosen 15 minute sliding 
window, the accuracy was only a few seconds worse in 
both the back and the front of the queue (Figure 11). 
Improvements to our system can potentially decrease this 
mean absolute error even further. For instance, by providing 
users with a suggestion or a default value based on current 
estimations can further lessen the initial barrier for 
contribution. This in turn would lead to more inputs and 
potentially higher overall accuracy. The estimations could 
also be improved by filtering out inputs that deviate 
significantly from the system suggestion within a certain 
period of time since the last input. 

In summary, while improvements can be made to our 
system regarding the user interfaces and the calculation of 
the estimations, we find that crowdsourcing waiting time 
estimations is realistic, and relatively accurate.  
Shaping User Perceptions 
Norman claims that one of the major determinants of 
emotional unhappiness is fear of the unknown and 
uncertainty [27], and not knowing how long the wait time is 
can be stressful for students and teachers trying to get to 
class on time. Therefore, following guidelines from 
previous research [22,27], we took a slightly pessimistic 
view on the predictions provided to people on the web page 
and public displays: the queue length, represented by the 
silhouette figures (Figure 4), always displayed an 
overestimation of the waiting time instead of an 
underestimation (e.g., if the current estimated queue waiting 



time was 10 minutes, then 4 silhouettes would appear 
coloured instead of 3). This is why major theme parks such 
as Disney typically overestimate wait times for rides: guests 
are pleasantly surprised when they get to rides ahead of 
schedule, and this positive affective response is projected to 
the entire queuing experience (this is known as the serial 
position effect [27,30]). 

As a result, feedback during participant interviews showed 
that the system in general was regarded positively, and 
respondents felt that this type of system can help reduce 
waiting times. This is crucial since any impression (or halo 
effect [26]) created early in a service encounter will bias the 
rest of the interaction. Previous literature on perceived 
quality in the service sector and customer happiness clearly 
shows that the largest payback for effort spent in improving 
the interaction occurs from improving the perception of the 
early stages of the interaction, i.e. reducing the waiting time 
[22]. The effect of our system is that it becomes the first 
impression instead of the end of a long queue. Thus, before 
people arrive at the restaurant they already have certain 
expectations about the queue length and their options 
regarding visiting other restaurants. 

Managing the Queuing Experience 
We have considered a specific type of queuing 
environment, a collaborative queuing environment, which is 
a recurring phenomenon in large shared spaces such as 
hospitals, schools, industrial complexes, etc. We argue that 
in such settings, where individual service points are in close 
physical proximity, they do not compete for customers, and 
hence can be motivated to adopt a customer-driven queuing 
system that helps customers answer the question: should I 
wait in the line for this restaurant, or spend an extra 3 
minutes walking to the closest alternative around the 
corner? 

Our studies show that crowdsourcing can make 2 
contributions. First, it can provide reliable data, and second 
it can reduce unoccupied time, which can be beneficial in 
multiple ways. 

First, our results show that crowdsourcing is a feasible, 
accurate, and reliable way of obtaining waiting time 
estimations from people in the queue. Subsequently, the 
obtained estimations can help people make the informed 
decision to either visit the service point closest to them, or 
to try a more distant service point with a shorter projected 
waiting time. Our respondents confirmed that having access 
to approximate queue information is useful and that they 
would like to use this type of system frequently, however 
whether the projected waiting time would affect their 
decision on which restaurant to have lunch in varies for 
each individual. The decision to go to a farther restaurant 
would be acceptable in case of very long queues, even if it 
meant that the total time expended might be longer than 
staying in the original restaurant. 

Second, our system can act as catalyst to motivate 
individuals to try their luck at a different establishment. 
While it may even take them more time to travel and get 
served at a different establishment, previous work has 
shown that in fact this could be beneficial. Specifically, 
previous research has shown that unoccupied waiting time 
feels longer than occupied waiting time [35], as was 
recently documented, for example, at Houston airport [38]. 

In a collaborative service environment, through 
crowdsourcing, it becomes possible to collect and visualise 
relevant information, and as such encourage people to get 
moving. Because our system removed the factor of 
uncertainty by showing how long the queue in the next 
restaurant is, customers could safely make the decision to 
better occupy their time by walking to another restaurant 
instead of waiting in the queue, doing nothing. 

Limitations 
We acknowledge multiple limitations with our approach. 
First, the system can have periods where there are no inputs 
during the considered sliding window, which results in the 
system not being able to provide estimations. However, this 
mostly happened in periods of low restaurant activity when 
the usefulness of queue estimations is also low. Second, in 
some cases we experienced issues with the positioning of 
the kiosk. Particularly for R4 it was difficult to find an 
optimal location which had power, WiFi coverage, and high 
visibility to the customers. Appropriate positioning of the 
kiosk is crucial to avoid low number of inputs, which in 
turn leads to less accurate estimates. Third, we only had 
access to daily sales from the till data, rather than receipt 
logs or more granular sales data. This meant that we could 
not use this data to improve the estimation calculations or 
test the system’s resilience to noisy input. Fourth, the scale 
used in the kiosks was capped to 15 minutes. While this 
was based on observations in the restaurants prior to the 
deployment, we acknowledge that an adapting scale would 
be better suited to accommodate potential influx in number 
of customers. Finally, in order for customers to provide 
accurate estimations they need to able to see the whole 
queue. This can become an issue when the queue, for 
example, wraps around a building. 
CONCLUSION 
We have presented a system that allows people waiting in a 
queue to contribute their subjective estimation on the queue 
length. This crowdsourced approach can help other 
potential customers make an informed decision on which 
service provider to visit, based on their personal 
preferences, on projected waiting time, distance to service 
provider, etc. By trialling the proposed system for 19 days 
in a university setting using four restaurants as case studies, 
we were able to show that crowdsourcing is a viable 
method of providing waiting time estimations. Results show 
that while customers’ position in the queue affects their 
estimation on the waiting time, this bias can be corrected to 
provide more accurate estimates. In addition, by carefully 



selecting the sliding window size during which waiting time 
predictions are made, accuracy can be further improved, 
regardless of whether the input is collected near the front or 
the back of the queue. Qualitative results from the field trial 
confirm that restaurant customers felt the system was 
usable, accurate, and helped create a more positive waiting 
experience. 

In the future we will focus on understanding how such a 
system can influence human behaviour regarding service 
provider selection. We will also experiment with methods 
to make the system more robust against misinformation 
from potentially malicious crowd members, and attempt to 
minimize estimation error. 
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