
Kölling, Michael, Brown, Neil C.C. and Altadmri, Amjad (2015) Frame-Based
Editing: Easing the Transition from Blocks to Text-Based Programming.
 In: Proceedings of the Workshop in Primary and Secondary Computing
Education. ACM-ICPS International Conference Proceeding Series . ACM,
New York, USA, pp. 29-38. ISBN 978-1-4503-3753-3.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/50406/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2818314.2818331

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/50406/
https://doi.org/10.1145/2818314.2818331
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Frame-Based Editing: Easing the Transition from Blocks to
Text-Based Programming

Michael Kölling
University of Kent

School of Computing
mik@kent.ac.uk

Neil C. C. Brown
University of Kent

School of Computing
nccb@kent.ac.uk

Amjad Altadmri
University of Kent

School of Computing
aa803@kent.ac.uk

ABSTRACT
Block-based programming systems, such as Scratch or Alice,
are the most popular environments for introducing young
children to programming. However, mastery of text-based
programming continues to be the educational goal for stu-
dents who continue to program into their teenage years and
beyond. Transitioning across the significant gap between
the two editing styles presents a difficult challenge in school-
level teaching of programming. We propose a new style of
program manipulation to bridge the gap: frame-based edit-
ing. Frame-based editing has the resistance to errors and
approachability of block-based programming while retaining
the flexibility and more conventional programming seman-
tics of text-based programming languages. In this paper, we
analyse the issues involved in the transition from blocks to
text and argue that they can be overcome by using frame-
based editing as an intermediate step. A design and imple-
mentation of a frame-based editor is provided.

CCS Concepts
•Applied computing → Text editing; •Software and
its engineering→ Integrated and visual development
environments;

Keywords
Editing, Frame-based editing, Novice programming

1. INTRODUCTION
Plain text as the representation of program text is still

the norm for proficient and professional programmers and
the accepted educational goal for programming instruction
in schools in many countries. This contrasts with direct
manipulation programming interfaces, in which users drag
and drop “blocks” of program code into place. These block-
based interfaces are typically aimed at children learning to
program, and are increasingly used in schools with younger
age groups. Block-based systems, such as Scratch [16], Snap,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiPSCE ’15, November 09 - 11, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3753-3/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2818314.2818331

AppInventor [24] or Alice [6] now dominate programming in
primary and early secondary schools. While these systems
provide a very successful and approachable entry into pro-
gramming for young novices, their widespread use creates
a new educational challenge: managing the transition from
block-based systems to text-based programming. This tran-
sition step presents a significant hurdle which may not be
easy to overcome, for learners and teachers alike.

A typical example of the situation described is found in the
UK, where programming is now mandatory for all schoolchil-
dren [5]. The UK is one of the leading countries in the more
general international trend to strengthen computer science
education at school level, and the experience here serves as
an early example of a situation that is being or will be faced
by other countries around the world.

The recently introduced Computing National Curriculum
for England [8] is quite specific about requirements in pro-
gramming exposure. It states that children aged 7–11 must
be taught to “design, write and debug programs that accom-
plish specific goals... [and] use sequence, selection, and rep-
etition in programs; work with variables and various forms
of input and output”. At this age level, this requirement is
typically met by using block-based programming systems,
with Scratch being by far the most popular. This is fol-
lowed by requirements for 11–14 year-olds who must “use
two or more programming languages, at least one of which
is textual, to solve a variety of computational problems.”
For the switch to text-based programming, no single system
dominates. Python, often using the IDLE environment, is
popular, followed by Java, Visual Basic and various other
mainstream programming languages.

These requirements mean that learners face a transition
from blocks to text-based programming—typically at an age
of about 12 years old. In countries other than England the
exact age may vary somewhat, but the challenges this poses
in the classroom are similar. Teachers and education re-
searchers have compared these kinds of systems before [22],
recognised some of the problems and begun to address the
challenge. So far, proposed solutions have been pedagogi-
cal, largely based on side by side use of systems and sys-
tematic comparison of constructs across this gap [9, 17]. In
this paper, we propose an alternative approach: the use of
a dedicated programming system that bridges the gap be-
tween blocks and text. This system, incorporating a novel
interaction style called frame-based editing, combines as-
pects of blocks and text: it maintains some of the graphical
representation advantages, discoverability and error avoid-
ance of blocks while providing the flexibility, keyboard-entry

capabilities, and readability of text. It is suitable for devel-
opment and maintenance of larger programs than would be
feasible in block-based systems, while avoiding much of the
frustration of struggling with unnecessary syntax errors that
text-based environments typically involve.

The frame-based editor presented here supports a new lan-
guage called Stride, and is integrated in the Greenfoot devel-
opment environment [14, 15]. Greenfoot is an existing, pop-
ular educational programming environment that supports
learning and teaching of programming through the develop-
ment of two-dimensional games and simulations, and pre-
viously used Java as the implementation language. A new
Greenfoot version now supports Stride in addition to Java.
Stride is a Java-like language that differs mostly in the in-
teraction functionality offered for its manipulation.

In this paper, we first discuss the status quo of block- and
text-based programming (section 2), followed by an exami-
nation of previous work on bridging the gap. In section 3,
we identify the key issues involved in managing the transi-
tion. Section 4 introduces frame-based editing, discussing
some design decisions and presenting examples of frame-
based interactions. In section 5, the core contribution of
the paper, we provide a detailed examination of how frame-
based editing provides an intermediate step between block-
and text-based programming.

2. BACKGROUND AND RELATED WORK
Writing programs as plain text is the de facto standard for

professional programming. All major professional program-
ming languages are written as text: C, Python, Java, etc.
The reason for text’s historic dominance is a combination of
factors:

• History: In the days of text-based computer terminals,
there was little displayable alternative.

• Reliable interchange: Text can be edited by all man-
ner of editors (from vim through Visual Studio), so
different programmers can edit the same code repre-
sentation in the environment of their choice.

• Tool compatibility: Plain text makes it easier to work
with external tools, such as version control systems.
It is also the accepted interchange format to pass pro-
gram source to third-party compilers.

• Usability: Although text permits many syntax errors,
it is more flexible and easier to manipulate than many
more rigid representations, such as those found in struc-
ture editors.

In the last decade, block-based programming has been
widely used to introduce programming to young age groups,
and has vibrant online communities [10]. In this isolated ed-
ucational context, most of the above advantages of text dis-
appear, and blocks’ avoidance of syntactic mistakes gives it a
compelling advantage over text-based programming. Booth
and Stumpf [4] evaluated the relative usability of blocks and
text-based programming for the same task set, finding that
– for this user group – block-based environments supported
easier modification and left users with higher satisfaction.

2.1 Transition from Blocks to Text
The challenge of supporting students in a transition from

block-based programming to text-based programming is well

known, and different approaches have been tried. These
involve either pedagogical strategies, tool modifications or a
mixture of the two.

Armoni et al. [2] looked at the effect of having previously
learnt Scratch on the learning of text-based programming.
Their results indicated a slight improvement in performance,
but also suggested that students with exposure to Scratch
were better motivated and learnt more quickly.

Powers et al. [20] found that learners had problems in the
transition from block-based programming to text-based pro-
gramming. They suggest that students did not recognise the
importance of precise syntax after switching to text. They
also point to another often mentioned problem: that block-
based systems, because of their use primarily in education
and toy-like appearance, are often viewed by students as not
being “real” programming, reducing motivation. Although
not using blocks, Hundhausen et al. [12] conducted an ex-
periment analysing whether a direct manipulation interface
could provide a successful transfer into text-based program-
ming, and found that there was some successful transfer.

Dorling and White [9] describe a series of teaching strate-
gies for managing the transition, including side-by-side de-
velopment in the two systems. Like many of the other stud-
ies, they used reference aids showing fragments of blocks and
text programming side by side with equivalent behaviour.

2.2 Tool Support
Although not directly concerned with the transition from

blocks to text, many structure editors contain elements rel-
evant for the work presented here. Possibly the closest work
to our system is found in a series of educational editors de-
veloped from the early 1980s into the 1990s at Carnegie
Mellon University [19], including GNOME, MacGnome and
ACSE. While the authors found many of their features suc-
cessful in improving student performance [19], the systems
failed to have a noticeable influence on mainstream environ-
ments. The novel features in those systems, while promis-
ing, were not adopted elsewhere, and the original systems
were not ported and maintained to newer operating systems.
Nonetheless, some of the features presented in those systems
are early ancestors of functionality found in our work.

Homer and Noble [11] explored an environment with both
a block-based and textual view of the same code, in Grace.
Code can be edited in text or tiled (block) mode, and there
is an animated transition available between the two – fea-
tures also present in Bau’s Droplet editor [3], which supports
editing JavaScript code either in text or block form. Droplet
even keeps the indentation patterns of the text form visible
in the block view.

Tillmann et al. [21] describe TouchDevelop, an environ-
ment targeted at programming on touch devices such as
smartphones or tablets. TouchDevelop now has “skill lev-
els” which present differing views of the code, from blocks
to text-like syntax.

Dann et al. [7] frame the transition in terms of mediated
transfer, and examine the features added to Alice 3 to better
support the transfer. Alice 3 has two features particularly
aimed at supporting the transition. The view of the blocks
themselves can be changed to offer a Java-like syntax within
the block, and a Java preview can be shown alongside the
blocks code.

The designers of all of these environments thus concur that
there is a benefit to being able to view the same program

in multiple views to aid transfer. Several of the editors also
allow editing in both views – although the switch from text
back to blocks is only available if the text has no structural
syntax errors.

2.3 Summary
The reason that there is currently a “two-stage” system of

program editors is that neither block-based nor text-based
editors fit all demographics. Block-based editors are too un-
wieldy for large programs, both in terms of organising large
programs, but also in reading and manipulating them. Text-
based editors, on the other hand, require a level of maturity
and sophistication that young learners do not possess. In
the face of the lack of abstraction and manipulation capa-
bilities of those users, problems with syntax errors dominate
all creative endeavour.

The most common approach to support the transition be-
tween blocks and text is a preview mode, displaying the
familiar blocks in textual form, either by a software tool or
in printed format on a reference sheet. This is only possible
where the systems align closely enough: if-statements are
present in all languages, but more specific blocks tend to
rely on having the same API in the text system.

The approach presented in this paper differs: Frame-based
editing does not present blocks or text, nor a system offering
both, but instead is a novel editing method that genuinely
incorporates elements from both block-based and text-based
interaction models.

3. SIGNIFICANT TRANSITION ISSUES
The exact challenges encountered when transitioning from

a block-based to a text-based system may vary in details,
depending on the exact nature of both systems involved in
the transition. However, most of the fundamental problems
are intrinsic in these types of system and can be identified in
the general case. Below, we list the most fundamental issues
faced by learners progressing between these environments.

1. Readability. Block-based syntax is significantly eas-
ier to read for novices than common text-based pro-
gramming languages. Even after exposure to both
kinds of system, some aspects of blocks remain more
readable for relative novices [23]. This has multiple
aspects: block-based systems tend to use keywords
rather than symbols or punctuation in commands, the
keywords used tend to be closer to natural language,
a more variable operand and operator syntax and se-
quence is used that partly mimics the grammar of
natural languages, and the graphical representation of
scopes (using bracket-style blocks) is easier to interpret
than traditional text-based scope notation.

2. Memorisation of commands. In block-based sys-
tems, all available commands are visually represented
on screen in a block catalogue. Novice users can browse
all available commands, remind themselves of vaguely
remembered concepts or gain inspiration from discov-
ering new ones. The visibility of the constructs, cou-
pled with usually more humane naming resembling
natural language more closely than many text-based
programming languages, allows recognition over recall,
greatly helping novices using the tool and encouraging
experimentation. In text-based systems, programming

constructs must be known, and their representation
must be recalled from memory.

3. Memorisation of syntax. In addition to recalling
the existence and function of a programming construct
in text-based systems, users also have to remember its
exact syntax. It is not enough to know that a for-loop
exists and what it is used for, the programmer must
also know its keyword and where exactly to put the
commas, semicolons or brackets. For beginners, this is
an additional cognitive challenge beyond recalling the
command itself. An added challenge for non-English
speakers in many cases is remembering the keyword
in a foreign language, as text-based systems are al-
most always used with English language keywords. For
many learners, these keywords are not initially under-
stood, losing the advantage of help from colloquial un-
derstanding of the terms. In these cases, keywords
become meaningless strings to be memorised. Some
block-based systems are available with localised block
names, removing the language hurdle. But even when
used in a foreign language, we speculate that the recog-
nition characteristic (rather than necessary recall) re-
duces the problem introduced by lack of language un-
derstanding.

4. Typing/spelling. In addition to knowing the syn-
tax (the previous point), programmers must also cre-
ate it. The pure mechanical act of typing the program
text poses an additional hurdle. For young learners,
this can be significant, both in cognitive as well as
in motor terms. While Scratch, for example, is very
successfully used with 10-year-olds, this target group
often does not possess sufficient typing skills to be able
to produce textual artefacts of the required length in
reasonable time. Even for older learners who have the
ability to type, the necessity to do so adds an extra
load (often cognitive load because typing skills are of-
ten rudimentary), and cognitive distractions when in-
evitable typing errors have to be corrected.

5. Number of commands. The available commands in
typical text-based systems are not only invisible, they
are also much larger in number (and potentially in-
finite, if we consider possible inclusion of third party
libraries). The standard Java library, for example, in-
cludes tens of thousands of methods. Strategies that
work for exploring block-based systems, such as memo-
risation and investigative browsing, fail for these larger
systems. Novice users have to learn to explore and
navigate extensive documentation.

6. Prototype versus definition. The format of avail-
able method calls listed in block-based languages are
prototypes of invocations of these methods. When a
user drags a command into the program, they have a
syntactically correct call in place – only possible pa-
rameters need to be filled in or adjusted. On the other
hand, the list of available methods in text-based lan-
guages is typically provided in the form of method def-
initions (commented signatures). These differ in syn-
tax from the method invocation. Programmers have to
construct the syntax of the method invocation on their
own, deriving the details from the method definitions.
For novices in these languages, this is a non-trivial

step and requires understanding of a number of non-
trivial concepts (including return values, parameters
and types).

7. Matching identifiers. A specific subgroup of the
spelling challenge is found in dealing with user-defined
identifiers. When identifiers, such as variable names,
are referenced, most block-based systems offer a selec-
tion of known identifiers via user interface elements,
such as drop-down menus. In text-based systems, users
must not only distinguish between the definition of and
the reference to an identifier, they must also under-
stand that correct spelling is important and master its
input. In many systems, this includes dealing with
case sensitive syntax – particularly difficult for those
whose native language has no concept of case.

8. Grouping. Another subgroup of spelling that de-
serves explicit mention as a separate challenge is the
treatment of compound statements and definition of
scope. Missing or superfluous brackets in languages
that define scope with explicit symbols, or incorrect in-
dentation in languages where scope is defined through
indentation, are among the most common and persis-
tent syntax errors holding up novice programmers [1].
It seems that knowing about the mechanism for scope
is not enough; the mechanics of arranging and main-
taining scope are still challenging in these languages,
even when the principle is understood. This problem
does not exist in block-based languages.

9. Writing expressions. The writing of expressions,
such as multi-operator arithmetic expressions, is sig-
nificantly more difficult in text-based systems where
the format of the complete expression is not appar-
ent through its use. In block-based systems, blocks
representing expressions clearly indicate number and
position of parameters and in many systems also its
type.

10. Understanding types. In many block-based sys-
tems, only few types are used (often just distinguish-
ing booleans from other data values) and users can
successfully create operational programs without gain-
ing a meaningful understanding of the concept of data
types. In text-based systems (even in dynamically
typed languages) an understanding of data types is
typically necessary for the construction of even simple
meaningful programs.

11. Interpreting error messages. Many block-based
systems manage to avoid almost all syntax errors. In
systems where syntax errors occur, these are typically
narrowly localised, and a message is displayed point-
ing accurately to the origin of the error in the source
code. In text-based systems, on the other hand, where
structure is derived from typed representation, error
messages are notoriously vague, misplaced from their
causal location and wrong in their wording. Interpret-
ing these error messages is a non-trivial skill that takes
novices considerable time to master.

12. Managing layout. Layout, such as indentation and
spacing, is done automatically in block-based systems
and must be done manually in text-based program-
ming languages. Even with editors that auto-indent

Figure 1: Program representation in a frame-based
editor

lines, it is possible – and, in fact, very common – for
beginners to create incorrect indentation. In languages
where indentation is semantically meaningful (usually
to indicate scope), incorrect indentation leads to syn-
tactic or semantic errors. In languages that ignore
whitespace, incorrect indentation “just” affects read-
ability. This, however, also creates problems as lack of
readability often leads to errors in the program.

13. Changing programming paradigm. Often the pro-
gression from blocks to text also involves a change
of programming paradigm. Scratch, for example, is
object-based (program scripts specify behaviour of in-
dividual objects), while the most common text-based
languages are either procedural or class-based (pro-
grams define classes of objects, and instantiation is
required).

Not all of these issues are encountered to the same de-
gree for any particular pairing of block-based and text-based
system, but any transition typically involves most of them.
What is worse, many of these problems amplify each other
when encountered in conjunction. Together, these issues
present a significant challenge to novices, even if they were
aiming at creating programs of no higher complexity than
in the previous system.

4. FRAME-BASED EDITING
Frame-based editing aims to combine many of the bene-

ficial aspects of block-based and text-based systems into a
single interface. The aim is to achieve the small-scale read-
ability and some of the error avoidance and discoverability
of blocks, while retaining the flexibility, manipulation effi-
ciency, keyboard control and large-scale readability of text.

Figure 1 shows a segment of a program in a frame-based
editor for a new, Java-like language called Stride, integrated
into the Greenfoot system since 2015. The editor uses some
graphical elements (shapes and colours) to present aspects
where graphics have advantages over characters. Overall,
however, the presentation maintains the look of a program
as essentially a textual, if coloured, document.

Greenfoot, the system our current implementation is in-
tegrated in, is an introductory development environment

Figure 2: A frame with empty slots

aimed at beginning programmers aged from about 14 years
old upwards. We will use this implementation as the proto-
type to discuss the concepts of frame-based editing.

4.1 Frames
All statements in Stride are represented by frames. This

is true for compound statements, whose frames are painted
with distinct background colour and a visible border, as
well as simpler, one-line statements that appear in a default
colour and without a visible border.

Frames are inserted with a single keypress and are either
entirely present or absent; it is not possible to have half a
statement in the code (such as, for example, an if-statement
with a missing closing bracket in a traditional text editor).

This means that scope is represented as a frame: a graph-
ical box, rather than the customary pair of brackets, paren-
theses or keywords. This is true for all scopes: classes, meth-
ods and control structures. The frames – like the scopes –
may be nested.

The advantages are fairly obvious: Recognising the extent
– beginning and end – of a scope is much easier and quicker
than in textual representation. Programmers do not need to
determine which closing bracket matches which opening one,
and no additional confusion can be created by misleading
indentation. The overall visual overhead, however, is much
less than for typical block-based systems with their strong
colours, 3D and shadow effects, and heavily nested blocks
for expressions.

4.2 Slots
Frames may contain slots for further entry of code. Our

frames distinguish between text slots and frame slots, for the
insertion of text or nested frames, respectively (Figure 2).

At the statement level, where maintaining structure is
helpful, frames are assembled in a manner similar to block-
based languages (albeit largely keyboard driven; see below).
However, at the expression level the interaction mechan-
ics differ. In block-based editors the condition of an if-
statement, for example, is made up of more blocks: expres-
sion blocks. Multi-operator expressions must be built by
dragging and dropping multiple expression blocks and as-
sembling them in nested configurations. The calculation of
the hypotenuse of a triangle, for example, can be seen in
Figure 3: Although not very long, it had to be assembled by
dragging eight blocks together. Koitz and Slany [13] noted
this as a problem with block-based systems and proposed a
different editor for expressions/formulae on mobile devices.

In contrast, the condition in an if-statement’s frame is an
expression slot : it is written as text, in a manner very similar
to that used in a plain text editor, although some structure
is still maintained (brackets and quotes, for example, can

Figure 3: Example of a nested expression in Scratch:
the above expression involves eight blocks.

Figure 4: A frame cursor and a text cursor

never be mismatched and are always inserted and deleted in
pairs).

4.3 The Frame Cursor
A frame editor always displays one cursor, and the cur-

sor is always in a slot. Two different types of cursor exist,
depending on what kind of slot has focus: When the cursor
is in a frame slot, a frame cursor is shown (Figure 4, left).
Inside a text slot, the cursor changes to a text cursor (Fig-
ure 4, right). It is not possible to have a frame cursor and a
text cursor at the same time.

Interpretation of input differs with the two different cur-
sors: when the frame cursor is visible, keyboard input is
interpreted as commands, and corresponding frames are in-
serted. When the text cursor is visible, keys insert their own
character literally, as in a traditional text editor.

The existence of the frame cursor is a significant differ-
ence of frame-based editing to both block- and text-based
systems. Block-based editors usually have little or no key-
board support. Blocks cannot be inserted with keys; instead,
the destination for new blocks is selected with a mouse drag.
The frame cursor improves this by providing a focal point
for navigation, selection and insertion, in a similar way as a
text cursor does for text entry.

The frame cursor can be moved using the cursor keys and
in combination with the shift modifier can create frame se-
lections. Selections can be cut, copied, pasted, deleted or
dragged to a new position. This allows for more flexible ma-
nipulation of nested blocks, which was shown to have a high
viscosity overhead using the mouse-based block manipula-
tion in Scratch [18].

4.4 Insertion
In text-based programming, code is inserted by typing

the syntactic representation, sometimes with assistance of
code completion in IDEs. In block-based systems, blocks
are dragged into the program from a prototype palette. In
our frame editor, there are two primary ways to insert new
frames.

The first has already been mentioned: Single-key com-
mands insert new frames at the position of the frame cur-
sor. If a selection is present, inserting a frame surrounds
the selection with the new frame. For example, selecting a
group of three statements and using the ’i’-command (in-
serting an if-frame) surrounds the selected statements with
the if-statement, placing the selection into the body.

The other option to insert frames is to select them from

Figure 5: The editor’s cheat sheet

Figure 6: Dragging a frame

the “cheat sheet”. The cheat sheet is an optionally displayed
sidebar (Figure 5) that shows all frames available for inser-
tion. Frame prototypes can be clicked, and are then inserted
at the current frame cursor position.

In addition to allowing frame entry via mouse clicks, the
cheat sheet also serves to make available frames discover-
able and to inform users of their associated keyboard com-
mands. This allows recognition of constructs combined with
fast keyboard entry.

4.5 Manipulation
Frames are first class entities in the editor’s user interface.

They have associated context menus that can be triggered
via a right mouse click, offering functions to, for instance,
delete or temporarily disable a frame.

Frames can also be dragged and dropped using the mouse,
in a manner similar to blocks in block-based systems. When
frames are being dragged, a temporary frame cursor indi-
cates valid drop locations (Figure 6); frames can only be
dropped where they are syntactically valid.

In traditional text editors, similar functionality is usually
available: Text can be selected, and the selected text can be
dragged and dropped at a different location.

Again, the different unit of manipulation (editing frames
instead of editing characters) leads to various advantages in
our editor:

• In text editors, arbitrary spans of text can be selected
and dragged. These may include parts of statements,
accidentally selected, and thus the drag operation may
invalidate program structure. In the frame editor, only
complete frames can be dragged. (This includes simple
one-line statements – these are also frames.)

• Selecting a complete multi-line statement in a text edi-
tor typically requires careful targeting with the mouse,
making this a high-overhead operation. It usually re-
quires careful consideration of including whitespace,
indentation or trailing return characters in the selec-
tion, resulting in different formatting for subtly differ-
ent choices. No such consideration and fine targeting
is required in a frame editor.

• In text editors, dragged text may be dropped any-
where, again potentially breaking program structure.
The majority of potential drop locations by far are syn-
tactically invalid, yet no help is provided by the editor
in identifying the few valid ones. In the frame editor,
frames may be dropped only at locations where they
maintain a syntactically correct structure.

In summary, the frame-based editor for the Stride lan-
guage combines aspects from block- and text-based systems,
while adding some novel concepts not found in either of
those systems. In doing so, it positions itself between blocks
and text, offering advantages from both not previously avail-
able simultaneously, and providing a stepping stone between
these two modes of manipulation.

5. FRAMES AS A STEPPING STONE
In section 3, we listed a number of fundamental issues

that pose challenges for many learners transitioning from
block-based to text-based systems. We propose to use a
frame-based system as a stepping stone between these two
traditional types of system. This reduces the incidental com-
plexities of the step from one system to the other.

When introducing a frame-based system as an interim
step, learners progress through two transitions instead of
one. Figure 7 illustrates this, showing which of the issues
identified above are encountered at which part of the tran-
sition. In this figure, we maintain the numbering of issues
introduced in section 3.

Two distinct kinds of advantage result from splitting the
transition in two:

• Simply reducing the number of issues to be mastered
at each step is a considerable advantage (even though
the total number across both transitions remains the
same). Many of the most difficult problems for begin-
ner stem not from a single issue, but a combination
and concurrence of multiple characteristics. The need
to memorise and type syntax in text-based systems, for
example, combined with the poor quality of error mes-
sages, poses a significant challenge. The combination
of these characteristics amplifies the problem.

• The design of the frame editor includes numerous as-
pects that significantly reduce the difficulty of many

TEXT

 1a - readability (symbols)
 5 - number of commands
 6 - prototype vs definition
 7 - matching identifiers
 9 - writing expressions
10 - understanding types
11a - error messages (1)
13 - change of paradigm

 1b - readability (scope)
 2 - mem. of commands
 3 - memorisation of syntax
 4 - typing/spelling
 8 - grouping
11b - error messages (2)
12 - managing layout

 1a - readability (keywords vs symbols)
 1b - readability (textual scope definition)
 2 - memorisation of commands
 3 - memorisation of syntax
 4 - typing/spelling
 5 - number of commands
 6 - prototype vs definition
 7 - matching identifiers
 8 - grouping
 9 - writing expressions
10 - understanding types
11a - interpreting error messages (1)
11b - interpreting error messages (2)
12 - managing layout
13 - change of paradigm

FRAMES

BLOCKS

Figure 7: Transitioning in one step versus two steps

individual transition issues. Thus, the issues at each
step are not only fewer in number, but also easier to
master. This is discussed in more detail below.

For the following discussion, we again assume our Stride
editor as the example of a frame-based editor. Details of
the discussion may be different with frame-based editors for
other languages, but the principles are general enough for
this discussion to be useful in the general case.

5.1 Transition from Blocks to Frames
Figure 7 shows, in the bottom left, which of the issues

identified will be encountered in the transition from a block-
based to a frame-based system.

5.1.1 Readability
Issue of small scale readability (the readability of single

statements, Issue 1) are partly encountered in the transi-
tion to frames and partly in the transition from frames to
text. The aspect that is encountered in the former is the
use of symbols (rather than keywords) for some functions
and the more formal format for statements (being further
removed from natural language). However, the impact of

Figure 8: A method call frame providing prompts
for parameters

this aspect is less severe that in the block-to-text transition,
because much of the syntax does not need to be memorised
and typed, but is provided implicitly as decoration of the
frames. The readability aspect that is delayed to the tran-
sition to text is the representation of scopes using textual
symbols.

Large scale readability (the readability of large portions
of code or whole programs) is significantly improved, since
the visual overhead of the Stride editor (colouring, number
and prominence of blocks) is greatly reduced, methods are
arranged sequentially (as in text-based systems) and better
navigation is provided.

5.1.2 Number of Commands
The issues of the greatly increased number of available

commands (Issue 5) is encountered here, since all methods
from the Java library are available for invocation in Stride.
However, we can distinguish two independent aspects here:
The number of different kinds of command is actually re-
duced (since all possible method calls are presented as indi-
vidual commands in block-based systems, whereas a method
call is a single generic command in Stride) while the number
of available method calls is greatly increased.

Because of this, the number of different available com-
mands in Stride is actually quite small – the Cheat Sheet in
Figure 5 does indeed show a complete list of all commands
that can be used here.

The distinction between kinds of command and different
methods eases the transition considerably, since it separates
a combined challenge (“Which command should I use?”) into
two separate, logically distinct parts (“Which type of com-
mand should I use?” and “If it is a method call, what is the
method?”).

In addition, well designed contextual code completion in
the Stride editor helps in identifying and selecting methods
for invocation. On the first invocation of code completion,
only a small handpicked list of commonly used methods is
shown. This provides novices with assistance without over-
whelming them. They can then choose to show a full list if
required.

5.1.3 Prototype Versus Definition
The fact that available methods are presented in form of

a method definition in the available documentation rather
than as invocation prototypes (Issue 6) is encountered here.
Again, this issue is made easier to master, since the frame
for method invocation automatically offers the correct invo-
cation syntax. This does not need to be memorised. Once
a method name is typed for invocation (or selected from
a code completion menu), the Stride editor automatically
creates text slots for the correct number of parameters and
adds annotations showing the parameter names to aid in
providing parameter values (Figure 8).

5.1.4 Matching Identifiers
The typing of identifiers (Issue 7) needs to be mastered at

this step. This can be eased in frame-based editors through
contextual code completion. Since frame based editors know
the context of an identifier to be typed (they know, for ex-
ample, whether the cursor is in the name slot of a method
call or the type slot of a variable declaration), code comple-
tion can be implemented offering identifiers of the right kind
for insertion (method names and type names, respectively).

5.1.5 Writing Expressions
Expressions are written as text in frame-based editors,

rather than assembled as blocks (Issue 9). This change
has to be mastered at this stage. Again, the frame editor
provides more help than text editors in maintaining struc-
tures that are written as pairs of symbols (parentheses and
quotes), making this step a little easier. While this tran-
sition itself presents a challenge (because the mechanism is
new), it can also be seen as an improvement over blocks be-
cause the efficiency gain from textual expression entry can
outweigh the advantages in recognition and error avoidance
of using expression blocks.

5.1.6 Understanding Types
The challenge to understand and deal with data types

(Issue 10) is encountered here. The Stride editor provides
some additional help with this by offering contextual code
completion on types: If the cursor is in a slot that expects
a data type, known type names are offered for completion.
The offered list can be restricted if more context is known. In
a frame to catch an exception, for instance, only Exception
and its subtypes are offered for insertion.

5.1.7 Error Messages
The challenge of dealing with error messages (Issue 11)

is split between the two transition steps. In Stride, learn-
ers will encounter more errors than in common block-based
systems, however, the location and accuracy of the error is
much better than in text-based systems (thus, dealing with
incorrectly worded or positioned messages is deferred to the
next transition). Also, the number of errors made is signifi-
cantly lower than in text-based systems, since a considerable
number of syntax errors cannot be made.

This separation leads users more gently towards reading
and interpreting error messages.

5.1.8 Change of Paradigm
In many block-to-frame combinations, a change of paradigm

will be encountered (Issue 13). For example, if learners tran-
sition from Scratch or Snap to Stride, they will move from
an object-based to a class-based paradigm. (Other combina-
tions, for example Alice-to-Stride, would not encounter this
issue, since Alice is a block-based and class-based system.)

While this necessitates the learning of a potentially new
programming model, it also provides the advantage of the
greater power and flexibility that comes with class-based sys-
tems. The restrictions in most block-based systems, both in
expressiveness and performance, do not exist in Stride, and
the scope and scale of programs that can be attempted in
Stride is the same as in Java and other professional lan-
guages.

5.2 Transition from Frames to Text
The remainder of the issues listed in section 3 are encoun-

tered when transitioning from frames to text. These are the

reading and writing of scopes defined by textual symbols
(Issues 1 and 8), required memorisation of commands and
their syntax (Issues 2 and 3), the need to type and spell the
syntax explicitly character by character (Issue 4), including
whitespace and layout (Issue 12), and the need to deal with
unhelpful error messages (Issue 11, see Figure 7).

These transition steps are significantly easier than they
were in the block-to-text transition, especially in the tran-
sition from Stride to Java, because of a number of charac-
teristics of Stride, its frame-based editor, and its integration
into the Greenfoot system:

• Stride syntax is very close to Java syntax. While it is
a significant difference to type the syntax out in full
rather than using frames, students have seen much of
the syntax for a long time before being required to type
it themselves. Thus, a level of familiarity exists before
syntax has to be reproduced exactly. (Stride differs
from Java mainly through the absence of semicolons
and curly brackets.) Frame editors could be created
to resemble syntax of other languages, either approxi-
mately or exactly.

• Greenfoot supports both Stride and Java, and classes
written in each can be used in the same project. Both
languages are programmed against the same API (the
Greenfoot API and the Standard Java Library). Thus,
when transitioning into Java, users are already familiar
with the API, and the semantic problems (choosing
the right methods to call) can be separated from the
syntactic ones.

• Because of the similarity of syntax and semantics, frame-
based programs can be compared to Java statement
by statement; the change is not so much a translation,
but rather a transliteration: near-identical code with
a slightly altered syntax, entered using a different in-
teraction model.

• To further facilitate this transition, Greenfoot provides
a Java preview feature in its Stride editor which shows
an animated transition from Stride to Java. This an-
imation can be run forwards and backwards, and do-
ing so repeatedly gives students the opportunity to di-
rectly compare the two syntaxes.

In Greenfoot, users can start developing projects entirely
in Stride, and later transition to writing very similar code in
Java. The change to Java can happen through the creation
of separate Java projects, or on a class-by-class basis, mixing
Stride and Java classes in the same project.

5.3 Logic First, Syntax Later
We have seen that the use of a frame editor as a step-

ping stone separates the transition issues into two groups,
to be addressed at different times. The issues identified also
fall into two categories separated by their nature: some are
caused by intrinsic complexities of the programming model,
others are caused by accidental complexities.

Intrinsic complexities are those that are inherent in the
nature of the programming model. These cannot be avoided
if one wants to learn to program in that model, and master-
ing these issues is a useful learning experience. Examples of
these are the number of available commands, reading stan-
dard format documentation (class and method definitions),

understanding a type system, and mastering a class-based
paradigm. Learning each of these concepts is a useful step.

Accidental complexities are those caused by poor syntax
or tools used for creating the artefact, but not intrinsically
related to useful aspects of the challenge at hand (under-
standing object-oriented programming). Examples from our
list include poor readability, having to memorise syntax,
having to type commands, and dealing with poor error mes-
sages.

It is important to note that all challenges representing
intrinsic complexities (those that are useful to master) are
included in the first transition step, from blocks to frames.
Thus, learning to program in Stride provides all the edu-
cational benefits of the complete transition, while avoiding
a number of the accidental (syntactic) complexities. Stride
programs are equivalent to programs in professional text-
based languages in their programming model, expressive-
ness and performance, removing the ceiling imposed by most
block-based systems. The transition to Stride addresses all
challenges related to logic, reaping all their benefits, while
relegating pure syntactic and mechanical challenges that of-
fer little reward to a later date.

The transition to pure text systems at a later date is then
motivated purely by the desire to learn to use other popular
systems, potentially using other paradigms or platforms.

6. LIMITATIONS AND DRAWBACKS
One of the most obvious downsides of the proposed ap-

proach is that it requires two transitions to new editing mod-
els rather than just one, and the mastering of three systems
rather than two. There is, of course, always a possibility (or
even likelihood) that using a third system adds new, addi-
tional transition issues to the ones already present. Insert-
ing a frame-based editing model adds at least the mastery
of the associated editing interactions as an additional chal-
lenge. Thus, the overall amount of material to be mastered
increases.

While we speculate that the benefits of easing the transi-
tions using a frame editor offset this growth in material to
be mastered, we currently have no evidence to support such
an assertion. This aspect remains speculation at this stage.

In practice, programming education now often starts at an
age below 10 years old and continues until late teenage years
and beyond. In these cases, the system progression employed
often already includes three or more different systems. In
these cases, the overhead of using a frame-based system may
not be any more than what is already in place.

Another potential problem is the limited availability of
frame editors. Currently, Greenfoot’s Stride editor is the
only system closely implementing this model. Stride uses an
object-oriented programming paradigm and static types. If
a desired progression involved, for example, Scratch as the
starting point and a procedural use of Python at its end,
then Stride would impose additional concepts unnecessary
to support the progression. Both the block-based and text-
based systems in this example do not make use of classes or
static types, so Stride’s use of them would pose a potential
distraction from a straight progression path. If, on the other
hand, the end point is Java, then the progression works very
well, as Stride is aligned with this language.

It is our hope that designers of other systems will apply
the ideas of frame-based editing to create frame editors for
other languages, such as for a Python-like language, to sup-

port the transition across more varied systems. There is no
specific feature that ties frame-based editing to a particular
programming paradigm; the reason that the Stride editor is
integrated into Greenfoot and targets Java as its successor
language is coincidental, and driven only by the authors’
involvement with this particular environment.

7. CONCLUSIONS
Frame-based editing is a new hybrid editing mode, com-

bining features of block-based and text-based programming.
As such, it is suitable as a transitional step between blocks
and text in a sequence of programming systems for novice
programmers.

We have discussed the design of frame-based editing in
general and provided an implementation supporting Stride,
a new frame-based language similar to Java. In this paper,
we have discussed in detail the benefits arising from using a
frame-based editing system, not only in separating the tran-
sition to text into two steps, but also in easing the learning of
new concepts significantly in many cases by providing better
support.

While we have discussed the transition as a three-system
sequence, in practice variations of this may often be em-
ployed. If, for example, learners are beginning to program at
an age of 12 or older, block-based systems could be skipped
altogether, in favour of using frame-based programming from
the start. Since frame-based editors remove some of the most
difficult mechanics of typing and syntax, they can be used
from a younger age than pure text-based systems.

If, on the other hand, the educational goal is to simply
provide an insight into programming as a discipline, without
the intention to progress to more professional or extensive
programming, then a text-based system might not be used
at all. Frame-based systems are capable of illustrating all
important concepts of programming, and text-based editors
may not offer an important enough learning experience in
their own right for generalist programming education.

There is, in fact, no clear reason why text-based program-
ming would have any advantage at all over frame editors
if good implementations of these existed for popular lan-
guages and the tool chain were adapted to operate on the
necessary storage formats. Frame-based programming may
eventually replace text-based programming as the dominant
editing model even for professional programmers, entirely
removing the need for a second transition.

Until this ambitious goal is achieved, frame-based editing
instead offers an ideal stepping stone between block-based
programming and text-based programming.

8. REFERENCES
[1] A. Altadmri and N. C. C. Brown. 37 million

compilations: Investigating novice programming
mistakes in large-scale student data. In Proceedings of
the 46th ACM Technical Symposium on Computer
Science Education, pages 522–527. ACM, 2015.

[2] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari.
From scratch to “real” programming. Trans. Comput.
Educ., 14(4):25:1–25:15, Feb. 2015.

[3] D. Bau. Droplet, a blocks-based editor for text code.
J. Comput. Sci. Coll., 30(6):138–144, June 2015.

[4] T. Booth and S. Stumpf. End-user experiences of
visual and textual programming environments for

arduino. In Y. Dittrich, M. Burnett, A. Mørch, and
D. Redmiles, editors, End-User Development, volume
7897 of Lecture Notes in Computer Science, pages
25–39. Springer Berlin Heidelberg, 2013.

[5] N. C. C. Brown, S. Sentance, T. Crick, and
S. Humphreys. Restart: The resurgence of computer
science in uk schools. Trans. Comput. Educ.,
14(2):9:1–9:22, June 2014.

[6] S. Cooper. The design of Alice. Trans. Comput. Educ.,
10(4):15:1–15:16, Nov. 2010.

[7] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and
S. Cooper. Mediated transfer: Alice 3 to java. In
Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages
141–146, New York, NY, USA, 2012. ACM.

[8] Department for Education. National Curriculum from
September 2014. 2013.

[9] M. Dorling and D. White. Scratch: A way to logo and
python. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, SIGCSE
’15, pages 191–196, New York, NY, USA, 2015. ACM.

[10] D. A. Fields, M. Giang, and Y. Kafai. Programming
in the wild: Trends in youth computational
participation in the online scratch community. In
Proceedings of the 9th Workshop in Primary and
Secondary Computing Education, WiPSCE ’14, pages
2–11, New York, NY, USA, 2014. ACM.

[11] M. Homer and J. Noble. Combining tiled and textual
views of code. In Software Visualization (VISSOFT),
2014 Second IEEE Working Conference on, pages
1–10, Sept 2014.

[12] C. D. Hundhausen, S. F. Farley, and J. L. Brown. Can
direct manipulation lower the barriers to computer
programming and promote transfer of training?: An
experimental study. ACM Trans. Comput.-Hum.
Interact., 16(3):13:1–13:40, Sept. 2009.

[13] R. Koitz and W. Slany. Empirical comparison of
visual to hybrid formula manipulation in educational
programming languages for teenagers. In Proceedings
of the 5th Workshop on Evaluation and Usability of
Programming Languages and Tools, PLATEAU ’14,
pages 21–30, New York, NY, USA, 2014. ACM.

[14] M. Kölling. Greenfoot: A highly graphical ide for
learning object-oriented programming. In Proceedings
of the 13th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’08, pages 327–327, New York, NY, USA, 2008. ACM.

[15] M. Kölling. The Greenfoot programming environment.
Trans. Comput. Educ., 10(4):14:1–14:21, Nov. 2010.

[16] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The Scratch programming language and
environment. Trans. Comput. Educ., 10(4):16:1–16:15,
Nov. 2010.

[17] Y. Matsuzawa, T. Ohata, M. Sugiura, and S. Sakai.
Language migration in non-cs introductory
programming through mutual language translation
environment. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’15, pages 185–190, New York, NY, USA,
2015. ACM.

[18] F. McKay and M. Kölling. Predictive modelling for
hci problems in novice program editors. In Proceedings
of the 27th International BCS Human Computer
Interaction Conference, BCS-HCI ’13, pages 35:1–35:6,
Swinton, UK, 2013. British Computer Society.

[19] P. Miller, J. Pane, G. Meter, and S. Vorthmann.
Evolution of novice programming environments: The
structure editors of carnegie mellon university.
Interactive Learning Environments, 4(2):140–158,
1994.

[20] K. Powers, S. Ecott, and L. M. Hirshfield. Through
the looking glass: Teaching cs0 with alice. In
Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’07, pages
213–217, New York, NY, USA, 2007. ACM.

[21] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich,
J. Bishop, A. Samuel, and T. Xie. The future of
teaching programming is on mobile devices. In
Proceedings of the 17th ACM Annual Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’12, pages 156–161, New York,
NY, USA, 2012. ACM.

[22] I. Utting, S. Cooper, M. Kölling, J. Maloney, and
M. Resnick. Alice, greenfoot, and scratch – a
discussion. Trans. Comput. Educ., 10(4):17:1–17:11,
Nov. 2010.

[23] D. Weintrop and U. Wilensky. Using commutative
assessments to compare conceptual understanding in
blocks-based and text-based programs. In Proceedings
of the Eleventh Annual International Conference on
International Computing Education Research, ICER
’15, pages 101–110, New York, NY, USA, 2015. ACM.

[24] D. Wolber, H. Abelson, E. Spertus, and L. Looney.
App Inventor - Create Your Own Android Apps.
O’Reilly, 2011.

