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1. INTRODUCTION

In this article, we discuss algorithms for the solution of generalized eigenvalue prob-
lems with skew-Hamiltonian/Hamiltonian structure. We are interested in the compu-
tation of certain eigenvalues and corresponding deflating subspaces. In this work, we
deal with the following algebraic structures [Benner et al. 2002]. As a notational con-
vention, we use calligraphic letters for block matrices and standard letters for ordinary
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matrices. Moreover, we denote by R[A]"*** and C[A]*" the rings of polynomials with
coefficients in R**" and C**", respectively.

Definition 1.1. Let J := [_01 {)"], where I, is the n x n identity matrix. For brevity of

notation, we do not indicate the dimension of the matrix J and use it for all possible
values of n.

(i) A matrix H € €22 is Hamiltonian if (HT)¥ = HJ.
(i) A matrix S € C2<%" is skew-Hamiltonian if (ST = -8.7.
(iii) A matrix pencil AS — H € CJ*"*% is skew-Hamiltonian/Hamiltonian if S is
skew-Hamiltonian and H is Hamiltonian.
(iv) A matrix S € C***%" is symplectic if SJSH = 7.
(v) A matrix i € T2 is unitary symplectic f UJUT = J and UU = b,

Note that a similar definition can be given for real matrices. As a convention, all fol-
lowing considerations also hold for real skew-Hamiltonian/Hamiltonian matrix pencils.
Then, all matrices -Z must be replaced by T all (skew-)Hermitian matrices become
(skew-)symmetric, and unitary matrices become orthogonal. More significant differ-
ences to the complex case are explicitly mentioned.

Skew-Hamiltonian/Hamiltonian matrix pencils satisfy certain properties, which we
will review briefly. Every skew-Hamiltonian/Hamiltonian matrix pencil can be writ-

ten as
A D B F
*S‘HZA[E AH]_[G —BH}

with skew-Hermitian matrices D, E and Hermitian matrices F, G. If Ao is a (general-
ized) eigenvalue of AS — H, so is also —io. In other words, eigenvalues which are not
purely imaginary, occur in pairs. For real skew-Hamiltonian/Hamiltonian matrix pen-
cils, we also have a pairing of complex conjugate eigenvalues (i.e., if Ay is an eigenvalue
of 1S — H, so are also &g, —ig. —Ao). This leads to eigenvalue pairs (Lo, —Ao) if  is purely
real or purely imaginary, or otherwise to eigenvalue quadruples (Ao. 20, —20, —Xo).

The structure of skew-Hamiltonian/Hamiltonian matrix pencils is preserved under
J-congruence transformations; thatis, A\S —H :=J PH 7T (LS — H)P with nonsingular
P is again skew-Hamiltonian/Hamiltonian. If we choose P unitary, we additionally
preserve the condition of the problem. In this way, there is hope that we can choose
a unitary J-congruence transformation to transform 1S — H into a condensed form
which reveals its eigenvalues and deflating subspaces. A suitable candidate for this
condensed form is the structured Schur form; that is, we compute a unitary matrix Q
such that

H 7T [ S Sz Hi, Hyp
Qg (AS—H)Q—A[ ; s{{]‘[ ; —H{{]

with the subpencil 181; — Hi1 in generalized Schur form, where S;; is upper triangular,
H;1 is upper triangular (upper quasi-triangular in the real case), S12 is skew-Hermitian,
and Hj is Hermitian. However, such a structured Schur form does not necessarily exist.
Conditions for the existence are proven in Mehl [1999, 2000] for the complex case or
in Voigt [2010] for the real case. This problem can be circumvented by embedding
AS — H into a skew-Hamiltonian/Hamiltonian matrix pencil of double dimension in an
appropriate way, as explained in Section 3.

Skew-Hamiltonian/Hamiltonian pencils are closely related to even pencils A& — A;
that is, £ = —€¥ and A = AH. Tt is easy to see that if AS — H is skew-Hamiltonian/
Hamiltonian, then J(AS — H) is even. However, the converse is not true. Ifae-Ae
C[AJf** is even and of odd dimension, then it cannot be transformed directly to
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skew-Hamiltonian/Hamiltonian structure. Instead, one has to inflate the pencil and
introduce one artificial infinite eigenvalue. Define the number r := £mod 2. Then, the

pencil
. AE—-AO0
AS—H.—J([ 0 IrD

is skew-Hamiltonian/Hamiltonian.

Usually, the eigenvalue problems that are obtained in practice are even. In this case,
we have to do the preceding transformation to skew-Hamiltonian/Hamiltonian form.
Moreover, sometimes the pencils are singular or have a higher index. Then it is often
necessary to remove the singular and higher-index parts first, so that one works with
a well-behaved eigenvalue problem [Byers et al. 2007; Briill and Mehrmann 2007].

Throughout this article, we denote by A_(S, H), Ao(S, H), AL(S,H) the set of fi-
nite eigenvalues of AS — H with negative, zero, and positive real parts, respec-
tively. The set of all eigenvalues is denoted by A(S,H). Similarly, we denote by
Defl_(S, H), Defly(S, H), Defl (S, H), and Defl (S, H) the right deflating subspaces cor-
responding to A_(S, H), Ao(S, H), A,(S, H), and the infinite eigenvalues, respectively.

2. APPLICATIONS
2.1. Linear-Quadratic Optimal Control

First, we consider the continuous-time, infinite horizon, linear-quadratic optimal con-
trol problem:
Choose a control function u : [0, co) — R™ to minimize the cost functional

T
[ x@® Q S| x@)
gew=["[50]| & % || 50 Jas 8
subject to the linear time-invariant descriptor system
Ex(t) = Ax(¢) + Bu(t), Ex(0)= Ex,. (2)

Here, u : [0, 00) — R™ is a control input, x : [0, 00) — R” is the state, and L1E — A €
R[A]**" is regular, B € R*™, @ = @' € R** R = RT € R™™ § e R™™, For well-
posedness, the matrix R is assumed to be positive semidefinite.

Typically, in addition to minimizing Equation (1), the control u(-) must make x(.)
asymptotically stable. Under some regularity conditions, the application of the max-
imum principle [Pontryagin et al. 1962; Mehrmann 1991] yields as a necessary opti-
mality condition that the control u(-) satisfies the two-point boundary value problem of
Euler-Lagrange equations

() u(t)
El: x(t) jl = A[ x(t) }, Ex(0)= Exy, lmETu@®) =0
u(t) u(t) toeo

with the even matrix pencil

0 EO 0 AB
M—-A=Ar -ET 00 |—-| AT @ S |. (3)
0 00 BT ST R

Under certain stabilizability conditions, the optimal control u.(-) that stabilizes the
descriptor system in Equation (2) can be constructed via a stabilizing solution of certain
matrix equations. For the case that R is positive definite, this includes several versions
of generalized algebraic Riccati equations [Mehrmann 1991; Kawamoto et al. 1999, for
the general case with possibly singular R, one has to turn to so-called (descriptor) Lur’e
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equations [Reis 2011; Reis et al. 2015; Voigt 2015]. In all cases, the desired solution can
be determined using the deflating subspaces of A — A to the eigenvalues with negative
real parts and to some purely imaginary and infinite eigenvalues.

2.2, 'H.,-Optimization
Similar structures as in Subsection 2.1 occur in H.-optimization [Losse et al. 2008].
Consider a descriptor system of the form

Ex(t) = Ax(8) + Byw(t) + Bault),
P { 2(t) = C1x(t) + Dyjyw(t) + Dou(?), 4)
y(t) = Cox(t) + Doyw(t) + Dogu(?),

where AE — A € R[A]™™" is regular, B, ¢ R™™, C; € RP*" and D; € RP*™ for
i, j = 1,2. In this system, x : [0,00) — R" is the state, u : [0,00) — R™ is the
control input, and w : [0, 00) — R™ is an exogenous input that may include noise,
linearization errors, and unmodeled dynamics. The function y : [0, c0) — R?2 contains
measured outputs, whereas z : [0, 00) — RP?! is a regulated output or an estimation
erToT.

The Hs, control problem is naturally formulated in the frequency domain. For this
we need the space RH% ™ which consists of all real-rational C?*™-valued functions
that are analytic and bounded in the open right half-plane C*. For G € RH5X™, the
‘Hoo-norm is defined by

1Gln,, = sup Omax(G(8)) = sUp omax(Gliw)),
seCt

weR

where opax(M) denotes the largest singular value of the matrix M. In robust control,
|G|l7.. is used as a measure of the worst-case influence of the disturbances w on the
output z, where, in this case, G is the transfer function mapping noise or disturbance
inputs to error signals [Zhou and Doyle 1998]. Solving the optimal H, control problem
is the task of designing a dynamic controller

K. {E‘a?(t) = ARt + By(),
u(t) = Cx(t) + Dy(2),

with regular A\E — A € RAJVN, B e RV € e R™*N D ¢ R™*P2 guch that the
closed-loop system resulting from inserting Equation (5) into Equation (4), that is,

Ex(t) = (A+ BaDZ,Co)x(t) + By Z,CR(t) + (By + By DZ1 Da)w(®),
E#(t) = BZ,Cox(t) + (A+ BZ D3;C)Z(2) + BZy Dyyw(?), (6)
2t) = (C1 + D12 ZoDCo)x(t) + D12 ZC7t) + (D11 + D12 DZy Day)uw(®),
with Z; = (I, — Dss D)"Y, and Zy = (I, — DDy)"" has the following properties:

(5)

(i) System (6) is internally stable; that is, the solution [g;;] of the system with w = 0

is asymptotically stable, i.e., limt_,oo[;{g] =0.

(ii) The closed-loop transfer function T, from w to z satisfies T,, € RHE ™ and is
minimized in the H,-norm.

Closely related to the optimal H., control problem is the modified optimal M., control
problem. For a given descriptor system of the form in Equation (4), we search the
infimum value y for which there exists an internally stabilizing dynamic controller of
the form in Equation (5) such that the corresponding closed-loop system in Equation (6)
satisfies T, € RHE*™ with || T,y |3, < y. For the construction of optimal controllers,
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one can make use of the following even matrix pencils (see Poppe et al. [2009] for a
definition and related software)

[0 -xET-AT| o 0 -Cr
AE—A 0 -B -B, 0
©u—Ax(y)=| 0 —BF yﬂﬂgh 0 -DT |, )
0 -Bf | o o -DI
L ¢ 0 —Dy -Dyy 1,
and
T 0 —AE—-A] 0 0 -B]
AET —AT 0 ‘ -cT —¢cf o
Mr-Asn=| o —¢ yqﬂal 0 -Dy | ®)
0 —Cy 0 0 —Dyp
—Bf 0 | -Dfj -Dfy —In |

Using appropriate deflating subspaces of the matrix pencils in Equations (7) and (8),
it is possible to state conditions for the existence of an optimal H., controller. Then
we can check if these conditions are fulfilled for a given value of y. Using a bisection
scheme, we can iteratively refine y until a desired accuracy is achieved (see Losse et al.
[2008] and Benner et al. [2008b] for details). Finally, when a suboptimal value y has
been found, one can compute the actual controller. The controller formulas are rather
cumbersome and, therefore, they are omitted. For details, see Losse [2012].

2.3. H.-Norm Computation

Finally, we briefly describe a method to compute the H..-norm of an LTI system us-
ing even matrix pencils [Benner et al. 2012a, 2012b]. This norm plays an important
role in robust control or model order reduction (see Antoulas [2005], Mehrmann and
Stykel [2005], and Zhou and Doyle [1998] and references therein). Consider a descriptor
system

Ex(t) = Ax(t) + Bu(t),
y(t) = Cx(¢) + Du(t),
with regular AE — A € R[A]™", B € R*™, C ¢ RP*", D € RP*™, and state x : [0, co) —

R", control input u : [0, o) — R™, and output y : [0, o0} — RP. For such a system, the
transfer function is given by

9

G(s):=CGE-A'B+D,

which directly maps inputs to outputs in the frequency domain [Dai 1989]. Assume
that G € RHA™ and consider the even matrix pencils
0 ‘ME—-A 0 -B
—AET — AT 0 |-C T 9
0 -C |—yI, D
-BT 0 DT —yI,

It can be shown that if A\E — A has no purely imaginary eigenvalue and y >
inf,,cg omax(G(iw)), then [|Gly, > y if and only if A€ — A(y) has purely imaginary
eigenvalues. In this way, we can again use an iterative scheme to update the value of
y until a desired accuracy for the H,,-norm is achieved.
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3. THEORY AND ALGORITHM DESCRIPTION

In this section, we briefly describe the theory behind the algorithms that we will use. We
refer to Benner et al. [2002, 2007 for a detailed analysis of the algorithms. We consider
complex and real problems separately since there are significant differences in the
theory. We also distinguish the cases of unfactored and factored skew-Hamiltonian
matrices S. This is motivated by the fact that, in certain cases, a skew-Hamiltonian
matrix S admits a factorization

S=72z897z. (10)

For example, if S = [ g L?" ], then Z = [ é EOH |. The factorization in Equation (10) can be

understood as a Cholesky-like decomposition of S with respect to the indefinite inner
product (x, y) := x5 Ty, since 7 2H 77 is the adjoint of Z with respect to (-, ). We also
say that a skew-Hamiltonian matrix S is J-semidefinite if it admits a factorization of
the form in Equation (10). Hence, in our implementation, we distinguish those cases
that the full matrix S or just its “Cholesky factor” Z is given. In all cases, we apply an
embedding strategy to the matrix pencil AS — H to ensure the existence of a structured
Schur form.

3.1. The Complex Case
Let AS — H € C[A]2"*2" be a given skew-Hamiltonian/Hamiltonian matrix pencil with
J-semidefinite skew-Hamiltonian part S = 7 2H 77T Z. We split the skew-Hamiltonian
matrix iH =: N = Nj + iNs, where N; is real skew-Hamiltonian and N is real
Hamiltonian, that is:

F, G
M:[Hll Fﬂ G, =-GY, H,=-HT,

F, G
N“’:[HZ _F?ZT], G.=GY, Hy,=HT,

and F;, G;, H; e R"" for j = 1, 2. We define the matrices

v I,0 0O

Vel Iy, il looro B

yCZT[Izn —izzn} P=lo, 00| *=%" (v
0 001

When denoting by M the complex conjugate matrix of M and performing the embedding
By := diag(N, N) we obtain that

F, -F| G -G
F2 Fy | G2 G1 ]
H, —H,| FT in
Hy, H; I—FQT Fy

B = X By X, = 12)

J

{20 . JZHgT 0 _|so]_
BZ .—I:O g}, BT.—[ 0 W ’ BS = 03 —BTBZ-
It can be shown that

= XHB, X, BS:=XEBrX, BSi=XTBsX, (13)

c
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are all real. Hence,

c AS—-N 0
A'BS _ij = XCH(ABS _BJV)XC = XCH (I: 0 Ag—ﬁjl) XC

is a real 4n x 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. To compute the
eigenvalues of this matrix pencil, we can compute the structured decomposition of the
following theorem [Benner et al. 2002].

TueoreM 3.1. Let AS — N € R[A* % be a regular skew-Hamiltonian/skew-

Hamiltonian matrix pencil with S = JZT JT Z. Then there exist a real orthogonal
matrix Q@ € R?" 2" and a real orthogonal symplectic matrix U € R22" guch that
Zn Z
UTZQ=[ 11 12:|.
0 Zg»
(14)

Ni1 Nig
T T _
JQJNQ—[ . Nﬂ]

where Zy; and Zgz are upper triangular, N1 is upper quasi-triangular, and Nip is
skew-symmetric. Moreover;

jQTJT(KS—N)Q:AI:Zg2Z11 Z32Z12—Z,1F2Z22:| B [N11 lejl

0 ZT Zos 0 N
S Si2 N1 Ny
_ _ 15
10 s ]l v | e

is a J-congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil.

Proor. See Benner et al. [2002]. O

By defining
H 0
By = [ 0 _ﬁ]. B, = X' By x.,
and using Theorem 3.1, we can compute factorizations
~ Z11 2
T [ 21 212
e
~ ~ —iN —iN;
B :=gQ"JTB,Q = JgQr g7 (~iB,) Q = —iB, = [ v ]
0 —(-iMy)

where AB‘ B‘H =TT (B — B;,)Q are J-congruent complex skew-Hamiltonian/
Hamiltonian matrix pencils and kB‘ — B¢ %, is in a structured quasi-triangular form.
Then, the structured Schur form can be obtained by further triangularizing the diag-
onal 2 x 2 blocks of an BC via a J- cong‘ruence transformation. From the symmetry
of the eigenvalues it follows that A(S, H) = A(ZZ 211, —iN1). Now we can reorder the
eigenvalues of AB‘ - BC to the top in order to cnmpute the desired deflating subspaces
(corresponding to the elgenvalues with negative real parts). The following theorem
makes statements about the deflating subspaces [Benner et al. 2002].

THEOREM 3.2. Let AS — H € C[A]22" be g skew-Hamiltonian/Hamiltonian ma-
trix pencil with J-semidefinite skew-Hamiltonian matrix S = JZH2JT Z. Consider
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the extended matrices Bz = diag(Z, Z), By = diag(JZH g7, JZHJT), Bs = BrBz =
diag(S, S), By = diag(H, —H). Let U, V, W be unitary matrices such that

0 Zp
T T2
H
BrU = =
W BrU I:O 7,22] Rr,
Hiu Hiz
H
ByV = =R
WH B,V [o sz} ”

where A_(Bs,By) C A(T11211, Hi1) and A(Ti1211, H1) N A (Bs,By) = 0. Here,
211, Ti1, H11 € C™™ Suppose A_(S, H) contains p eigenvalues. If | 3;] e C™m gre
the first m columns of V, 2p < m < 2n — 2p, then there are subspaces L and Lg such
that

range V1 = Defl_(S, H) + .1, L; € Deflg(S, H) + Deflo(S, H),

range Vz = Defl (S, H) + La, Ly € Deflo(S, H) + Deflo(S, H).

If A(T11 211, Hi1) = A_(Bs, By), and [g; 1, { w; | are the first m columns of U, W, respec-
tively, then there exist unitary matrices Qu, Qv. Qw such that

Uy =I[P; 01Qu, U:=1[0 P;lQu,
Vi=I[P; 01Qy, Vo=1[0 PJ1Qy,
W1 =[Py 01Qw, W:=1[0 PylQw,

and the columns of Py, and P_‘J,r form orthogonal bases of Defl (S, H) and Defl,(S, H),

respectively. Moreover, the matrices Py, Pg , Py, and PVT, have orthonormal columns
and the following relations are satisfied:

2Py = PjZn, JZRJTP; = PyTn, WPy = Py,
2P} = Pl Zas, JZHJTP) = PyTos, HPy = —Pj Has.
Here, Zy;,, T, and Hy, k = 1, 2, satisfy AT Z1, Hip) = ATo9 709, Hy) = A_(S, H).
Proor. See Benner et al. [2002]. O

If the matrix S is not given in factored form, we can use the following algorithm for the
computation of the deflating subspaces [Benner et al. 2002]. The other algorithms are
similar; however, for brevity we refer to Benner et al. {2002, 2007].

Now we present the algorithm for the computation of the structured matrix factor-
ization in Equation (16).

Now, the eigenvalues of AS — A are determined by the diagonal 1 x 1 and 2 x 2 blocks
of S;; and Nj;. Next, we consider an eigenvalue reordering routine in order to move
the eigenvalues with negative real part of a skew-Hamiltonian/Hamiltonian pencil to
the leading principal subpencil.

3.2. The Real Case

We also briefly review the theory for the real case, which has some significant differ-
ences compared to the complex case. For a detailed description, we refer to Benner
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ALGORITHM 1: Computation of Stable Deflating Subspaces of Complex Skew-Hamiltonian/
Hamiltonian Matrix Pencils in Unfactored Form.

Input: A skew-Hamiltonian/Hamiltonian matrix pencil AS — H e C[x]22",
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil
AB; — B3, elgenvalues of LS — H, orthonormal basis P, of the deflating subspace
Deﬂ (S, H), as in Theorem 3.2.
1: Set N = iH and determine the matrices B%. B as in Equations (13) and (12), respectively.
Perform Algorithm 2 to compute the facLUrlzatlon

_ 7AT 7T _ S Sz

=JQ J B;Q= [ 0 Slrl].
== Vi J\u"-_g
By =7Q" 7B Q= ["U“ ,\,‘T} j

S W |

(16)

where Q is real orthogonal, S;; is upper triangular and A, is upper quasi-triangular.
2: Apply the QZ algorithm [Golub and Van Loan 1996] to the 2 x 2 diagonal blocks of the

matrix pencil AS;; — Vi1 to determine unitary matrices s Q1. & such that

Q4S511@Q:, @IN11@Q, are both upper triangular. Define O := diag (Q;, @) and set

B, =J0o"JTB;0, B =Jo"JTEQ.

3: Use Algorithm 3 to determine a unitary matrix O such that

SH 2T 7 S Sz
senraa- [ &

~ H H
JOH T (-iBy) O = [ 0 _ﬁ?,l]

where Sj;, H 11 are upper triangular such that A _ (BC —18 ) is containedin the spectrum of
the 2p x 2p leading principal subpencil of AS;; — H1.

4: Set V = [, 0] XCQQQ[%"] and compute Py, an orthogonal basis of range V, using any
numerically stable orthogonalization scheme.

et al. [2007]. Let AS — H € R[A]?**2" be a skew-Hamiltonian/Hamiltonian matrix pen-

cil with 7-semidefinite skew-Hamiltonian part S = J27 77 Z where Z = [ﬁ: 2; 1,

H=I Z jT]. We introduce the orthogonal matrices

V= L2 B By yp
_IZn I2n

with P as in Equation (11). Now we define the double-sized matrices

o= (39

g ._[J27I" 0 _[707[7 07

TH= o JZTgT(7|lo g7zl 0 )"
Bs :[gg]:sﬂsz
BH:ZIZ’)(-)(_(,)HjI.
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ALGORITHM 2: Computation of a Structured Matrix Factorization for Real Skew-
Hamiltonian/Skew-Hamiltonian Matrix Pencils in Unfactored Form.

Input: A skew-Hamiltonian/skew-Hamiltonian matrix pencil AS — A € R[A]22",
Output: A real orthogonal matrix @ and the structured factorization in Equation (15).
1: Set Q@ = I,. Reduce S to skew-Hamiltonian triangular form, i.e., determine an orthogonal
matrix @, such that

. T 7T _[Su Si2
S =T SQ1—[0 S{l]

with an upper triangular matrix S1;. Update N := QT 77N Q;, Q := QQ;. This step is
performed by applying a sequence of Householder reflections and Givens rotations in a
specific order, see Benner et al. (2002] for details.

2: Reduce NV to skew-Hamiltonian Hessenberg form. Determine an orthogonal matrix Q; such
that

P T 7T _ Sll SIZ
s:=g0l7 SQI_[O Sﬂ.

._ 70T 7T _ | Nu Nz
N:i=Jgo1J NQ1—[0 N;[‘1:|

where Si; is upper triangular and Ny is upper Hessenberg. Update Q := QQ;. This step is
performed by applying an appropriate sequence of Givens rotations to annihilate the
elements in A in a specific order without destroying the structure of S, for details see
Benner et al. [2002].

3: Apply the QZ algorithm to the matrix pencil AS;; — Ni; to determine orthogonal matrices
@ and @, such that @ S1; @ is upper triangular and Q2T N1, @, is upper quasi-triangular.

Set Q, := diag(Q:, @) and update S := 7QT JTSQ, N := JQT JTNQy, Q == QQ1.

Furthermore, we define

Zun 0 Zip 0O
r . T | 0 Zy 0 Zyp
Byi=alBzX=| o 01, %
0 Zoy 0 Zy
= X8, =7 (By) JT,
By : = XTBsX, = 7 (B3)" J7 8By,
0 F| O G
i FolG 0
H o|-FT 0

It can be easily observed that the 4n x 4n matrix pencil 155 — Bj, is again real skew-
Hamiltonian/Hamiltonian. For the computation of the eigenvalues of AS —H, we apply
the following structured matrix factorization, which is also often referred to as gener-
alized symplectic URV decomposition [Benner et al. 2007].

THEOREM 3.3. Let .S — H € R[A]?"*?" be a skew-Hamiltonian/Hamiltonian matrix
pencil with S = JZT JT Z. Then there exist orthogonal matrices Q1, Qs and orthogonal
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ALGORITHM 3: Eigenvalue Reordering for Complex Skew-Hamiltonian/Hamiltonian Matrix

Pencils in Unfactored Form.

Input A regular skew-Hamiltonian/Hamiltonian matrix pencil AS — H € C[A]***# of the form

[0 sH] H= [g _Ju), with upper triangular S, H.

Output A unitary matrix Q and the transformed matrices 7 Q¥ 77SQ, 70 7THQ which
have still the same triangular form as S and H, respectively, but the eigenvalues in
A _(S, H) are reordered such that they occur in the leading principal subpencil of
JHITT (WS - H) Q.

1: Set Q = I,,. Reorder the eigenvalues in the subpencil AS — H.

a) Determine unitary matrices @, @ such that S := Q1S@,, H := @ HQ, are still upper
triangular but the m_ eigenvalues with negative real part are reordered to the top of
AS — H. Set Q; := diag (®;, @) and update Q := QQ,;.

b) Determine unitary matrices @, @» such that S := Q¥SQ,, H := @ H@, are still upper
triangular but the m. eigenvalues with positive real part are reordered to the bottom of
AS — H. Set Q; := diag(®,. @) and update Q := QQ;.

2: Reorder the remaining n— m, + 1 eigenvalues with negative real parts which are now in the
bottom right subpencil of AS — H. Determine a unitary matrix Q; such that the eigenvalues
of the top left subpencil of LS — ‘H with positive real parts and those of the bottom right
subpencil of A§ — H with negative real parts are interchanged. Update Q := QQ;.

symplectic matrices Uy, Uy such that

T 7 7y, | T Tie
Ql(jz j )ul—- 0 T22:|’
T [ 2y Zyy
MZ ZQz - i O ZQZ], (17)
T [ Hin Hie
Q]_HQ2— | 0 sz]»

with the formal matrix product T1_11H11Z1_11Z2_2TH27;T2_2T in real periodic Schur form
(Bojanczyk et al. 1992; Hench and Laub 1994], where Ty, Z11, Hi1, T, 22, Zgz are upper
triangular and H 99 IS upper quasi-triangular.

Proor. The proofis constructive; see Benner et al. [2007]. O

By using Theorem 3.3 (with the same notation), we get the following factorization of
the embedded matrix pencil AB; — B}, with a factored matrix B5. We can compute an

orthogonal matrix O and an orthogonal symplectic matrix i such that

[Ty, 0|-T% 0 ~ .
o B Z11 0 Zup | _. [311 {12]
2 0 ’1"‘1 0 L0 29[
- 0 o s 2 (18)
[ OT Hyi| 0 Hip N
~ ~ —H, 0 | H 0 H H
T 7T pr & 22 2112 — 11 /ti2
T B = | g _.[ o Hﬂ]‘
0 0 |-HL o
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where O = PT[J%J 0 1P, U= PT[M1 2]73. From the condensed form in Equa-
tion (18), we can immedlately get the eigenvalues of .S — H as

A H) = A(ZL 1, Fin) = +i AT Hn 25 257 HETT). (19)

Note that all matrices of the product are upper triangular except HJ, which is up-
per quasi-triangular. Hence, the eigenvalue information can be extracted directly from
the diagonal 1 x 1 or 2 x 2 blocks of the main diagonals. Note that the finite, sim-
ple, purely imaginary eigenvalues of the initial matrix pencil correspond to the pos-
itive eigenvalues of the generalized matrix product. Hence, these eigenvalues can be
computed without any error in their real parts. This leads to a high robustness in
algorithms that require these eigenvalues (e. g., in the H.,-norm computation [Ben-
ner et al. 2012a)]). However, if two purely imaginary eigenvalues are very close, they
might still be slightly perturbed from an imaginary axis. This essentially depends on
the Kronecker structure of a close-by skew-Hamiltonian/Hamiltonian matrix pencil
with double purely imaginary eigenvalues. This problem is similar to the Hamiltonian
matrix case; see Mehrmann and Xu [2008].

To compute the deflating subspaces we are interested in, it is necessary to compute
the structured Schur form of the embedded matrix pencils A8, —B},. This can be done by
computing a finite number of similarity transformations to the subpencﬂ AHZQZH —Hu

to put Hy, into upper quasi-triangular form. That is, we compute orthogonal matrices
Qs, Q4, Us such that

Hu = Q§ﬁ11Q4, 2y = U§§11Q4, Zoyg = H3T2~2293,

where Zi1, Zsz are upper triangular and H;; is upper quasi-triangular. By setting
Q= Q[Q‘1 oL U = U[ 3], Zg = U3TZ~12Q3, and Hiz = Q§ﬁ1zQ3 we obtain the
structured Schur form of ABy — B}, as AB; — B, with By = J7(B;,)T 7T B, and

Sr . 2 TrrA_ | 211 212
B, =u BZQ_[ A 222],

. Hi H
=JQTJTBHQ=[ i ]

Now we can reorder the elgenvaiues of AB’ B’ to the top in order to compute the
desired deflating subspaces, which is s1m1lar to the complex case. Then, for the deflating
subspaces, we find a similar result as Theorem 3.2, which we do not state here for
brevity.

If the matrix S is not given in factored form, we need the following slightly modified
version of Theorem 3.3 from Benner et al. [2007].

TuEOREM 3.4. Let oS — H € R[A]2™*?" be a skew-Hamiltonian/Hamiltonian matrix
pencil. Then there exist orthogonal matrices @1, Qg such that

ofsgo,J” = S(;l ?ﬁ ] (skew-Hamiltonian),
1
T T [ Th1 Tho o
JQ5 T 8Qg = 0o 7T |= T (skew-Hamiltonian,), (20)
L 11
T _ [ Hiy Hip
Ql HQ2 - i 0 H22 i|;
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with the formal matrix product S;11H11T1_11H2€ in real periodic Schur form, where
S11, Th1, Hi1 are upper triangular and HZT; is upper quasi-triangular.

Proor. The proof is done by construction; see Benner et al. [2007]. O

With the notation of Theorem 3.4, we can compute an orthogonal matrix O such that

S11 0 |S12 O
- ~ 0 Tu| 0 Ty (S S
T 7T por 55 _ 12 | | S o
JQ T BsQ = WO =0 51711]
L0 o]0 TE -
0 Hpy| 0 Hpl
- ~ | =HL 0 | Hy 0 Hu H
T 7T ar 5 _ 22 | 12 vV . 11 L12
JETBC=1"03""0"0 Hy [ 0 —Hfl]'
. 0 o0 |-HL o |

with @ = PT[7 Q(‘)ﬂ 902 ] P. The spectrum of AS — H is given by

f
A(S, H) = +iy/ A(ST Hu T  HE)

which can be determined by evaluating the entries on the 1 x 1 and 2 x 2 diagonal blocks
of the matrices only. To put the matrix pencil formed of the matrices in Equation (21)
into structured Schur form, we have to triangularize 1S;; — Hi1; that is, we determine
orthogonal matrices Q3 and Q4 such that

Su = Qfgu Q3, Huii= QZﬁu Q3
Qa 0]

are upper triangular and upper quasi-triangular, respectively. By setting @ = Q[ 0 0
S1g =0T S12Q4, and Hyp = QZﬁu Q4, we obtain the structured Schur form as

~; Si1 8
By :=7JQ"J"BsQ=| ' oF |
0 S,
B :=JQ"J"B,Q = [HO“ N ]
11

By properly reordering the eigenvalues, we can compute the desired deflating subspaces
as explained earlier. A complete algorithm description can be found in Benner et al.
[2007]. We omit the details for brevity.

4. IMPLEMENTATION DETAILS
In this section, we focus on implementation details of the algorithms outlined earlier.

4.1. General Remarks

Our subroutines are written by employing the rigorous implementation and documen-
tation standards of the Subroutine Library in Control Theory (SLICOT!); see Working
Group on Software (WGS) [1996a, 1996b]. The parameters of each SLICOT routine can
be classified as follows:

—mode parameters,
—input/output parameters,
—tolerances,

Thttp://slicot.org/.
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Hamiltonan skew-Hamiltonian
ey dig dy2 diz - * % djp diz ...
€1 ez dyg dog - .- ey *x * dog ...

DE= |e3; e3y e33 d33 --- DE= leg e3a *

Fig. 1. Storage layout for the (skew-)symmetric submatrices D and E.

—workspace,
—error/warning indicator.

Mode parameters specify the provided functionality with regard to output results and
the methods used for the computations. Input/output parameters are usually the di-
mension of the involved matrices and the matrices themselves with their leading di-
mensions. The error indicator INFO tells the user if an illegal value was used as input
(INFO returns negative values) or whether an error occurred during program execu-
tion (INFO returns positive values). A warning indicator IWARN informs the user about
possibly unreliable or inaccurate results or additional information about the results.

4.2. Storage Layout

Since Hamiltonian and skew-Hamiltonian matrices have certain block structures, we
use a packed storage layout proposed in Benner et al. [2000] to avoid saving redundant

data. More specifically, if a real 2n x 2n Hamiltonian matrix H = [2 —ZT ] is given, we

save the submatrix A in a conventional n x n array A, the symmetric submatrices D
and E are stored in an n x (n + 1) array DE such that the upper triangular part of D is
stored in DE(1:n,2:n+1), and the lower triangular part of E is stored in DE(1:n,1:n).
The skew-symmetric parts of a skew-Hamiltonian matrix are similarly stored with the
notable difference that the parts containing the diagonal and the first superdiagonal
of the array DE are not referenced. See also Figure 1 for an illustration.

Similarly, because every orthogonal or unitary symplectic 2n x 2n matrix has the

block structure U = [ f{}z gf ], we only store the matrix U; in an n x n array U1 and the

matrix Us in an n x n array U2.

A similar storage format is also applied to complex skew-Hamiltonian or Hamiltonian
matrices. In contrast to the real case, for skew-Hamiltonian matrices, also the parts
containing the diagonal and the first superdiagonal of the array DE are referenced.

4.3. Panel Blocking for Larger Problems

The problems considered here are usually based on applying sequences of Givens ro-
tations. When updating the involved matrices, we successively have to transform the
corresponding rows and columns in each step. However, for larger matrices, this kind of
transformations can become very inefficient due to Fortran’s memory and cache man-
agement. Fortran uses a column-major memory layout; that is, elements of a column
are internally stored one after the other. On the other hand, the distance in the internal
memory between two successive elements in a row is exactly the leading dimension of
that array. Therefore, rows can only be put into the cache memory by caching also the
remaining parts of the columns that contain elements of the rows under consideration.
For larger arrays, this easily leads to chunk sizes that no longer fit into cache memory.
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] N\

perform
column

transformations
in each step

N

T { A
T block size NB

perform transformations remaining
on diagonal block smaller block
separately

Fig. 2. Panel blocking technique for an upper triangular matrix.

Therefore, we store the information of a certain number of Givens rotations and apply
the row transformations only on panels of block size NB in order to better exploit the
data locality.

An example for such a panel update is depicted in Figure 2. It illustrates the blocking
technique for an update of a triangular matrix. Updates on columns are always directly
applied after the generation of the Givens rotation, whereas rows are split into certain
subpanels of maximum block size NB. Note that updates on the diagonal block are
done separately because then the remaining parts of the rows have equal size and can
therefore be easily decomposed into subblocks. We note that each part of the code has to
be blocked in a different way. This is due to different matrix structures or dependencies
of the updates and generation of the next Givens rotations. Therefore, sometimes parts
of rows have to be updated in each step. We have developed blocked versions for
some of our codes, and we will compare them with the unblocked versions in Section 5.

4.4. Overview of the Implemented Fortran Subroutines

Table I contains a brief overview of the main algorithms that have been implemented
along with their corresponding Fortran subroutine names. Full details of the individual
interfaces and the structure of the call graphs of the driver routines may be found in
the user manual that accompanies the software [Benner et al. 2015].

5. NUMERICAL RESULTS

In this section, we present some numerical results of our implementations. The tests
have been performed on a 2.6.32-31-generic Ubuntu machine with Intel®Core™2 Quad
CPU Q9550 with 2.83GHz in each of the four cores and 8GB RAM. All codes have
been compiled using gfortran with the optimization level -02 (safe optimizations). For
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Table I. Overview of the Implemented Fortran Routines

Fortran routine | Algorithm description ) I
ZGHFDF Co_mputing the eigenvalues and stable deflating subspaces of a
complex skew-Hamiltonian/Hamiltonian pencil (factored version)
DGHFST Computing the eigenvalues of a real skew-Hamiltonian/skew-Hamiltonian
pencil (factored version)
ZGHFXC Moving eigenvalues with negative real parts of a complex

skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the
leading subpencil (factored version)

ZGHUDF Computing the eigenvalues and stable deflating subspaces of a complex
skew-Hamiltonian/Hamiltonian pencil (unfactored version)
DGHUST Computing the eigenvalues of a real skew-Hamiltonian/skew-Hamiltonian

pencil (unfactored version)

Moving eigenvalues with negative real parts of a complex

skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the

leading subpencil (unfactored version)

DGHFDF Computing the eigenvalues and stable deflating subspaces of a real
skew-Hamiltonian/Hamiltonian pencil (factored version)

DGHURV Computing the eigenvalues of a real skew-Hamiltonian/Hamiltonian pencil
via generalized symplectic URV decomposition (factored version)

DGHFYR Reducing a special real block (anti-)diagonal skew-Hamiltonian/Hamiltonian

pencil in factored form to generalized Schur form (factored version)

DGHFXC Moving eigenvalues with negative real parts of a real

skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the leading

subpencil (factored version)

DGHUDF Computing the eigenvalues and stable deflating subspaces of a real

skew-Hamiltonian/Hamiltonian pencil (unfactored version)

DGHUTR Computing the eigenvalues of a real skew-Hamiltonian/Hamiltonian pencil

[ (unfactored version)

g DGHUYR Reducing a special real block (anti-)diagonal skew-Hamiltonian/Hamiltonian

pencil in factored form to generalized Schur form (unfactored version)

DGHUXC Moving eigenvalues with negative real parts of a real

skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the leading

subpencil (unfactored version)

ZGHUXC

better handling of the codes, MEX gateway functions have been written for calling the
routines from MATLAB 7.14.0.739 (R2012a). For this purpose, we also use MATLAB’s
built-in MKL BLAS and LAPACK libraries, which are optimized for using multicore
architectures.

5.1. Structure-Preserving Computations

The most important feature of our algorithms is structure-preservation. This means
that only reductions that keep the skew-Hamiltonian/Hamiltonian structure are per-
formed. Therefore, only skew-Hamiltonian/Hamiltonian perturbations of the eigenval-
ues are possible. In particular, simple, finite, purely imaginary eigenvalues stay on
the imaginary axis as long as their pairwise distance is sufficiently large. In such a
situation, the perturbation off the imaginary axis would not lead to the formation of a
quadruple of eigenvalues, which is necessary by the Hamiltonian spectral symmetry.
In Figure 3, some of the computed eigenvalues by the QZ algorithm [Golub and
Van Loan 1996] and our new method are depicted. For the tests, we used extended
skew-Hamiltonian/Hamiltonian pencils for the L,-norm computation of descriptor
systems [Voigt 2010]. The pencils are related to models for constrained mass-spring
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1 X QZ algorithm X QZ algorithm
O new method 100 O new method
— iR — iR
0.5 O x
= x 0} B 50 P
g g
0 X 8 0
X 0]
—0.5 xO
—50 o x
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R)e(:):) _10—15 Re(x) _10—12
(a) Constrained damped mass-spring system. (b) Semidiscretized Stokes equation.

Fig. 3. Computed purely imaginary eigenvalues of two skew-Hamiltonian/Hamiltonian example matrix
pencils.

systems or semidiscretized Stokes equations (see Mehrmann and Stykel [2005] and
references therein). The figure shows that the eigenvalues computed by the standard
QZ algorithm are perturbed off the imaginary axis, whereas the new method preserves
the eigenvalue symmetry. In particular, the new approach allows a reliable determina-
tion of the stable eigenvalues. If we furthermore want to compute the stable deflating
subspaces, we have to know the stable eigenvalues in advance. For the first example
(Figure 3(a)), the QZ algorithm computes more stable than unstable eigenvalues, which
is impossible by theory. Therefore, also the stable deflating subspace computed by this
method will have a too large dimension. This undesired behavior is avoided by our
method.

A second example that illustrates the superiority of our method arises in the context
of gyroscopic systems of the form

Mi(t) + Gx(t) + Kx(t) = 0 (22)

with M = MT > 0, G = —GT, and K = KT. To analyze stability of such a system, we
have to consider the quadratic eigenvalue problem

(M)2 + Gr+ K)y = 0. (23)

It can be shown that a necessary condition for Equation (22) to be stable is that all
eigenvalues of Equation (23) are purely imaginary [Lancaster 2013). A linearization
of Equation (23) to second companion form [Tisseur and Meerbergen 2001] leads to an
eigenvalue problem for the skew-Hamiltonian/Hamiltonian matrix pencil

ikp b

oM M 0 [

The example we use here is the “Rolling Tires” system from Benner et al. [2008a]
with a system dimension of n = 2697. The computed eigenvalues for both the QZ
algorithm and our method are depicted in Figure 4. For our algorithm, all eigenvalues
are determined to be on the imaginary axis, which means that the necessary stability
criterion for the gyroscopic system is fulfilled. However, for the QZ algorithm, this is not
the case. Since the QZ algorithm does not respect the skew-Hamiltonion/Hamiltonian

structure, all eigenvalues are perturbed off the imaginary axis. Some of them are also
very far away from the imaginary axis (the maximum absolute value of the real parts
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Fig. 4. Computed eigenvalues from a skew-Hamiltonian/Hamiltonian matrix pencil resulting from a lin-
earized gyroscopic system.

is 1.4836e-03). So, in contrast to the structure-preserving approach, one could think
that the necessary stability criterion is not fulfilled.

5.2. Solving Algebraic Riccati Equations

In this subsection, we use our algorithms for computing the solution of algebraic Ric-
cati equations and compare these with the results of the MATLAB function care. We
consider continuous-time Algebraic Riccati Equations (ARESs) of the form

0=Q+ATX+ XA - XGX, (24)

where A G, @ X € R"". In many problems, the matrices @ = Q" and G = GT
are given in factored form @ = CTQC, G = BR™'BT with C € R”", B € R¥",
Q=Q" ¢cRP*P and R = RT e R™™ If @ > 0, R > 0, (A, B) is stabilizable, and
(A, C) is detectable, then Equation (24) has a unique, symmetric positive semidefinite,
stabilizing solution X,.

A popular method for determining X, is to compute the stable invariant subspace

spanned by [ g; ] of the Hamiltonian matrix

A -G A _BRBT o

If U, is invertible, then X, = UU; 1 (see Abels and Benner [1999] and references
therein). Here, we use a slightly more general approach; namely, we compute the right
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Table Il. Relative Residuals of the Solution of Algebraic Riccati Equations: Comparison of the New Algorithm
with Orthogonalization via Pivoted QR Factorization (QRP), Singular Value Decomposition (SVD), and the
MATLAB Solver Care

test # | ex. # | n | m [ p l __parameters [ QRP ‘ SVD | care |

1 [ 11| 2] 1 ‘ 2 | 3.0044e-15 | 2.5749-15 [ 3.0062e-15 |
2 12 | 2 1] 2 7.3931e-16 | 3.4594e-15 | 6.5338e-16
3 13 | 4 2 | 4 2.4751e-15 | 2.4167e-15 | 3.9430e-15
4 14 | 8 2 8 2.5514e-15 | 1.5739%e-15 | 1.1924e-15
5 15 | 9 3 9 8.7957e-15 | 2.3342¢-13 | 9.3663e-14
6 16 | 30 | 3 5 | 8.8269e-12 | 4.486le-12 | 1.4481e-12
7 21 | 2 | 1 1 £ = | 9.0528e-16 | 9.5989¢-16 | 7.5037e-16
8 | 21 | 2 1 1 e=10"% [ 1.7361e-10 | 3.2218e-10 0
9 22 | 2 2 1 e=1 5.5948e-16 | 3.726le-16 | 1.1068e-15
10 22 | 2 2 1 e=10"8 1.5895e-09 | 7.7370e-10 | 2.3218e-09
11 23 | 2 1 2 =1 7.3951e-16 | 1.4259¢-15 | 1.1378e-15
12 23 | 2 1 2 e =108 2.0448e-10 | 3.7537e-11 | 6.5854e-13
13 23 | 2 1 2 e=10"% 1.6745e-21 | 4.6784e-18 | 6.8373e-20
14 24 | 2 2 2 e=1 0 1.2684e-14 | 1.1531e-15
15 24 | 2 2 2 e=10" 2.9441le-15 | 1.1608e-14 | 1.6454e-16
16 25 | 2 1 2 e=1 | 1.4121e-15 | 1.3570e-15 | 1.9343e-15 |
17 25 | 2 1 2 e=0 [ 3.6694e-05 | 1.2326e-06 | 1.2232e-15
18 26 | 3 3 3 e=1 5.8902e-15 | 3.8570e-15 | 5.7262e-15
19 26 | 3 3 3 e =10° 4.7596e+02 | 4.4341e+02 | 6.3670e+02
20 2.7 | 4 1 2 e=1 2.4085e-16 | 1.6736e-16 | 1.4054e-15
21 2.7 | 4 1 2 e=10"% 1.9697e-08 | 3.2989e-11 | 1.3429e-11
22 28 | 4 1 1 e=1 7.4186e-16 | 4.0395e-15 | 5.6954e-15
23 2.8 | 4 1 1 e=10"% 3.8032e-15 | 1.0134e-15 | 4.6214e-15
24 29 | 55 | 2 | 10 #1 1.0737e-11 | 5.7755e-12 | 2.4757e-13
25 31 | 9 5 4 3.8305e-15 | 2.6481e-15 | 3.2909e-15
26 31 [ 39 | 20 | 19 | 3.4076e-15 | 4.6692e-15 | 8.0452-15
27 32 | 8 8 8 2.9567e-15 | 2.2579e-15 | 3.7270e-15
28 32 | 64 | 64 | 64 9.8352¢-15 | 8.8604e-15 | 1.2277e-14
29 41 | 21 | 1 1 g=r=10 1.0359e-06 | 4.4380e-07 | 6.8088e-07
30 41 | 21 | 1 1 g=r=1000 2.1010e-05 | 2.1627e-05 | 6.3995¢-05
31 42 | 20 | 1 1 | =005 b=c=01, | 1.4274e-17 | 1.1291e-13 | 1.8773e-13

[B1. B21 =10.1,0.5],

1, v2l = 10.1,0.5]
32 42 [ 100 | 1 1 | a=001,b=c=10, | 1.3742e-15 | 1.2528¢-12 | 3.5524e-12

[B1. B2] = 10.2,0.3], [

[y1.721 =102,0.3] |
33 43 | 60 | 2 | 60 ¢ =30, u=4.0, 7.8279e-15 | 7.9629e-15 | 2.6545e-14

§=40.x =10

34 | 44 | 421 | 211 | 211 5.1450e-03 | 1.0845e-05 | 7.9411e-07

stable deflating subspace of the skew-Hamiltonian/Hamiltonian matrix pencil

o In 0 A -G 2nx2n
w5 0] [ 4 8 Team

which is equal to the stable invariant subspace of H.

For benchmarking, we use the examples collected in Abels and Benner [1999], which
are often difficult to solve due to ill-conditioning of the ARE or the existence of eigen-
values of M close to the imaginary axis. In Table II, the relative residuals for each
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Table Ill. Comparison of Runtimes for the Real Case (Measured in Secs.)

Eigenvalues Only Eigenvalues and Deflating Subspaces
Problem Size DGGEV | DGHUTR DGGES | DGHUDF
2 3.2480e-06 | 2.2000e-06 7.7860e-06 2.1138e-05
4 1.1510e-05 | 1.3725e-05 4.3221e-05 1.1633e-04
8 3.7886e-05 l 7.3677e-05 1.4393e-04 3.6971e-04
16 1.2640e-04 1.9300e-04 3.6360e-04 1.3859e-03
32 7.1310e-04 7.3620e-04 1.7058e-03 5.0400e-03
64 3.0412e-03 3.0708e-03 8.3355e-03 2.5425e-02
128 1.8980e-02 1.6620e-02 4.3790e-02 1.1256e-01
256 1.4190e-01 1.0272e-01 2.8654e-01 5.8121e-01
512 | 1.4790e+00 8.9793e-01 2.5960e+00 3.9449e+00
1024 | 2.2127e+01 | 1.2964e+01 | 4.8888e+01 . 4.5998e+01
2048 | 4.2508e+02 | 2.6144e+02 | 5.6186e+02 6.3338e+02
4096 | 2.9650e+03 | 2.8367e+03 4.20589+03_ | 5.5788e+03

individual problem are presented. We compare the skew-Hamiltonian/Hamiltonian
pencil approach with orthogonalization via pivoted QR factorization (QRP), Singular
Value Decomposition (SVD), and the MATLAB solver (care). To ensure comparability,
we use the same scaling technique for the ARE for both our codes and care (by calling
arescale in MATLAB). Except for one example (which care also could not solve), our
codes could compute X, in all tests. The relative residuals are most often of the same
order of magnitude. For five problems, our codes obtained better results for at least
one orthogonalization option (for tests 5, 13, 14, 31, 32, the relative residual is at least
one order of magnitude smaller than the one of care). On the other hand, care per-
formed better for six examples (8, 12, 15, 17, 24, 34). In particular, for example 17, the
difference is about 10 orders of magnitude; for the other examples (except for example
8) the difference is about one order of magnitude. Note that example 17 is difficult to
solve in the sense that the pencil AS — H has eigenvalues on the imaginary axis; that
is, even though the ARE is solvable, it is on the boundary of unsolvability. To construct
the stabilizing solution of the ARE via deflating subspaces, one has to include a certain
subspace of Defly(S, H) which is, however, neither correctly extracted by a pivoted QR
decomposition nor an SVD. On the other hand, by determining the desired deflating
subspace by a non-pivoted QR decomposition, we obtain a relative residual of 1.2232e-
15. This indicates that, for this orthogonalizaton scheme, the correct subspace was
extracted. This behavior does not, however, turn over to many of the other examples.

A similar overall picture is achieved when looking at the relative errors compared
to the analytic solution if it is known. We omit this analysis since it does not give
significantly more information. In conclusion, both approaches give results of similar
quality, even though our codes are not specifically designed for solving AREs.

5.3. Comparison of Runtimes

In this subsection, we discuss the runtimes of our codes and compare them with stan-
dard implementations included in LAPACK. The results are listed in Tables III and IV,
respectively. In Figure 5, the runtime ratios of the new codes compared to MATLAB’s
LAPACK implementations are depicted to summarize these results. In general, pure
eigenvalue computations are much faster than the computation of both eigenvalues
and deflating subspaces. The reason is that for the subspace computation, the trans-
formation matrices for the embedded pencils (of double size) are accumulated in the
final step. However, during our tests, we often observe that LAPACK routines, even
though they are faster, are not able to solve some (random) examples. Especially for
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Table IV. Comparison of Runtimes for the Complex Case (Measured In Secs.)

r o Eigenvalues Only Eigenvalues and Deflating Subspaces
Problem Size ZGGEV | DGHUST |  zGGES | ZGHUDF
[_" 2 | 7.7400e-06 | 4.7300e-06 | 2.7047e-05 4.1847e-05
4 | 2.3252e-05 | 2.2831e-05 | 5.2271e-05 9.3827¢-05
! 8 | 8.2346e-05 | 7.5673e-05 | 1.2291e-04 2.2438e-04
16 | 3.1020e-04 | 3.1190e-04 | 4.6900e-04 | 7.7210e-04
32 | 1.4953e¢-03 | 1.4844e-03 | 2.5219¢-03 3.4171e-03
64 | 8.7930e-03 | 9.0812¢-03 | 1.4392e-02 1.9041e-02
128 | 5.8440e-02 | 5.6700e-02 | 9.2550e-02 1.1988e-01
256 | 4.5301e-01 | 4.5600e-01 | 6.2856e-01 9.6518¢-01
512 | 3.4875e+00 | 7.6826e+00 | 4.6978e+00 | 1.4286e+01
1024 | 3.8185e+01 | 1.4554e+02 | 5.6904e+01 | 2.6081e+02
2048 | 4.9624e+02 | 1.2935e+03 | 8.2872e+02 2.1489¢+03
4096 | 4.8410e+03 | 1.0849e+04 | 7.7507e+03 1.7189e+04
2

—»— DGHUTR/DGGEV
—&— DGHUDF/DGGES
—@— DGHUST/ZGGEV
—+— ZGHUDF/ZGGES

Runtime ratios

4 8 16 32 64 128 256 512 1024 2048 4096
Problem size

Fig. 5. Runtime ratios of the new routines compared to LAPACK software.

larger problems, INFO = N+2 is returned, which indicates that the desired reordering
of the eigenvalues could not be successfully performed. On the other hand, our solvers
could always return meaningful results. Note that LAPACK routines can much better
exploit blocked codes of Level 3 BLAS, which is not the case for our codes since they
are algorithmically based on Givens rotations. Even though the panel blocking tech-
nique we present here gives some improvements for larger examples, there is still the
question of whether one can find better ways of blocking our codes.

There are also significant differences in the behavior of the real and complex codes.
The real codes have relatively constant runtime ratios for small and medium-size prob-
lems up to orders of about 128. Then, they increase up to order 2,048 and then decrease
again. However, for the complex codes, the runtime ratios are constant for problems
up to order 256 and get significantly slower for larger problems. The main reason for
this qualitatively different behavior is that the complex codes need significantly more
memory and also more transfers between the different levels of the memory hierarchy.
Fortunately, for larger problems, we have developed blocked codes that are able to avoid
this slowdown (see also Subsection 5.5).



24:22 P. Benner et al.

Table V. Comparison of the Errors of the Eigenvalues

Real Case Complex Case
unfactored | factored | unfactored | factored
[[10777 < kmax < 1018 0 o | 29 44
| 10 < kpax < 10717 825 805 932 926
[ 107 < kmax < 10718 155 162 39 30 |
| 10720 < kppay < 10719 6 17 0 o |
Kmax < 10720 14 16 0 o |

Table VI. Comparison of the Errors of the Deflating Subspaces

Real Case - Complex Case
unfactored | factored unfactorelL factored
10T <gq <10-0 1 [ o o | o
10712 <o <1071 o | n 0 3
108 <o <1012 82 | 96 38 62
1004 <o < 10713 900 ! 888 962 935
1018 <o <1071 8 | 5 0 | o

5.4. Factored Versus Unfactored Matrix Pencils

In this subsection, we compare the results of the previous subsection with the factored
versions of the algorithms with respect to accuracy, memory requirements, and speed.

5.4.1. Accuracy. We begin with an analysis of the obtained accuracy. We performed
tests on random skew-Hamiltonian/Hamiltonian pencils of order 40. For the factored

algorithms, we choose Z = [‘3 1(2)0] with a random matrix A. Then we can easily form

S=J2"7J Z—l:o AH]

without any rounding error. This allows a fair comparison between the codes for fac-
tored and unfactored problems. First, we analyze the accuracy of the computed eigen-
values. Therefore, we perform 1,000 random tests and compute the maximum of the
reciprocal condition numbers kyax of the matrices ;5 —H, j =1, ..., 20 for each prob-
lem. The reciprocal condition numbers define the closeness to singularity and should
be zero in theory. Thus, small values «n,ax indicate a high accuracy. We divide the com-
puted results into different classes and list the number of elements in each class in
Table V. Furthermore, we observe that, in the real case, the unfactored codes were more
accurate for 500 examples. For the complex case, this was the case for 516 examples.
We can conclude that the computed eigenvalues are similarly accurate for both types
of codes.

We also have a look at the accuracy of the deflating subspaces. Again, we perform
1,000 random tests. With the computed stable deflating subspace im Q, we measure
the error by determining the angle o between the subspaces im SQ and im HQ. In our
tests, S and H are nonsingular and thus, by the definition of a deflating subspace,
imSQ = imHQ is satisfied in theory (i.e., @ = 0). We divide the results into classes,
which are listed in Table VI. Now, the unfactored version is more accurate for 615
examples in the real case and for 592 examples in the complex case, respectively.
Therefore, we can conclude that the subspace computation is slightly more accurate in
the unfactored case.

5.4.2. Speed and Memory Requirements. We briefly compare the timing results of the
factored and unfactored codes that are listed in Table VII. A run of the factored versions
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Table VII. Comparison of Runtimes for Factored and Unfactored
Versions (Measured in Secs.)

Real Case Complex Case
Problem Size | unfactored [ factored unfactored | factored

2 | 2.1149e-05 | 3.7359e-05 | 4.1219e-05 | 7.4963e-05 |
4 | 5.3765e-05 | 9.4412e-05 | 8.9305e-05 | 1.8112e-04
8 || 3.6373e-04 | 5.1282e-04 | 2.3065e-04 | 4.2514e-04 |
16 || 1.4868e-03 | 1.8846e-03 | 7.5680e-04 | 1.1702e-03
32 || 5.9223e-03 | 7.8657e-03 | 3.2732e-03 | 5.6365e-03
64 | 2.3258e-02 | 3.1986e-02 | 1.8261e-02 | 2.8526e-02
128 1.0901e-01 | 1.4402e-01 | 1.1473e-01 | 1.9216e-01
256 || 5.7424e-01 | 7.9756e-01 | 9.2289e-01 | 1.6150e+00
512 || 3.8463e+00 | 6.1073e+00 | 1.4380e+01 | 3.3246e+01
1024 || 4.6299e+01 | 1.0119e+02 | 2.5326e+02 | 4.1394e+02
2048 || 6.0400e+02 | 9.5667e+02 | 2.0491e+03 | 3.5848e+03
4096 | 5.4444e+03 | 7.9957e+03 | 1.6688e+04 | 2.8164e+04

needs approximately 1.5-2 times as long as one of the unfactored versions. This is
simply due to the fact that also more matrix entries (usually ~50% more) have to
be updated within the factored codes. Also, this higher amount of matrices has to be
stored, which leads to an approximately 50% higher memory usage.

5.4.3. Conclusion. In conclusion, we can say that one should always use the unfactored
version of the code whenever the matrix S is explicitly given or can be formed without
any rounding errors. This is due to the lower accuracy, larger runtimes, and higher
memory usage of the factored versions. However, one might think of situations where
only the factor Z is known and it is not possible to appropriately form S due to numerical
errors. Then we still recommend using the factored versions even in the presence of
the disadvantages just mentioned.

5.5. Blocked Versus Unblocked Code

As already mentioned, the routines get relatively slow if the problem gets too large. This
is due to unoptimized cache usage. Therefore, we have implemented the unfactorized
algorithms using the panel blocking technique from Subsection 4.3. For illustration,
we generated a random example of order 2,048 and compared the runtimes of the
unblocked code with those of the blocked code for different block sizes NB. The results
can be found in Table VIII. The smallest runtimes are marked in boldface font. The
time savings can be significant. For computing the eigenvalues of a complex pencil, the
reduction in runtime can be up to 50% compared to the unblocked code. Note that there
is only a slight speedup for the subspace computation in the real case since the time-
consuming routine DGHUYR cannot be blocked. Mostly, the best timings are attained for
NB = 8; however, similar results are observed for all NB = 4, ..., 128, so the choice of NB
is flexible. An important point is that the problem must be sufficiently large in order to
benefit from the panel blocking; otherwise, one would even lose performance, especially
for small block sizes.

Finally, we also compare the performance of our blocked codes for NB = 8 with
LAPACK for problem sizes of 512 to 4,096. We refer to Figure 6 for the specific LAPACK
routines we used for our comparison and the corresponding runtime ratios. For real
problems, we can achieve good speedups compared to LAPACK. When computing only
the eigenvalues, we can achieve a speedup factor of about 3.5. When we also compute
the deflating subspaces, we still get a factor of 1.2, so we are still faster than LAPACK.
However, this is no longer the case when we consider complex problems. In this case,
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Table VIII. Comparison of Runtimes for Blocked and Unblocked Code (Measured in Secs.)

Eigenvalues Only | Eigenvalues and Deflating Subépac;
Block Size NB | real case | complex case | real case | complex case |
unblocked | 22423 [ 133272 | 582.65 2173.03 ]
1 200.91 | 922.11 546.95 1644.15
2 147.87 ! 738.48 517.41 1458.51
4 133.90 662.78 483.16 1365.91
8 132.31 657.39 466.02 1345.67
16 146.86 680.06 470.36 1383.82
32 139.47 680.46 469.58 1363.19
64 138.72 672.18 469.72 1376.00
128 || 139.44 700.46 459.48 1400.46 [
[ 256 139.62 1024.32 468.70 | 1775.13
[ 512 | 151.18 1116.98 482.61 | 1844.09
1024 216.94 1165.43 548.82 1955.30
2048 210.05 1244.88 | 555.28 | 2025.61

—%— blocked DGHUTR/DGGEV
— | =&~ blocked DGHUDF/DGGES
—@— blocked DGHUST/ZGGEV
—— blocked ZGHUDF/ZGGES

Runtime ratios

g12 1024 1536 2048 2560 3072 3584 4096
Problem size

Fig. 6. Runtime ratios of the blocked codes compared to LAPACK software for larger problem sizes.

we achieve a slowdown by a factor between 0.4 to 0.9, but the blocked codes are still
faster than the unblocked ones.

6. SUMMARY

We presented algorithms that can be used to compute the eigenvalues and deflating
subspaces of skew-Hamiltonian/Hamiltonian matrix pencils in a structure-preserving
way, which may lead to higher accuracy, reliability, and computational performance.
Applications based on matrix pencils of this structure have been introduced to show
the importance of our considerations. Moreover, we presented details of the imple-
mentation of the algorithms in Fortran 77. Numerical examples have demonstrated
the increased reliability since critical purely imaginary eigenvalues are not perturbed
off the imaginary axis (as long as their pairwise distance is large enough). This has
also allowed the safe computation of the associated stable deflating subspaces of the
pencil since the perturbation of eigenvalues from the left into the right half-plane (or
vice versa) is avoided. On the other hand, the runtimes are often higher compared
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to LAPACK routines. However, a panel blocking technique has significantly improved
performance for larger problems.
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