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ABSTRACT
User interaction with Embodied Conversational Agents (ECA)
should involve a significant affective component to achieve
realism in communication. This aspect has been studied
through different frameworks describing the relationship be-
tween user and ECA, for instance alignment, rapport and
empathy. We conducted an experiment to explore how an
ECA’s non-verbal expression can be controlled to respond
to a single affective dimension generated by users as in-
put. Our system is based on the mapping of a high-level
affective dimension, approach/avoidance, onto a new ECA
control mechanism in which Action Units (AU) are acti-
vated through a neural network. Since ‘approach’ has been
associated to prefrontal cortex activation, we use a mea-
sure of prefrontal cortex left-asymmetry through fNIRS as a
single input signal representing the user’s attitude towards
the ECA. We carried out the experiment with 10 subjects,
who have been instructed to express a positive mental atti-
tude towards the ECA. In return, the ECA facial expression
would reflect the perceived attitude under a neurofeedback
paradigm. Our results suggest that users are able to suc-
cessfully interact with the ECA and perceive its response as
consistent and realistic, both in terms of ECA responsive-
ness and in terms of relevance of facial expressions. From a
system perspective, the empirical calibration of the network
supports a progressive recruitment of various AUs, which
provides a principled description of the ECA response and
its intensity. Our findings suggest that complex ECA facial
expressions can be successfully aligned with one high-level
affective dimension. Furthermore, this use of a single dimen-
sion as input could support experiments in the fine-tuning
of AU activation or their personalization to user preferred
modalities.
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1. INTRODUCTION AND RATIONALE
One important research direction to improve ECA use in

user interfaces is to study the fundamental properties of the
ECA-user relationship. These have been described through
various concepts such as empathy and alignment. For in-
stance, ECA are able to induce empathy in a human user,
which usually translates into exploring appropriate ways for
the agent to reveal its internal state. Furthermore, align-
ment aims at mapping between the recognition of facial ex-
pressions, in terms of emotion recognition, of the user and
the elicitation of the emotional response from the virtual
agent through the generation of appropriate facial expres-
sions.

Here, we investigate the potential of using a single high-
level emotional dimension as an input to control a virtual
agent’s response. We aim at using a Brain-Computer Inter-
face (BCI) in a Neurofeedback (NF) setting to provide the
user with compelling multimodal visual feedback using com-
plex generation of appropriate facial expressions in response
to their (perceived) disposition towards the virtual agent.

In this paper, the ECA is designed to provide alignment
between the users’ positive thoughts, collected via fNIRS-
based BCI input signals, and the generation of perceived
internal emotions of a virtual agent through the display of
appropriate facial expressions. In the next sections, we pro-
vide an overview of the related works in virtual agents, and
their ability to generate emotions, as well as a detailed de-
scription of the virtual agent configuration and the exper-
imental setup we have designed. Finally, we present the
results of our experiments.

2. PREVIOUS AND RELATED WORK
To enhance human-agent interaction, several studies have

reported the importance of an agent’s ability to display emo-
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Figure 1: System Overview. Brain signals are collected through fNIRS system a©, where left-most and
right-most channels are processed to generate a left-asymmetry score 1©. During the View epoch 2©, the
left-asymmetry values are used to define the Min and Max bounds 3© to be used during the Engage epoch
where the real-time left-asymmetry scores 4© are normalized before being used as single input 5© to the
virtual agent’s facial expressions (AUs) and body parameters (BAPs) under the neural network’s control c©.

tions [5, 25, 26]. However, the appropriateness of the dis-
played emotions is paramount. Expressing an emotion that
is inappropriate in the context of the interaction will dam-
age the interaction more than not showing any emotion at
all [25]. Moreover, empathic virtual agents have a greater
impact on users’ perception than agents that are fully im-
pulsive and express their felt emotions without considera-
tion of their interlocutors’ emotions nor the social context
of the interaction [5, 25]. Previous research has investigated
both empathic agents supporting the user in learning situ-
ations [26] and agents that elicit empathy from users. The
use of physiological signals has been experimented in both
contexts [16, 26]. Gilroy et al. [16] have described the use of
EEG prefrontal asymmetry to capture empathy towards a
virtual agent during an interactive narrative, but have not
explored the agent’s expressions, instead using a simplified
feedback mechanism based only on color saturation.

Agents display their emotional states through their verbal
and non-verbal behaviors. While earlier models focused on
the six prototypical expressions of emotion, latest models al-
low modeling a large variety of facial expressions as a combi-
nation of the expressions of emotions [1] as sequences of mul-
timodal signals [22], or even as a blend of expressions [23].
Models may rely on pure combinatorial approaches where
the expression of an emotion is the result of an algebraic
combination of other expressions [1] of regions on the face [7,
23]; other models have relied on corpora annotation [22]
where videos are carefully annotated to extract multimodal
signals expressing emotions. Others have applied a percep-
tual approach [15, 17] where human users are asked to cre-
ate expressions of the virtual agents for given emotions. Yet
other approaches have implemented the dynamic evolution

of facial expression of emotion following Scherer’s appraisal
model [2, 11].

Additionally, an important research topic in relation to
the idea of ‘alignment’ between human users and virtual
agents is ‘rapport’ defined in [18] as the feeling of being ‘in-
sync’ with a conversational partner. They also report that
virtual agents can create rapport during interactions with
human users by generating proper verbal, and non-verbal
behaviors. This provides a setting whereby we assume that
generated non-verbal behaviors (i.e., facial expressions) are
the reflection of the human user which thus creates a rela-
tionship between the user’s input signals and the resulting
visual feedback generated by the virtual agent. Lately, Cas-
sell and colleagues [32] have taken into account the expressed
and perceived mental state of each participant of a dyad to
model ‘rapport’. Their model reasons about the beliefs and
intentions of one participant and how it perceives its inter-
locutor’s state of mind.

In the next sections, we present the overall system design,
introducing how user disposition towards the agent can be
captured by a fNIRS-based BCI and mapped onto control
parameters for the ECA.

3. SYSTEM OVERVIEW
We designed a software platform to experiment with ECA

control from a single affective dimension, which is captured
through an fNIRS BCI (see Figure 1). From the user’s
perspective, the ECA behaves as an autonomous agent, re-
sponding to what it perceives as the user’s mental disposi-
tion towards itself. The ECA possesses a range of spon-
taneous and expressive behaviors, ranging from idle ani-
mations, with (neutral) spontaneous motion and postural
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changes, to affective expression of graded intensity. Users
are instructed to express positive feelings towards the agent
in order to capture its interest. This should in turn result in
the ECA responding to the user with an expression matching
the perceived interest in both valence and intensity. Users’
attitudes are captured through their levels of Pre-Frontal
Cortex (PFC) asymmetry, using fNIRS to measure differ-
ences in activity in left versus right PFC (Figure 1(a)). This
is based on extensive work relating the approach/withdrawal
affective dimension to PFC asymmetry, measured through
EEG [12] as well as MRI [33]. We have adopted fNIRS be-
cause of its lesser sensitivity to artefacts compared to EEG
and the fact that it is well-suited to capture activity in the
PFC, in particular its dorsolateral region [13]. Furthermore,
experience gained when studying PFC asymmetry through
fMRI [9] could provide guidance to design fNIRS experi-
ments. From the ECA perspective, the main challenge is to
design an appropriate control process that would interpret
and respond appropriately to the level of approach expressed
mentally by the user. The system uses a network-like control
representation to relate a single input to an array of Action
Units (AU) and Body Action Parameters (BAP) that pro-
vide low-level control for the ECA’s animation (Figure 1(c)).

An overview of the operation of the system is as follows.
The system captures PFC asymmetry in real-time and pro-
duces a matching ECA response. The PFC asymmetry
baseline, which is subject-dependent, is acquired through
an epoch during which subjects watch the ECA (display-
ing a neutral attitude) while carrying out a simple mental
counting task (Figure 1(b)). During active engagement by
subjects, PFC asymmetry is measured and its increase over
the baseline is interpreted as the intensity of the approach
towards the ECA. Finally, the value is passed to the con-
trol network, which will generate matching ECA behavior,
interrupting idle behavior and producing appropriate facial
expressions.

In the next sections, we describe in more detail the various
components of the system, as well as the techniques for data
acquisition and calibration, which have been used to map
BCI data onto the ECA controller.

3.1 Affective BCI Input
Previous uses of fNIRS in affective research [21, 31] have

investigated emotional responses (to music or video clips)
rather than the active expression of emotions as an input
modality. Here, we used fNIRS as an active, affective BCI
based on fNIRS (see [8] for a general description of fNIRS).

For the purpose of providing real-time NF, we used mea-
surements of changes in oxygenated hemoglobin (HbO) con-
centration1, because it is commonly associated with neural
activity [28]. We used an fNIR400 Optical Brain Imaging
Station by Biopac Systems, with a 16-channel sensor with
fixed 2.5cm source-detector separation (Figure 1(a). Raw
data and oxygenation values were collected with a 2Hz sam-
pling rate using software provided by the device manufac-
turer (COBI Studio and FnirSoft v3.5), and was sent to a
bespoke remote client experimental software over TCP/IP
(using FnirSoft DAQ Tools). To characterize left PFC asym-
metry for real-time feedback, we derived a metric of inter-
hemispheric difference in HbO change by averaging HbO val-
ues over the four leftmost and four rightmost channels (lo-

1As opposed to deoxygenated or total hemoglobin (HbR and
HbT, respectively).

Figure 2: Evolution of the agent’s behaviors accord-
ing to the user’s level of engagement.

cated over the left and right dorsolateral prefrontal cortex,
respectively), then subtracting average Right from average
Left [13].

The resulting asymmetry metric (henceforth called left-
asymmetry) reflects the inter-hemispheric difference in HbO
change in micromolar units (µM/L) which defines the single
affective dimension as continuous input signal to control the
ECA.

3.2 Virtual Agent Control Mechanism
Our virtual agent [6] is a synthetic computer animated

character designed to autonomously interact with humans
in various activities. The agent relies on procedural models
involving upper body modalities: facial expression (eyebrow,
eyelid, cheek, lip and jaw), gaze, head and upper torso mo-
tions. The facial expressions of the virtual agent are defined
using FACS, Facial Action Coding System [14], where face
movements are decomposed into several Action Units (AUs).
For instance, a raise of inner eyebrows corresponds to AU1,
while a jaw dropping corresponds to AU26. Each AU is
represented by a value varying from 0 (no activation) to 1
(maximum activation). For the body animation, our agent
follows the MPEG-4 standard which defines several Body
Animation Parameters (BAPs). Each BAP represents the
rotation angle of one body joint on one axis.

The ECA responds by aligning its nonverbal behavior to
the user’s detected empathy level. The detected empathy
level is computed over one single affective dimension, rang-
ing from zero to one. As just explained, a very low value
of the affective dimension corresponds to a user with very
low level of empathy; while a very high value corresponds to
a user with very high level of empathy. To achieve agent’s
behavior alignment with user’s detected empathy level, we
mapped user’s low level of empathy with agent’s disengage-
ment and user’s high level of empathy with agent’s full en-
gagement. Thus, as user’s positive thoughts increases, the
agent gives more positive feedbacks as sign of its engagement
level. For intermediate levels of engagement, the agent dis-
plays different variation of positive expressions. The design
of the agent’s nonverbal behavior, mapped to AUs/BAPs, is
drawn from literature [19] and is validated from consensus
of a small number of participants.

We consider four different levels of empathy (see Figure 2).
If the user’s detected level of empathy is minimal (i.e. ≤0.2),
the agent looks disengaged mirroring to the user his detected
mental state. In this case, the agent does not direct its
gaze towards the user; it tilts its head and its body, and
it displays boredom through a lip pout. Then, whilst the
user’s detected level of empathy remains below average (i.e.
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Figure 3: Example of network mapping asymmetry
levels to AUs and BAPs. Here the transition step
based on the user’s perceived level of empathy leads
to the activation of AU12 (Lip Corner Puller) and
AU25 (Lips Part).

≤0.5), the agent shows a neutral facial expression with its
gaze and body oriented towards the user. When the user’s
detected level of empathy reaches above average (>0.5 but
≤0.8) the agent shows a more positive attitude, expressing
happiness. It keeps its head and its gaze directed at the user,
and it displays a smile. Finally, once the user’s detected level
of empathy reaches near maximum (i.e., >0.8), the agent
displays a real delight to interact with the user. Its smile
widens, crow’s feet appear around the eyes as the cheeks are
raised and its head slightly tilts backwards.

To provide continuous feedbacks to the user, the agent
varies its behavior in real-time. Thus, in order to modify the
generated animation in real-time, we developed a graphical
tool allowing us to map any kind of input (here, the user’s
perceived level of empathy mapped from the left-asymmetry
value) into animation parameters for our agent (AUs and
BAPs). We created a graph where the nodes are the inputs
and outputs and the arcs represent the links between the
input nodes and the output ones. Like in neural networks,
nodes have their own activation values, while arcs have their
own weights.

In the graph shown in Figure 3, each of the transition step
is represented by an input node whose value ranges from 0
(no activation) to 1 (maximum activation). Depending on
the user’s perceived level of empathy, a particular node is
activated. On the output side, every AU and BAP is also
represented by its own node. The values of a node for each
AU vary from 0 (no activation) to 1 (maximum activation).
So for example, if the node AU12 (Lip Corner Puller) is
fully activated (its value is 1), the agent will smile with the
greatest intensity. For the BAPs, nodes values range from -1
to 1. These values are then transformed into radian angles
to be interpreted by our animation system, as specified by
the MPEG-4 norm. For instance, if the value of the node
vc1 tilt (cerebral vertebra along the neck) is set to -1, the
agent’s head will be tilted backwards with an angle of -π.

Finally, arcs are drawn to connect inputs (left-asymmetry
level nodes) to the outputs (AUs and BAPs nodes). For each
level of empathy, we define a combination of AUs and BAPs
conveying the associated behavior. It corresponds to defin-
ing 4 different nonverbal behaviors to be displayed by the
virtual agent in response to user’s level of left-asymmetry.
For instance, to express disengagement (reflecting a low level
of left-asymmetry), AU6 (Cheek Raiser), AU15 (Lip Corner

Figure 4: Activation patterns of AUs defined in the
network according to the changes in the user’s asym-
metry levels.

Depressor) and AU17 (Chin Raiser) are activated, as well as
BAPs vc1 tilt (cerebral vertebra along the neck) and vl1 tilt
(lumber vertebra of the trunk). This expression corresponds
to a pout with the agent not gazing at the participant. Thus,
five arcs are connecting the input node Step0 to the five cor-
responding output nodes. The weight of each arc connecting
level p with p+1 is set by calibrating AUs and BAPs with
their extreme values of step p, in order to obtain a smooth
animation during the transition phase between step p and
step p+1, allowing the agent to display believable behavior.

Each arc has its own weight, representing how much the
input node will influence the output one. Weights vary from
-1 (negative influence) to 1 (positive influence). The output
nodes activation value is computed based on McCulloch and
Pitts activation function [20]. The final output activation
value is a weighted sum of the inputs where wij represents
the weights of the links and ai represents the activation val-
ues of the input nodes. θj represents the initial activation
value of the output node.

aj =

n∑
i

wij ∗ ai + θj

For instance, if the input node Step0 is fully activated and
connected to the output node AU62 (Eyes turn right) by
an arc whose weight is 0.3, the agent will slightly look to
its right. Therefore, whenever one input node is activated,
the corresponding AUs and BAPs are activated. To ensure
smooth transitions between the different behaviors associ-
ated to each step, we interpolate the animations. When the
user’s perceived level of empathy generates a change from

Figure 5: Example of variations of ’idle’ behaviors
(randomly generated every 2s).
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Figure 6: Protocol design, including setting the baseline of the fNIRS system, as well as windowing the data
collection during the View and Engage epochs to account for the delay in hemodynamic response.

one step to another, the corresponding input nodes are not
directly activated or inhibited, but instead, the activation
and inhibition of these nodes follow an exponential function
illustrated in Figure 4.

Furthermore, to avoid the agent displaying repetitively
the same facial expression, we introduce alternative combi-
nations of AUs and BAPs for each step. When communicat-
ing, different behaviors can be used while conveying similar
meanings [24]. The new expressions defined for each step
are built as variations of behaviors. Variations can be a
change of AU or BAP intensity, a change of AUs (e.g. a
change between AU25 (Lips Part) and AU26 (Jaw Drop)),
etc. The variation of expressions ensures the agent not to
display repetitive behaviors but also not to freeze if remain-
ing in a same step for a long duration. Without such a varia-
tion, the agent would display a unique expression that would
remain static and thus would appear uncanny. Moreover, it
also allows giving continuous feedback to the user about his
level of engagement, thus whilst the user is perceived to
maintain a level of empathy, a particular, though constantly
relevant, behavior should be generated. Hence, we introduce
a timer that triggers the display of one of the variants of the
behavior of the corresponding level. Empirically, we defined
the timer to be 2s for which the user maintains a particu-
lar level of left-asymmetry (see Figure 5). This mechanism
preserves the naturalness of facial expressions as the agent
displays continuously expressive and dynamic behavior.

3.3 Experimental Task
For the design of our BCI experiment to investigate ECA

control from a single affective dimension, we followed the
recommendation of Solovey et al. [30] for the use of fNIRS in
HCI settings. The experimental task consisted in completing
8 identical blocks (preceded by a practice block which was
not analyzed). The structure of the blocks is presented in
Figure 6. Each block included three epochs: Rest, View,
and Engage.

During Rest epochs, subjects were instructed to look at
a crosshair located in the center of a gray screen to try to
clear their head of thoughts and relax. During View epochs,
subjects were instructed to keep looking at the agent while
carrying out a simple mental counting task (counting back-
wards from 500 by increments of a given integer). This task
was included to control for unwanted mental processes (see
[29]). During Engage epochs, subjects were instructed to en-
gage with the ECA through positive thinking, and to ‘cheer
her up’ with their thoughts. We were deliberately vague
with support instructions in order to allow subjects to de-
velop their own cognitive strategies. After completing each

block, subjects were asked to describe their strategies in gen-
eral terms.

During Engage epochs, subjects received real-time feed-
back of their left-asymmetry. To ensure consistent mapping
of individual variations in left-asymmetry onto the feedback
signal, we used the range of variation of HbO asymmetry
during the View epoch in each block to determine the map-
ping of the level of engagement from the user to the visual
feedback signal (i.e., ECA’s variations in facial expressions
- see Figure 1(3)). This was calculated by the experimental
software during the last 3s of the Rest epoch between the
View and Engage epochs.

We defined the minimum point for mapping Min as the
mean of left-asymmetry values during the View epoch plus
1.28 times their standard deviation. In normally distributed
asymmetry scores, this threshold would result in no feedback
for 90% of the spontaneous asymmetry variations during the
reference (View) epoch2. To determine the maximum Max
point for mapping, we increased the threshold asymmetry
value for feedback Min by the variation range of asymmetry
values during the View epoch. Asymmetry values within
the range [Min;Max ] during the Engage epoch were mapped
linearly onto the ECA’s facial expression, with the same 2Hz
frequency as the acquisition of asymmetry values.

Ten subjects participated in the experiment (5 female,
Mean age=43.89 years, SD=8.15, Range=[31; 53]). Subjects
were right-handed and had no history of psychiatric condi-
tions. They provided written consent prior to participation
and received an online retailer voucher equivalent to $30 as
compensation. The study was approved by a research ethics
committee at the authors’ institution. Subjects were sat
in a comfortable chair to minimize movement artifacts, ap-
proximately 47” (120cm) away from a 24” flat monitor that
displayed the virtual agent. The room was quiet (but not
soundproof) and dimly lit. The fNIRS probe positioned on
their forehead was also covered with non-transparent fabric
to prevent ambient light from reaching the sensors. Subjects
were instructed to refrain from moving their limbs, frowning
and talking while they carried out the experimental tasks.

To attenuate noise for post-hoc analyses (resulting from
minor head movements, heartbeat and respiration), we ap-
plied sliding-window motion artifact rejection and raw data
were low-pass filtered using a finite impulse response filter
with order 20 and 0.1Hz cut-off frequency [4]. Additionally,
we applied first order linear detrending on data from each
channel [3]. HbO for each channel was calculated with re-

2Note that this approach to determining NF threshold for
left-asymmetry is consistent with the original one of Rosen-
feld et al. [27].
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Figure 7: Example of a successful block where the asymmetry values in the Engage epoch are significantly
greater than the ones in the View epoch, mapped onto the changes in the ECA’s facial expressions. The
topographic view (top-left) shows the 16 optodes’ activation with a significant increase of left oxygenation
during the Engage epoch.

spect to the baseline measured at the end of each rest period
at the start of each data-collection block [4].

We extracted HbO values on each channel for View and
Engage epochs within each block, using time synchroniza-
tion markers. To accommodate for the approximately 7s de-
lay in the hemodynamic response [8], we excluded the first
14 data points (corresponding to 7s sampled at 2Hz) of each
epoch on each channel, and included 14 data points after
the completion of the epoch (see Figure 10; also see [29] for
a similar approach).

4. RESULTS
Out of the 80 blocks collected from the 10 subjects, 16

blocks were excluded due to minor malfunctions, excessive
movement, and reported discontinuation of the tasks during
the block. This left 64 valid blocks for analysis.

We defined block success as a statistically significant in-
crease in average left-asymmetry during the Engage epoch
compared to the View epoch within the same block3. To
determine success, we used an independent t-test with a
bootstrapping resampling method (1000 samples, 95% con-
fidence intervals) on asymmetry scores in consecutive View
and Engage epochs. Based on this criterion, 37 blocks were
successful (58% of blocks).

On a subject basis, we judged a subject to have been suc-
cessful in the NF task if at least 50% of their valid blocks
were successful (consistent with previous literature [9]). Ac-
cording to this criterion, 70% of subjects achieved neuro-
feedback success. Median success ratio (i.e., the proportion
of successful blocks per subject) was 50%. Each subject
completed at least one block successfully, and one subject
completed all of the blocks successfully.

3We elected to compare View and Engage epochs to deter-
mine block success, as opposed to simply comparing asym-
metry during Engage against the baseline, because the visual
stimulus during these epochs was very similar (and concep-
tually the same), and subjects’ cognitive activity was con-
trolled with explicit instructions (i.e., count during View
and expressing positive thoughts during Engage).

The majority of excluded blocks were due to subjects
abandoning the counting task due to its high subjective dif-
ficulty. Since View and Engage epochs were comparable
in terms of the presented visual stimulus and adequately
matched for task difficulty, the observed differences in the
left-asymmetry signal within blocks can be attributed to
switching from the neutral task to the control task during
which the user’s level of engagement with the ECA through
positive thinking.

We calculated the effect-size measure r to characterize the
substantive significance of increase in asymmetry scores be-
tween successive View and Engage epochs within successful
blocks. The smallest r effect-size that could be detected
was .34 (medium)4, which can be interpreted as approxi-
mately 11.5% of variance explained in asymmetry values by
the Engage task. This indicates that our experimental setup
was sensitive in detecting increase in left-asymmetry during
Engage epochs. The median r in successful blocks was .82

4We use Cohen’s [10] conventions for interpreting the mag-
nitude of the effect-size measure r.

Figure 8: Topographic image of asymmetric dorso-
lateral prefrontal oxygenation increase during a suc-
cessful NF epoch, overlaid on a brain surface image
(generated using fNIRSoft by Biopac Systems).
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Figure 9: Change in mean asymmetry in succes-
sive View and Engage epochs, within successful
and non-successful blocks. Note that non-successful
blocks are characterized by a slight decrease in left-
asymmetry during Engage, while successful blocks
are characterized by a marked increase in left-
asymmetry.

(large) with the interquartile range [.55; .87], which indicates
that successful blocks were characterized with a marked in-
crease in left-asymmetry during the Engage epoch, clearly
distinguishable from the View epoch.

Figure 7 demonstrates how HbO changes on both sides
contributed to the increase in asymmetry from View to En-
gage epochs. Left-side oxygenation was statistically signif-
icantly larger in successful blocks (M = 0.58, SD = 0.58)
than in non-successful ones (M = 0.15, SD = 0.38), t(62) =
3.33, p < .001, r = .39 (medium). Conversely, right-side oxy-
genation did not differ significantly between non-successful
blocks (M = 0.30, SD = 0.34) and successful ones (M =
0.21, SD = 0.51), t(62) = 0.40, p = .375, ns. These findings
indicate that change in left-asymmetry in successful blocks
was predominantly due to increase in left-side oxygenation
during the Engage task, which is consistent with previous
literature (see Figure 8).

Changes in left-asymmetry oxygenation between succes-
sive View and Engage epochs are presented in Figure 9,
separately for successful and non-successful blocks. Non-
successful blocks were characterized with a slight decrease
in left-asymmetry during Engage (M = -0.16, SD = 0.17),
while successful blocks were characterized with a marked
and comparably large increase in left-asymmetry (M = 0.39,
SD = 0.32).

Immediately after completing a block, subjects described
their cognitive strategy to engage with the agent. Although
the sample size of 37 successful blocks does not allow for
a detailed content analysis, subjects’ comments on their
strategies suggest that thinking about personal positive mem-
ories was most conducive in capturing the ECA’s attention,
clearly illustrated on Figure 7 where as left-asymmetry in-
creases during Engage epoch.

5. CONCLUSIONS
We have presented a novel experimental framework, which

attempts to relate previous conceptualizations of the rela-
tionship between a user and an ECA to a single affective

Figure 10: Differences in oxygenation increase from
View to Engage epochs within successful and non-
successful blocks, separately for the left and right
sides. Note the marked increase in left-side oxygena-
tion in successful blocks, while right-side oxygena-
tion changes are at a similar level in the successful
and non-successful blocks.

dimension. The expression of approach by users, captured
through variations of their PFC asymmetry, could constitute
an empirical basis to capture user disposition towards an
ECA, in a more specific way than previously described con-
cepts of engagement, empathy, alignment or rapport, which
all refer to wider frameworks. What we have shown specifi-
cally is that, while approach was measured on the user side,
on the ECA side it could be used to generate appropriate
responsive behavior through the coordination of expressive
parameters such as AUs and BAPs. These findings indicate
that users were able to express a mental disposition to en-
gage through the use of positive thoughts, which resulted in
an appropriate response from the ECA congruent to their af-
fective state. Although these early results are encouraging,
further work should be dedicated to exploring the closed-
loop aspects of these experiments, in particular the effects
of ECA backchannel on users’ attitudes.
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