
Relationships: computational thinking, pedagogy of
programming, and Bloom’s Taxonomy

Cynthia C. Selby
University of Southampton

Highfield
Southampton UK

44 (0)23 8059 2611

C.Selby@southampton.ac.uk

ABSTRACT

This study explores the relationship between computational
thinking, teaching programming, and Bloom’s Taxonomy. Data is
collected from teachers, academics, and professionals, purposively
selected because of their knowledge of the topics of problem
solving, computational thinking, or the teaching of programming.
This data is analysed following a grounded theory approach. A
computational thinking taxonomy is developed. The relationships
between cognitive processes, the pedagogy of programming, and

the perceived levels of difficulty of computational thinking skills
are illustrated by a model.

Specifically, a definition for computational thinking is presented.

The skills identified are mapped to Bloom’s Taxonomy: Cognitive
Domain. This mapping concentrates computational skills at the
application, analysis, synthesis, and evaluation levels. Analysis of
the data indicates that abstraction of functionality is less difficult
than abstraction of data, but both are perceived as difficult. The
most difficult computational thinking skill is reported as
decomposition. This ordering of difficulty for learners is a reversal
of the cognitive complexity predicted by Bloom’s model. The
plausibility of this inconsistency is explored.

The taxonomy, model, and the other results of this study may be

used by educators to focus learning onto the computational thinking
skills acquired by the learners, while using programming as a tool.
They may also be employed in the design of curriculum subjects,
such as ICT, computing, or computer science.

CCS Concepts

• Social and professional topics~Computational thinking

Keywords

Computational thinking, pedagogy, programming, Bloom’s

Taxonomy.

1. INTRODUCTION
Shortages in science, technology, engineering, and mathematics
(STEM) skills are currently widespread in the work force. More
than half of employers (58%), responding to the CBI’s annual
survey, have concerns about their ability to recruit enough highly
skilled employees [6]. The Royal Academy of Engineering report,
‘ICT for the UK’s Future’ states "It is essential that a significant
proportion of the 14-19 age group understands Computing concepts
– programming, design, problem solving, usability,

communications and hardware” ([41], p. 17). The Royal Society
[42] has indicated that computational thinking, the skills necessary
for applying the tools of computer science to understanding the
world around us, is actually changing the scientific disciplines
themselves and the needs of those engaged in those disciplines.
These external pressures on education are not new. Education
policy is acknowledged by Dijkstra to be “… hardly influenced by
scientific considerations derived from the topics taught, and almost

entirely determined by extra-scientific circumstances such as the
combined expectations of the students, their parents and their future
employers …” ([12], p. 19). These pleas from industry highlight
the importance of providing opportunities for learners to acquire
knowledge, understanding, and skills associated with programming
and problem solving. This setting provides the context for an
investigation into the relationship between the teaching of
programming and its effect on the acquisition of computational
thinking skills by learners.

Specifically, this research attempts to respond to these questions:

 Is there a taxonomy of computational thinking skills?

 What beginning programming skills are most difficult

for learners to master?

 What computational thinking skills are most difficult for

learners to master?

A grounded theory approach is used to develop a model of the
relationships between Bloom’s Taxonomy, computational thinking
terms, and programming skills. This model is based on the views
of 255 participants. The majority described themselves as teachers
in areas associated with computing or computer science. They
include 39 teaching at the post-graduate level, 43 at the higher
education level, 28 at the post-16 level, 126 at a combined
secondary and post-16 level, 42 at secondary only, and 19 at

primary. An online questionnaire, a community of practice online
forum, and interviews were used to collect the data. The model was
derived using iterative processes of data collection, qualitative
analysis using NVivo data analysis software, and model
refinement.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

WiPSCE '15, November 09 - 11, 2015, London, United Kingdom

Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-3753-3/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2818314.2818315

mailto:Permissions@acm.org

This research contributes to the body of knowledge that may be
used to inform the issue of effective teaching strategies for both
programming and computational thinking. In the classroom,
teachers may employ the results of this study to redesign their own
practices to focus on the broader skills of computational thinking,

rather than the quite specific skills of mastering a programming
language. By identifying a classification of computational thinking
skills, curricula could be designed to develop those skills across
longer time spans, similar to the teaching of mathematics across
twelve years. This paper presents an analysis of this work and a
reflection on the model derived from the data analysis.

2. FRAMEWORKS
Two educational taxonomies, which form the backdrop to this
research, are Bloom’s Taxonomy: Cognitive Domain [4] and the
SOLO taxonomy [3]. An additional model specifically addresses
the digital domain, Bloom’s Digital Taxonomy [9].

These frameworks support this research in varied ways. Cognitive
processes can be ordered into taxonomies, indicating increasing
complexity [2; 4]. The tasks associated with the digital world can
be assigned to these levels [9]. Computational thinking is assumed
to be a group of cognitive processes, associated with the digital

world [20; 35; 46]. Therefore, it may be possible to order this group
of processes into a taxonomy. Successful programming tasks, also
associated with the digital world, are assumed to require some
cognitive processes [15; 24; 27]. It may be possible to order these
separate tasks and cognitive processes into a hierarchy. Even
though there is currently no agreed definition of computational
thinking [11; 21; 35; 36; 48], these works may afford structures
against which possible definitions can be measured.

Computational thinking and programming are evidenced by tasks
which, to be successful, may need the full range of cognitive
processes described in the SOLO taxonomy [7; 8]. This would
make SOLO suitable for assessing computational thinking and
programming, but not necessarily appropriate for contributing to a
search for a definition of computational thinking.

3. LITERATURE REVIEW
Because this research explores the relationships between
computational thinking, the teaching of programming, and
educational taxonomies, it is appropriate to establish an
understanding of each as distinct areas.

3.1 Defining computational thinking
One of the unanswered challenges, presented by Wing [46] in her

use of the phrase computational thinking, is the actual definition of
the term. From the more recent literature [11; 21; 35; 36; 48] it is
evident that there is still confusion over an acceptable definition for
the term.

Guzdial [21] has even suggested that a very broad definition of
computational thinking is acceptable. Such acceptance shifts the
focus away from what computational thinking is to how
computational thinking can be taught and how evidence of its
acquisition might be observed in learners. A proposed definition
of computational thinking, sufficient to support this research,
includes decomposition, abstraction, algorithm design,
generalisation, and evaluation.

Abstraction is defined as the ability to decide what details of a
problem are important and what details can be ignored [47]. In

computing, multiple layers of abstraction are often used to reduce
the level of complexity of a problem or a representation. Denning
[44] acknowledges that abstraction plays an important part in
computing, including programming. In programming, an

abstraction can be a procedure, function, or data structure. Several
participants in the workshop on the scope and nature of
computational thinking concur that computational thinking has a
focus around the process of abstraction, creating them and defining
the relationships between them [35].

Decomposition is defined as breaking down into smaller, more
easily solved, parts. It is required when dealing with large

problems, complex systems, or complex tasks. Edelson points out
that the creation of solutions requires breaking problems down into
chunks of particular functionality and sequencing the chunks [36].
Most recently, in refining his own definition of computational
thinking, Guzdial [22] includes the use of tools including
abstraction and decomposition. Decomposition is not only a
suggested component of computational thinking, but also of the
classic problem solving techniques espoused by Pólya [37].

Generalisation is a powerful component of problem solving. It
describes the ability to express a problem solution in generic terms,
which can be applied to different problems that share some of the

same characteristics as the original. This definition fits Pólya’s
description of analogy, the ability to solve a problem based on the
known solution to a similar problem [37]. The ability to recognise
parts of solutions that have been used in previous situations or that
might be used in future situations is included by Kolodner in a
definition of computational thinking [36]. These parts, or
functional pieces, can be used to solve the current problem or
combined in different ways to solve new problems [36].

Being able to identify patterns in both data [19] and across
problems [37] is, by some, offered in the definition of
computational thinking. Muller [34] found that undergraduates

who recognised patterns in problem solutions while programming
games were able to recognise and transfer the solution patterns to
science simulations. Pattern recognition may be considered a
specific type of generalisation.

In her original article, Wing [46] does not use the term algorithmic
thinking, preferring the word heuristic instead. However, by 2011,
she extends her definition of computational thinking to include
algorithmic and parallel thinking [48]. Moursund [35] suggests that
computational thinking is related to the idea of procedural thinking,
as proposed by Papert in Mindstorms. He defines a procedure as a
step-by-step set of instructions that can be carried out by a device.

The same theme is continued by Sussman [35], who defines
computational thinking as a way of devising explicit instructions
for accomplishing tasks. Inclusion of algorithmic thinking in a
curriculum for high schools appears prior to Wing’s contribution.
In the Israeli computer science curriculum, Gal-Ezer, et al. [16]
placed an emphasis on inclusion of the study of algorithmic
processes.

In her initial article, Wing [46] expresses the need for a
computational thinker to make trade-offs, by evaluating the use of
time and space, power and storage. This
evaluation of algorithmic processes, including their power and

limitations, is foreshadowed by Gal-Ezer, et al. [16]. Application
of the term to user interfaces is evidenced in the second objective
of the New Zealand proposed curriculum, as part of designing
programs [1]. In their IT approach, L’Heureux, et al. [25] include
the ability to evaluate processes, in terms of efficiency and resource
utilisation, and the ability to recognise and evaluate outcomes.

Therefore, a definition of computational thinking, adequate to
support this research, includes decomposition, abstraction,
algorithm design, generalisation, and evaluation.

3.2 Teaching Programming
Learning to program is difficult. There are several reasons

identified for this difficulty. These include an inaccurate
understanding of how a computational model works; an inability to
master reading, tracing, and writing code; and an inability to
understand high-level concepts such as design.

There is support for the idea that learners, with an inaccurate
understanding of how a computing device actually executes a
program, find learning to program particularly difficult [31; 33].
They do not understand and do not create programs that properly
handle the fact that any instruction is executed in the state left by
the last instruction [13; 26]. Du Boulay [13] suggests that enforcing
the idea that there is a strict set of rules governing program

execution and avoiding the use of anthropomorphic language
should aid in helping learners form an accurate understanding of
how the machine works. A significant move from inaccurate to
accurate programming concept models was shown by Ma, et al.
[31], when using a visualisation tool to introduce cognitive conflict
and challenge learners with inappropriate models. This parallels
the way in which a one-to-one session with an expert might work,
where the expert observes and questions the learner, specifically in

the instance when they evidence an inaccurate understanding, to
guide their reasoning down a more accurate path. They reported
that about half the students with non-viable models moved to a
more viable model after using the visualisation tool along with the
cognitive conflict technique [31]. Without doubt, an inaccurate
understanding of how a computer executes a program will lead the
beginners to great difficulties in learning to program.

Lister has been involved in trying to explain the relationship
between reading, tracing, explaining, and writing code for many
years, most recently in the research of Lopez, et al. [30], and Lister,
Fidge, and Teague [28]. When investigating a multilevel hierarchy

of programming, based on an analysis of exam papers, strong
evidence revealed the association between tracing and writing,
especially within the concepts of loops [30]. They also found that
hierarchically, data and basics were the foundation, which
influenced simple tracing and the understanding of sequences.
Mastering these concepts influenced the ability to explain and the
ability to write code [30]. This work was built upon in a further
study in which Lister, Fidge, and Teague [28] found that effective

programmers had developed good tracing skills prior to good
writing skills, and that good students can explain the purpose of
code without stating what it does line by line. This led them to
conclude that writing good effective code requires both tracing and
explaining skills [28].

The most difficult concepts to understand are high-level, involving
larger entities as opposed to individual details. Perhaps this is
because students find it difficult to move away from a line-by-line
interpretation of the programming process [26]. Logical thinking
is included as a high-level concept by [5]. They have pointed out
the connection between the difficulty of topics and the amount of

feedback they receive. Design is the most difficult for students and
receives the least feedback; syntax is not so difficult but receives
large amounts of feedback [5]. They suggest that the emphasis
needs to be reversed if students are to master more high-level
concepts. In the opinion of Jenkins [23], students demonstrate an
inability to cope with multiple problem-solving issues at once and
the precision necessary to instruct the computer to carry out the
problem-solving algorithm. This inability is exemplified by

learners who can read and interpret code, but cannot write their own
[23]. Sakhnini and Hazzan [39] conducted one of the few research
efforts with high school students using high-level problem-solving

concepts. They suggest that the students rely heavily on analogy
and should be challenged with false analogies, that students should
be taught abstract data type behaviours before implementing them,
and that students should be exposed to many problems that can be
solved using different strategies. Sakhnini and Hazzan [39] tie their

study of abstraction directly to general problem-solving skills and
strategies such as those advocated by Pólya [37].

An inaccurate understanding of how a computational model works;
an inability to master reading, tracing, and writing code; and an
inability to understand high-level concepts such as design are
among the reasons identified as contributing to the difficulty of
learning to program.

3.3 Educational taxonomies in programming
The appropriateness of using taxonomies in research into
programming is supported in several studies. Two of these
taxonomies are Bloom’s Taxonomy and the SOLO taxonomy.

First year undergraduate students’ thinking skills were investigated
by Fitzgerald, Simon, and Thomas [14]. They employed a

multiple-choice question instrument and a think aloud problem-
solving instrument in an effort to determine how students read and
understand code. Their results indicated that, overall, students did
use strategies, but that no single one was dominant, that students
used multiple strategies for each problem, that students used the
same strategy in different ways thereby eliciting different results,
and that students used good strategies in poor ways [14]. They
mapped the students’ strategies to the different levels of the

cognitive domain defined in Bloom’s Taxonomy. As might be
expected, the strategies congregated around the comprehension
level. However, there were strategies that mapped to all levels. At
the highest level, evaluation, were placed those strategies indicating
analysis for deeper meaning. This foreshadows the work of Lister,
Fidge, and Teague [28], which identified the explaining of code’s
problem-solving purpose as different from understanding at a line-
by-line level.

The applicability of using the SOLO taxonomy to assess the way in
which programming students read code was tested by Lister, et al.
[29] in their study of undergraduate students. They tested novice

programmers only, using a ‘think out loud’ technique. They were
able to place students’ responses on an appropriate level of the
SOLO taxonomy. They concluded that while teachers often focus
on aspects of programming associated with the lower levels of the
SOLO taxonomy, they should also offer opportunities for eliciting
responses at the relational or higher levels. They suggest that this
type of response is manifested by “… an ability to read several lines
of code and integrate them into a coherent structure …” ([29], p.
122).

These taxonomies were combined, by Meerbaum-Salant, Armoni,
and Ben-Ari [32], in their investigation in middle schools using

Scratch to teach computer science concepts. The combination
addressed their need to acknowledge that understanding the
concept of concurrency is more cognitively complex than creating
a script to move a sprite.

SOLO is a competency model illustrating the extent to which
understanding is mastered. Bloom’s is concerned with identifying
the highest level of cognitive demand required by a task or
question. The combination [32] acknowledges the complexity
associated with acquiring and demonstrating understanding. Using
the example above, a learner is asked to ‘explain concurrency’. The
task, ‘explain,’ is designed to illicit a response at the

comprehension level of Bloom’s Taxonomy. The complexity of
the processes used to form this understanding, which may have

incorporated application or analysis are not acknowledged in the
question. The same learner is asked to create a Scratch script to
move a sprite around the screen and is given no other scaffolding
materials. In order to achieve synthesis, the learner must know how
a puzzle works, must comprehend the meaning of the puzzle pieces,

must apply the rules enforced by the puzzle joins, must analyse
relationships between the script and what is appearing on the
screen, and must create the algorithm (not the script) which makes
the sprite move.

This research is not focused on how well a learner has mastered a
skill, but on identifying the highest level of cognitive demand
required by that skill. Therefore, Bloom’s Taxonomy has been
selected as the basis for an ordering of the skills of programming.

4. DATA COLLECTION
Participants were selected for their ability to give depth to the
dataset. They were perceived to have an interest in the research
topic. Three different instruments were employed to provide bring
both breadth and depth to the dataset. The complete dataset
represents the views of 255 participants.

4.1 Sample
The participants were selected because they possess some interest
in the teaching of programming, computational thinking, problem
solving, or any combination of the three. Broad categories of
participants include those teaching programming; those employed
in industries where computational thinking skills and programming
skills are used; and members of professional communities of
practice, representing industry, academia, or education.

This type of selection is biased toward selection of participants who
meet some criteria. Cohen, Manion, and Morrison succinctly
reason that, “There is little benefit in seeking a random sample
when most of the random sample may be largely ignorant of

particular issues and unable to comment on matters of interest to
the researcher, in which case a purposive sample is vital” ([10], p.
115). In the case of this research, the sample was selected
purposively to consist of those who are perceived to have some
knowledge and interest in the teaching of computational thinking
or programming. As Strauss and Corbin affirm, theoretical
sampling is a foundation stone of grounded theory, the approach
employed in this research, that, “… enables the researcher to
choose those avenues of sampling that can bring about the greatest
theoretical return” ([40], p. 202).

The views of 255 respondents are represented in the data. The

community of practice yielded 111 respondents; interviews were
conducted with 10 participants; questionnaires were completed by
34 participants. Of the total, 201 described themselves as teachers,
88 as academics, 92 as working in industry, 7 as awarding
organisation representatives, and 9 as members of professional
bodies. Some respondents have more than one role. Of those
indicating a teaching role, 39 teach at post-graduate, 43 teach at
higher education, 28 teach at post-16, 126 teach at secondary and
post-16, 42 teach at secondary, and 19 teach at primary.

4.2 Instruments
Three different data collection instruments were used. There were
an online questionnaire, a community of practice discussion forum,
and face-to-face interviews. The data from each were added to a
single dataset for analysis.

In the case of the first instrument, an online questionnaire, the
targeted sample consisted of members of organisations, both
national and local to the researcher, whose ideologies promote the
teaching of programming or computational thinking skills.

In addition to the online questionnaire, there was an opportunity to
include conversational threads from a community of practice online
forum. Not every thread was applicable to the research questions.
However, the forum was monitored methodically, for applicable
threads, during the same time that the online questionnaire

remained open. Once purposively chosen for their applicability to
the research questions, the entire contents of these threads
contributed to the dataset.

From the questionnaire responses and the community of practice
conversations, a further purposive selection was made to identify
targets for face-to-face interviews. This selection was made on the
perceived ability of the respondents to provide in-depth knowledge
about the original research questions.

4.3 Dataset
The data was collected over a period of 16 months during 2012 and

2013. The dataset consists of 123,590 total words, made up of
7,464 from questionnaires, 32,410 from interviews, and 83,706
from the community of practice threads. The data was stored and
organised using the NVivo qualitative data analysis tool.

5. Method
During the literature review, no model of the relationships between
computational thinking, the skills of programming, and educational
taxonomies was revealed. In seeking this model, it was appropriate
to consider an inductive approach. Grounded theory suited the
objective of the research, to discern a model from current practice.

5.1 Grounded theory
This study uses a grounded theory approach employing qualitative
data collection methods and qualitative data analysis techniques.

The original grounded theory, in the words of Glaser ([17], p. 8),
“…is just a simple, straight forward procedural method to induct
theory from any type of data…”. While observations and
interviews may well support grounded theory, Glaser [17] goes on
to include other data sources such as conversations, newspapers,
books, videos, etc.

Grounded theory stipulates that categories and concepts do not
have to be identified before data collection commences, but are
allowed to emerge on the way [10]. This approach provides a
mechanism for incorporating new ideas from participant responses
without being constrained by predefinition. It allows these new

ideas and concepts to be explored, even when they fall outside
expected responses.

Strauss and Corbin [40], while not departing from the philosophy

of the original grounded theory, focused their attention on the use
of structured processes and techniques for promoting the
emergence of theory. This approach, although criticised for being
prescriptive in some aspects, provides the flexibility to deviate from
that prescription. By encouraging the mixing of methods and
techniques, their grounded theory approach supports researcher
creativity and freedom. Their focus on the data and procedures for
encouraging the identification of concepts and promoting the

emergence of a core variable provides support and assurance. Their
allowance for external influences such as researcher knowledge and
literature provide a flexible framework in which this study is set.

5.2 Reliability and validity
In dealing with the question of validity in qualitative research, the
overriding idea is to determine if it measures what it is purported to
measure [38]. In other words, do the instruments and the research
as a whole appear to measure what they claim to measure?

Usher, Bryant, and Johnston [45] report that there are three aspects
of validity, pre-validation, internal validation, and post-validation.
The one most applicable to grounded theory is internal validation.
“…this refers to the actual conduct of the research itself as
following the precepts of appropriate practices with respect to

devising indicators, data collection and analysis” ([45], p. 215). By
following the formal rules of enquiry, the research becomes self-
validating.

The rules of grounded theory [40] indicate that the data be collected
simultaneously with analysis, that constant comparisons are made
to previous data, that the theory change as the data dictates, and that
the theory is allowed to develop, unforced. In this study, the
analysis was performed simultaneously with data collection and a
model was developed and amended as data indicated.

In addition, once gaps had been identified in the data, participants
with knowledge to fill those gaps were selected. Purposive
sampling could also be used to seek out participants with dissenting
views. Overall, the ability to be assured of the quality of responses
may ensure the validity of the results.

Another consideration in reflecting on reliability and validity of this
research is researcher bias. While it may seem improbable that a

researcher can enter into data collection without introducing bias,
Glaser affirms that with constant comparison, multiple collections,
and continuous conceptualisation, any bias is corrected and
therefore, the data may be used objectively [18].

In summary, the reliability and validity of this grounded theory
study rely on the interpretation of these attributes in terms of
qualitative research and grounded theory. Cohen, Manion, and
Morrison describe reliability in qualitative research as including
“… fidelity to real life, context- and situation-specificity,
authenticity, comprehensiveness, detail, honesty, depth of response
and meaningfulness to the respondents.” ([10], p. 149). In

response, assurances are provided that the study is true to life, is
context specific, is authentic, is as comprehensive as time allows,
is detailed and honest, and the results may directly influence the
classroom practices of the respondents.

6. RESULTS
Data analysis afforded the development of three model
components: order of teaching programming, mapping of
programming items to Bloom’s Taxonomy, and a hierarchy of
perceived difficulty of computational thinking skills. The final
model is a combination of these components.

6.1 Order of teaching programming
Over a period, it was possible to identify a common sequence to the
teaching of programming, by analysing the use of ‘before’, ‘after’,
and ordering in texts relating to teaching. An example response
includes “… with most groups at least, they say we need this, we’re
going to need that … these ingredients. They won’t necessarily get
them in the right order to start with.” This implies decomposition
before algorithm design. Of course, the sequence identified here is
not the only teaching sequence, but does represent the teaching

practice of many participants. This ordering does not imply
context, such as programming language or environment. The order
of teaching programming is identified as:

1. constructs, facts, types
2. how individual constructs work
3. use programming constructs in contrived contexts
4. discriminate, decompose, abstract
5. create programs, algorithm design
6. test, evaluate

6.2 Teaching programming and Bloom’s
The dataset was interrogated to identify where the participants

placed the order of teaching programming items in relation to the
levels of Bloom’s Taxonomy Cognitive Domain. Responses were
grouped into concepts and coded to nodes indicating relationships
of order. The concepts were expressed in node names using a noun-
adverb-noun tuple. The noun-noun pairs map to the familiar terms
in Bloom’s levels. The adverb places the concept at a level relative
to the other nodes, thus illuminating a form of hierarchy. For
example, ‘analysis is lower than design’ and ‘decomposition before

evaluation’ is interpreted to imply an ordering. The order resulting
from the distribution of these tuples is shown here.

Table 1. Bloom's levels of teaching programming

Bloom’s Taxonomy Teaching Programming

Evaluation evaluate, test

Synthesis create programs, algorithm design

Analysis
abstract, decompose, discriminate

Application

Comprehension
structures, constructs, facts, types

Knowledge

6.3 Computational thinking skills: perceived

difficulty
In a similar vein, the dataset was analysed to understand which
computational thinking skills were perceived to be the most
difficult to master. The key relationships identified here included
references with comparatives such as ‘is harder than’, ‘is more
difficult than’, ‘is easier than’, ‘for more able’, and ‘distinction’.
Arranging the relationships results in the following order of
perceived difficulty, with 1 being the easiest computational skill to
master and 6 being the most difficult.

1. evaluation
2. algorithm design
3. generalisation

4. abstraction of functionality
5. abstraction of data
6. decomposition

6.4 Relationship model
The three sets of relationships, described above, are brought

together into a single model representing the relationships between
Bloom’s Taxonomy Cognitive Domain, computational thinking
skills, and the teaching of programming. An unsurprising result, as
discussed above, is that the order in which programming skills are
taught directly reflects the order of the levels in Bloom’s Cognitive
Domain. However, the perceived levels of difficulty of the
computational thinking skills when mapped to Bloom’s Cognitive
Domain are a reversal of the expected order.

Figure 1. Model: computational thinking, pedagogy of
programming, and Bloom’s Taxonomy

7. DISCUSSION
This research set out to determine if there was a taxonomy of
computational thinking skills, which computational thinking skill
is most difficult to master, and which beginning programming skill
is most difficult to maser.

Is there a taxonomy of computational thinking skills? A taxonomy
of computational thinking skills has been derived from the
literature and analysis of the data set. This taxonomy consists of
evaluation, algorithm design, abstraction (functionality, data),

decomposition, and generalisation (including pattern recognition).
It is possible to assign these skills to the levels of Bloom’s
Taxonomy Cognitive Domain. Evaluation is assigned to the
evaluation level; algorithm design is assigned to the synthesis level;
abstraction and decomposition are assigned to the analysis level;
generalisation is assigned to the application level.

Which computational thinking skill is the most difficult to master?
The computational thinking skill perceived as most difficult to
master is decomposition. Decomposition is also perceived to be the
most difficult programming skill to master. On close inspection,
the order of difficulty in mastering the computational thinking

skills is a reversal of those same skills mapped to Bloom’s
Taxonomy Cognitive Domain.

Why is decomposition so difficult? Some reasons are suggested by

the participants themselves. These include a lack of experience,
incomplete understanding of the problem to solve, and the order of
teaching programming. Although learners understand the concept
of breaking a problem down, perhaps from a mathematical context,
teachers indicate that learners struggle with implementing the
process of decomposition. Students appear to be able to use the
skill of decomposition more successfully in situations where they
already know the solution or understand the problem very well. It

may well be that any skill introduced first, when learners are still
coping with introductory programming constructs, would reflect
the same level of difficulty. However, understanding
decomposition, based on the computational thinking taxonomy, is
a prerequisite for abstraction, algorithm design, and evaluation. As
such, it must be mastered, to some extent, before the complexity of
the following levels can be accessed.

Where is generalisation in this model? The term ‘generalisation’,
as a computational thinking skill, is used sparingly in the literature
and just as sparingly in the dataset. However, the concept of
recognising how small pieces of solutions may be reused and

reapplied to similar or unique problems is often identified in both
[36]. When generalisation is more broadly interpreted as “where
have I seen this type of problem before?” then it is found in the
dataset. Generalisation of strategies has been identified by some
respondents, for example recognising that ordering is important in

some solutions. Generalisation of concepts has also been
identified. These examples extend to the ability to understand the
fundamentals of one programming language being applied to
another and to the behaviour of number systems, such as denary
and binary. The key concept identified in the data that is associated
with generalisation is the application of knowledge from one
domain or context in another. From this, it is logical to place
generalisation on the same level as application in Bloom’s

Taxonomy. In support of this, Bloom purports that “The
effectiveness of a large part of the school program is therefore
dependent upon how well the students carry over into situations
applications which the students never faced in the learning
process.” ([4], p. 122). The latter part of this statement, as a
definition of generalisation, is upheld by the views of the
respondents.

What are the next steps? This research has identified that
respondents perceive decomposition to be the most difficult
computational thinking skill for learners to master. Although
possible reasons for this status have been proposed, this research

has not revealed why this is the case. Although there is other
research concerning the applicability of Bloom’s Taxonomy to
computer science [14; 43], this particular association deserves
further study. This research continues the theme by suggesting that
the upper levels of Bloom’s Taxonomy are applicable to
programming. However, the levels of knowledge and
comprehension are yet to be explored to ascertain their contribution
to computational thinking.

In closing, the results of this study contribute to the broad areas of
research incorporating computational thinking and programming,
the more specific area of computer science education research, and

the area of computer science pedagogy. In the first instance, a
taxonomy of computational thinking skills is proposed to aid
understanding of the term. In the second instance, applying
Bloom’s Taxonomy to the context of programming for 14 – 19 year
olds, aids efforts to explore using general education theories in the
computer science classroom. In the third instance, the proposed
relational model, between levels of cognitive complexity, the
teaching of programming skills, and the perceived levels of

difficulty of computational thinking skills may be used to influence
effective classroom practices.

8. REFERENCES
[1] Bell, T., Andreae, P., and Lambert, L., 2010. Computer

Science in New Zealand High Schools. In Proceedings of

the Twelfth Australasian Conference on Computing
Education Australian Computer Society, Inc., Brisbane,
Australia, 15-22.

[2] Biggs, J., n.d. SOLO Taxonomy.

[3] Biggs, J. and Collis, K., 1982. Evaluating the Quality of
Learning, The SOLO Taxonomy Academic Press, Sydney.

[4] Bloom, B., 1956. Taxonomy of Educational Objectives: The
Classification of Educational Goals, Handbook 1 Cognitive
Domain McKay, New York.

[5] Butler, M. and Morgan, M., 2007. Learning challenges
faced by novice programming students studying high level

and low feedback concepts. In Proceedings of the ICT:

Providing choices for learners and learning. Proceedings
ascilite (Singapore2007), www.ascilite.org.au, 99-107.

[6] CBI, 2014. Gateway to Growth: CBI/Pearson education and
skills survey 2014(2014).

[7] Chan, C.C., Tsui, M.S., Chan, M.Y.C., and Hong, J.H.,
2010. Applying the Structure of the Observed Learning
Outcomes (SOLO) Taxonomy on Student's Learning
Outcomes: An empirical study. Assessment & Evaluation in
Higher Education 27, 6 (2002/12/01), 511-527. DOI=
http://dx.doi.org/10.1080/0260293022000020282.

[8] Chick, H., 1998. Cognition in the Formal Modes: Research
Mathematics and the SOLO Taxonomy. Mathematics
Education Research Journal 10, 24, 4-26.

[9] Churches, A., 2009a. Bloom's Digital Taxonomy (v3.01),
75.

[10] Cohen, L., Manion, L., and Morrison, K., 2007. Research
Methods in Education. Routledge, Abingdon, England.

[11] Computing at School Working Group, 2012. Computer
Science: A curriculum for schools Computing At School.

[12] Dijkstra, E., 1988. On the cruelty of really teaching
computing science The University of Texas at Austin.

[13] Du Boulay, B., 1989. Some difficulties of learning to
program. In Studying the novice programmer, E.
SOLOWAY and J.G. SPOHRER Eds. Lawrence Erlbaum,
Hillsdale, NJ, 293-299.

[14] Fitzgerald, S., Simon, B., and Thomas, L., 2005. Strategies
that students use to trace code: an analysis based in
grounded theory. In Proceedings of the Proceedings of the
first international workshop on Computing education

research (Seattle, WA, USA2005), ACM, 1089793, 69-80.
DOI= http://dx.doi.org/10.1145/1089786.1089793.

[15] Fuller, U., Johnson, C.G., Ahoniemi, T., Cukierman, D.,

Hernán-Losada, Jackova, J., Lahtinen, E., Lewis, T.L.,
Thompson, D.M., Riedesel, C., and Thompson, E., 2007.
Developing a computer science-specific learning taxonomy.
SIGCSE Bull. 39, 4, 152-170. DOI=
http://dx.doi.org/10.1145/1345375.1345438.

[16] Gal-Ezer, J., Beeri, C., Harel, D., and Yehudai, A., 1995. A
High School Program in Computer Science. Computer 28,
10, 73-80. DOI= http://dx.doi.org/10.1109/2.467599.

[17] Glaser, B., 2009. Jargonizing: The use of the grounded
theory vocabulary. In The Grounded Theory Review, J.
HOLTON Ed. Sociology Press, Mill Valley, CA, USA.

[18] Glaser, B.G., 2002. Constructivist Grounded Theory?
Forum: Qualitative Social Research 3 (3)(September 2002).

[19] Google, 2011. Exploring Computational Thinking.

[20] Guzdial, M., 2008. Education: Paving the way for
computational thinking. Commun. ACM 51, 8, 25-27. DOI=
http://dx.doi.org/10.1145/1378704.1378713.

[21] Guzdial, M., 2011. A Definition of Computational Thinking
from Jeannette Wing. In Computing Education Blog,
Atlanta.

[22] Guzdial, M., 2012. A nice definition of computational
thinking, including risks and cyber-security. In Computing
Education Blog, Atlanta.

[23] Jenkins, T., 2002. On the Difficulty of Learning to Program.
In Proceedings of the 3rd Annual LTSN-ICS Conference

(Loughborough University2002), The Higher Education
Academy.

[24] Johnson, C.G. and Fuller, U., 2006. Is Bloom's taxonomy
appropriate for computer science? In Proceedings of the
Proceedings of the 6th Baltic Sea conference on Computing
education research: Koli Calling 2006 (Uppsala,
Sweden2006), ACM, 1315825, 120-123. DOI=
http://dx.doi.org/10.1145/1315803.1315825.

[25] L'heureux, J., Boisvert, D., Cohen, R., and Sanghera, K.,
2012. IT problem solving: an implementation of

computational thinking in information technology. In
Proceedings of the 13th Annual Conference on Information
Technology Education ACM, Calgary, Alberta, Canada,
183-188. DOI= http://dx.doi.org/10.1145/2380552.2380606.

[26] Lahtinen, E., Ala-Mutka, K., and Järvinen, H.-M., 2005. A
study of the difficulties of novice programmers. In
Proceedings of the Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer
science education (Caparica, Portugal2005), ACM,
1067453, 14-18. DOI=
http://dx.doi.org/10.1145/1067445.1067453.

[27] Lister, R., 2000. On blooming first year programming, and
its blooming assessment. In Proceedings of the Proceedings
of the Australasian conference on Computing education

(Melbourne, Australia2000), ACM, 359393, 158-162. DOI=
http://dx.doi.org/10.1145/359369.359393.

[28] Lister, R., Fidge, C., and Teague, D., 2009. Further evidence

of a relationship between explaining, tracing and writing
skills in introductory programming. In Proceedings of the
Proceedings of the 14th annual ACM SIGCSE conference
on Innovation and technology in computer science
education (Paris, France2009), ACM, 1562930, 161-165.
DOI= http://dx.doi.org/10.1145/1562877.1562930.

[29] Lister, R., Simon, B., Thompson, E., Whalley, J.L., and
Prasad, C., 2006. Not seeing the forest for the trees: novice
programmers and the SOLO taxonomy. In Proceedings of
the Proceedings of the 11th annual SIGCSE conference on
Innovation and technology in computer science education

(Bologna, Italy2006), ACM, 1140157, 118-122. DOI=
http://dx.doi.org/10.1145/1140124.1140157.

[30] Lopez, M., Whalley, J., Robbins, P., and Lister, R., 2008.
Relationships between reading, tracing and writing skills in
introductory programming. In Proceedings of the
Proceeding of the Fourth international Workshop on
Computing Education Research (Sydney, Australia2008),
ACM, 1404531, 101-112. DOI=
http://dx.doi.org/10.1145/1404520.1404531.

[31] Ma, L., Ferguson, J., Roper, M., and Wood, M., 2011.
Investigating and improving the models of programming
concepts held by novice programmers. Computer Science
Education 21, 1, 57 - 80.

[32] Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M., 2010.
Learning computer science concepts with scratch. In
Proceedings of the Proceedings of the Sixth international

workshop on Computing education research (Aarhus,
Denmark2010), ACM, 1839607, 69-76. DOI=
http://dx.doi.org/10.1145/1839594.1839607.

[33] Milne, I. and Rowe, G., 2002. Difficulties in Learning and
Teaching Programming - Views of Students and Tutors.

http://www.ascilite.org.au/
http://dx.doi.org/10.1080/0260293022000020282
http://dx.doi.org/10.1145/1089786.1089793
http://dx.doi.org/10.1145/1345375.1345438
http://dx.doi.org/10.1109/2.467599
http://dx.doi.org/10.1145/1378704.1378713
http://dx.doi.org/10.1145/1315803.1315825
http://dx.doi.org/10.1145/2380552.2380606
http://dx.doi.org/10.1145/1067445.1067453
http://dx.doi.org/10.1145/359369.359393
http://dx.doi.org/10.1145/1562877.1562930
http://dx.doi.org/10.1145/1140124.1140157
http://dx.doi.org/10.1145/1404520.1404531
http://dx.doi.org/10.1145/1839594.1839607

Education and Information Technologies 7, 1, 55-66. DOI=
http://dx.doi.org/10.1023/a:1015362608943.

[34] Muller, O., 2005. Pattern oriented instruction and the
enhancement of analogical reasoning. In Proceedings of the
Proceedings of the first international workshop on
Computing education research (Seattle, WA, USA2005),
ACM, 1089792, 57-67. DOI=
http://dx.doi.org/10.1145/1089786.1089792.

[35] National Research Council, 2010. Report of a Workshop on
the Scope and Nature of Computational Thinking The
National Academies Press.

[36] National Research Council, 2011. Report of a Workshop of
Pedagogical Aspects of Computational Thinking The
National Academies Press.

[37] Pólya, G., 1985. How To Solve It, 2nd ed. Penguin, London.

[38] Prosser, J., 2004. Ensuring Quality in Qualitative Data. In
Research Methods (part 1 and 2), J. SWANN Ed.
University of Southampton, School of Education,
Southampton, England, 6a.1-6a.27.

[39] Sakhnini, V. and Hazzan, O., 2008. Reducing Abstraction in
High School Computer Science Education: The Case of

Definition, Implementation, and Use of Abstract Data
Types. J. Educ. Resour. Comput. 8, 2, 1-13. DOI=
http://dx.doi.org/http://doi.acm.org/10.1145/1362787.13627
89.

[40] Strauss, A. and Corbin, J., 1998. Basics of qualitative
research: Techniques and procedures for developing
grounded theory. Sage Publications Ltd., London.

[41] The Royal Academy of Engineering, 2009. ICT for the UK's
Future: the implications of the changing nature of
Information and Communications Technology The Royal
Academy of Engineering, London.

[42] The Royal Society, 2012. Shut down or restart? The way
forward for computing in UK schools, London.

[43] Thompson, E., Luxton-Reilly, A., Whalley, J.L., Hu, M.,
and Robbins, P., 2008. Bloom's taxonomy for CS
assessment. In Proceedings of the Proceedings of the tenth
conference on Australasian computing education - Volume

78 (Wollongong, NSW, Australia2008), Australian
Computer Society, Inc., 1379265, 155-161.

[44] Ubiquity, 2007. An Interview with Peter Denning on the

great principles of computing. Ubiquity 2007, June, 1. DOI=
http://dx.doi.org/10.1145/1276162.1276163.

[45] Usher, R., Bryant, I., and Johnston, R., 1997. Adult

education and the postmodern challenge: learning beyond
the limits. Routledge, London.

[46] Wing, J., 2006. Computational thinking. Commun. ACM 49,
3, 33-35. DOI= http://dx.doi.org/10.1145/1118178.1118215.

[47] Wing, J., 2008. Computational thinking and thinking about

computing. Philosophical Transactions of The Royal Society
A 366, 3717-3725. DOI=
http://dx.doi.org/10.1098/rsta.2008.0118.

[48] Wing, J., 2011. Research Notebook: Computational
Thinking - What and Why? In The Link Carneige Mellon,
Pittsburgh, PA, 6.

http://dx.doi.org/10.1023/a:1015362608943
http://dx.doi.org/10.1145/1089786.1089792
http://dx.doi.org/http:/doi.acm.org/10.1145/1362787.1362789
http://dx.doi.org/http:/doi.acm.org/10.1145/1362787.1362789
http://dx.doi.org/10.1145/1276162.1276163
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1098/rsta.2008.0118

