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ABSTRACT
Detection of highlights in movies is a challenge for the af-
fective understanding and implicit tagging of films. Under
the hypothesis that synchronization of the reaction of spec-
tators indicates such highlights, we define a synchronization
measure between spectators that is capable of extracting
movie highlights. The intuitive idea of our approach is to
define (a) a parameterization of one spectator’s physiolog-
ical data on a manifold; (b) the synchronization measure
between spectators as the Kolmogorov-Smirnov distance be-
tween local shape distributions of the underlying manifolds.
We evaluate our approach using data collected in an exper-
iment where the electro-dermal activity of spectators was
recorded during the entire projection of a movie in a cinema.
We compare our methodology with baseline synchronization
measures, such as correlation, Spearman’s rank correlation,
mutual information, Kolmogorov-Smirnov distance. Results
indicate that the proposed approach allows to accurately
distinguish highlight from non-highlight scenes.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—signal process-
ing ; I.5.2 [Pattern Recognition]: Design Methodology—
pattern analysis

.

Keywords
Synchronization; Physiological Signals; Affective Comput-
ing; Time Delay Embedding; Manifold Learning; Dimen-
sionality Reduction; Diffusion Maps; Highlights Detection

1. INTRODUCTION
Detection and recognition of highlights in movies are dif-

ficult tasks due to the large variability of actions, scenes and
sequences that strongly depend on the film genre. Adopting
a supervised approach to highlights detection needs a large
number of manually annotated samples [13]. Moreover, the
movie annotation process is very tedious in itself and often
biased by personal preferences of the annotators.

In the last decade, researchers have attempted to match
physiological responses to the affective state of viewers and
the appearance of highlights in films [4]. Measuring physi-
ological responses to the movie content can provide insight
into the viewers’ aesthetic experiences, and can help better
understand emotions elicited from the particular scenes [13].

In the field of affective computing, much research on emo-
tion recognition in response to multimedia content has been
carried out using EEG signals, peripheral physiological sig-
nals and facial expressions [9], [11]. In the area of highlights
detection, various models have involved physiological mea-
surements of a single viewer when watching of media, such
as movies [7], music excerpts [14], and sport events [6]. An-
other approach to highlights detection which was based on
the analysis of several spectators’ physiological signals has
been proposed in [4]. The authors used a physiological in-
dex of social interaction to determine general highlights of
videos. That method allowed the detection of highlights that
are relevant to the majority of viewers. Those experiments
allow the evaluation of the feedback of one spectator, but
they cannot take into account interactions among a group



of viewers.
Strong interactions among viewers can occur while watch-

ing spectacular types of highlights e.g. special effects. Fur-
thermore, viewers can feel strong empathy with the movie
characters, and have similar reactions to a certain movie
content e.g. dramatic events. In these cases, we expect that
similar physiological reactions of viewers are evoked. Under
these assumptions, we propose that a level of physiological
synchronization can be considered as a reliable indicator of
highlights appearance in movies. Using multiple viewers’
physiological recordings allows us to alleviate the impact of
their personal preferences. Contrarily to methods which rely
on emotion assessment, the proposed approach can be ap-
plied directly on multi-person physiological signals, and does
not require the tedious annotation of movies (however, the
expert’s annotation is used only to evaluate the method in
our study).

Many different synchronization measures have been em-
ployed lately to process physiological signals. One such pos-
sible synchronization measure is for instance the Pearson
correlation coefficient (Spearman’s rank correlation coeffi-
cient) that is able to quantify linear correlations between
pairs of signals. Another approach to synchronization orig-
inates from information theory. Signals can be regarded as
a collection of random variables which represents the evolu-
tion of a system over time. In this context, a basic similar-
ity measure is mutual information or Kolmogorov - Smirnov
distance that can be used as a similarity measure between
distributions of signals.

In the area of emotion recognition, feature vectors of im-
ages and videos have been modeled recently as points lying
on some Riemannian manifold to retrieve intrinsic structure
of data [10]. This approach cannot be used to investigate
a family of manifolds as is the case for highlights detec-
tion where processing of several viewers’ physiological sig-
nals takes place.

2. TIME DELAY EMBEDDING AND
DIFFUSION MAPS

Time-delay coordinate embedding has been used in the
analysis of dynamical systems [12]. This method embeds a
scalar time series into an m-dimensional space to reconstruct
the trajectory of a system. For each time series {xi}, i =
1, 2, 3, ..., n a representation of the delay-coordinate embed-
ding can be expressed as the following vector Xi which con-
sists of m components

Xi = [xi, xi+j , xi+2j , .., xi+(m−1)j ], (1)

where j is the index delay and m is the embedding dimen-
sion.

We assume that the high-dimensional representation of
physiological signals Xi is controlled by a low-dimensional
process that corresponds to a physiological response to the
stimulus. Applying diffusion maps to time-delay coordinate
embedding, we provide a new low dimensional parameteriza-
tion that still captures physiological activity. When diffusion
maps are used [5], an affinity metric K(xi, xj) is defined be-
tween pairs of physiological samples xi and xj based on their
representation in time-delay coordinate Xi and Xj , respec-
tively. Then, we consider only a collection M of k samples

xi to define the following kernel

K(xi, xj) = e
−||Xi−Xj ||

ε , (2)

where ε is the scale parameter of the affinity metric and
k < n. Now, note that i, j = 1, 2, 3, ..., k. We can look at
the collectionM as nodes of an undirected symmetric graph,
where two nodes xi and xj are connected by an edge with the
affinity weight K(xi, xj). We pursue the construction of a
Markov chain on the graph nodes by normalizing the kernel
K(·, ·). Let K be the kernel matrix, and let P = D−1K be
the corresponding transition matrix, where D is a diagonal

matrix with elements Dii =
k∑
j=1

K(xi, xj). In sequence, we

can calculate Pt analogues to P . Now, P (xi, xj) is the prob-
ability of transition in a single step from node xi to node
xj . Similarly, we define Pt(xi, xj) as the transition proba-
bility in t steps from node xi to node xj . The idea is that
the transition probability between two nodes can reflect the
local geometry of the data. This leads us to a definition of
the diffusion distance Dt(xi, xj) between pairs of samples,
expressed by [5]:

Dt(xi, xj) =

√√√√ k∑
l=1

(P (xi, xl)− P (xj , xl))
2w(xl), (3)

where w(xl) is a normalization weight. Intuitively, two points
are similar when many short paths with large weights con-
nect them. It is proven that the diffusion distance Dt(xi, xj)
can be computed using the eigenvalues {λi}, that tend to 0
and have a modulus strictly less than 1, and the correspond-
ing eigenvectors {ϕi} of the transition matrix P [5]. Let
Φt(xi) for some t ≥ 0 be the diffusion maps of time series
samples {xi}, i = 1, 2, 3, ..., k into Euclidean space Rs that
is defined by

Φt(xi) = [λ2t
1 ϕ1(xi), ..., λ

2t
s ϕs(xi)], (4)

where s ∈ {1, 2, ..., k − 1} is the new space dimensionality.
It has been shown that the diffusion distance between sam-

ples xi and xj equals the Euclidean distance in the diffusion
maps space that is expressed as follows [5]

Dt(xi, xj) = ||Φt(xi)− Φt(xj)||. (5)

3. LOCAL SHAPE DISTRIBUTION OF
MANIFOLD REPRESENTATION

In this paragraph we present a geometric framework which
computes the amount of synchronization between a pair of
physiological signals. The concept is to measure the sim-
ilarity between local shapes of reconstructed signal mani-
folds. Firstly, in order to capture the unique local geomet-
ric properties of a signal manifold, we introduce the local
shape cumulative distribution function Fσxi(δ) of pairwise
diffusion distances for each sample xi and its delay samples
xi, xi+1, ..., xi+σ denoted by

Fσxi(δ) =

∫
1D̃t(xi,xi+q)≤δdµ, (6)

where q ∈ {1, σ}, µ is a counting measure and 1D̃t(xi,xi+q) is

an indicator function with respect to a delay sample on man-
ifolds. D̃t(·, ·) is the cosine distance in the diffusion maps
space that can be derived from the Euclidean dot product.



Figure 1: Overview of the proposed approach to highlights
detection. In this fictitious example, all viewers 1,2,...,N
are synchronized for event 1 and M in the movie since the
manifolds are similar. This is not the case for event 2.

In our case, it is advantageous to use normalized the local
shape distribution

Fσxi(δ) =
Fσxi(δ)

Fσxi(∞)
. (7)

For two time series {xi} and {yi}, the synchronization mea-
sure is reduced to computing the Kolmogorov - Smirnov dis-
tance between two local shape distributions of their manifold
representations for each time step i that is shown in Figure
1., and expressed as follows

Sσ(xi, yi) = max
δ
|Fσxi(δ)−F

σ
yi(δ)|. (8)

If two signals are the same Sσ(xi, yi) is equal to 0. When the
number of signals is more than 2, the overall synchronization
can be obtained by averaging synchronization values of all
possible non-overlapping pairs of signals.

4. EXPERIMENTS AND DISCUSSION
The synchronization measure was applied to physiologi-

cal signals recorded during the watching of the movie (Taxi
Driver, 1976) in a real cinema (Grütli cinema, Geneva) where
viewers were wearing electro-dermal activity sensors. Our
goal is to test if physiological signals synchrony can be used
to detect the movie highlights defined by a cinema critic.
In the present study, we utilize 12 skin conductance signals
out of 30 recorded signals, and their sampling frequency is
10 Hz [8]. These signals are segmented in overlapping win-
dows with time step and window length equal 0.5s and 5s,
respectively. For diffusion map we set up s equals 3 based
on values of eigenvalues of the transition matrix P , and for
estimation of the local shape distribution we use 50 nearest
samples (σ = 50) in time.

Annotation of the movie content was performed offline by
an experienced movie critic, who annotated the movie based
on the following five types of highlights [1], [2]. The so-called
”Form-highlights” are:
- H1: Spectacular (technical choice, special effects);
- H2: Subtle (use of camera, lighting, music).
The so-called ”Content-highlights” are:

- H3: Character development (characters’ emotions and re-
sponses to dramatic events);
- H4: Dialogue (motivation of actions and tensions among
characters);
- H5: Theme development (unusual close up, urban theme).

We apply our synchronization measure to determine scenes
containing one particular type of highlights among (H1, H2,
H3, H4, H5), as opposed to scenes without highlight. If
the overall measure of the synchronization among all spec-
tators (the average Kolmogorov-Smirnov distance between
two local shape distributions) at time step i is lower than a
threshold we assign this sample to a highlight scene.

We compare our methodology (shape distribution dist.)
with baseline synchronization measures such as correlation,
Spearman’s rank correlation (Spearman’s correlation), mu-
tual information and Kolmogorov-Smirnov distance (K-S
distance) that are applied to each signal window. The re-
ceiver operating characteristic (ROC) curves and the areas
under the ROC curves (AUC) are depicted in Figure 2. and
Table 1., respectively.

Table 1: Area under curve (AUC) for each highlight type
(H1, H2, H3, H4, H5), and each different synchronization
measure

``````````̀Measure
Highlights

H1 H2 H3 H4 H5

correlation 0.43 0.50 0.47 0.43 0.40

Spearman’s correlation 0.48 0.50 0.48 0.42 0.41

mutual information 0.68 0.56 0.58 0.46 0.46

K-S distance 0.46 0.55 0.33 0.32 0.29

shape distribution dist. 0.71 0.58 0.48 0.57 0.60

The proposed methodology (shape distribution dist.) has
significantly the highest performance for highlights H1 which
corresponds to AUC equal to 0.71 (Bradley test [3], α =
0.05). This can be justified by the nature of the correspond-
ing events, where it is expected to elicit strong physiological
reactions from the spectators. In this case, our approach is
capable of effectively discovering the similarity of skin con-
ductance peaks because of its ability to explore the intrinsic
structure of the data. On the other hand, the rest of the
methods fail to detect synchronization among the specta-
tors, and thus are not useful for the identification of movie
highlights, for the given movie.

For detection of highlights H2, H3, our methodology and
mutual information obtain significantly the best performance,
respectively (Bradley test [3], α = 0.05). The area under
the ROC curve is equal to 0.58 in these cases. These re-
sults can be explained by a lack of strong synchronized re-
actions among all viewers to subtle contents of the movie,
and character development that takes place. For highlight
H3, this is also supported by the result of the K-S distance
method, where we observe that the pairs of spectators are
significantly low synchronized (Bradley test [3], α = 0.05).
It appears that possible single responses to these type of
events cannot be well identified because of averaging syn-
chronization over all pairs of spectators.

Furthermore, our method has significantly the highest per-
formance (Bradley test [3], α = 0.05) for detection of high-
lights H4 and H5 in the comparison with the baseline meth-
ods. The area under the ROC curve is equal to 0.57 and
0.60, respectively.
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(a) correlation
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(b) Spearman’s correlation
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(c) mutual information
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(d) K-S distance
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(e) shape distribution dist.

Figure 2: ROC analysis for each highlight class detection (H1, H2, H3, H4, H5). Pink line corresponds to random detection.

5. CONCLUSIONS
In this work we propose a synchronization measure which

is based on comparing local shapes of the manifold represen-
tation of signals. The comparison of the local shape distri-
butions of diffusion distances on the manifolds is relatively
invariant to scale (normalization in eq. 7) and topological
changes of the signals. The results that we obtain on data
recorded in a cinema indicate the ability of our methodology
to identify some types of highlights in the movie based on
synchronization of viewers’ skin conductance signals.
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