
ar
X

iv
:1

30
1.

13
91

v2
 [

cs
.L

O
]

 2
 M

ay
 2

01
3

Backdoors to Normality for

Disjunctive Logic Programs∗†

Johannes Klaus Fichte and Stefan Szeider

Vienna University of Technology, Austria

fichte@kr.tuwien.ac.at, stefan@szeider.net

September 2, 2018

Abstract

Over the last two decades, propositional satisfiability (Sat) has become one of the most suc-
cessful and widely applied techniques for the solution of NP-complete problems. The aim of this
paper is to investigate theoretically how Sat can be utilized for the efficient solution of problems
that are harder than NP or co-NP. In particular, we consider the fundamental reasoning problems
in propositional disjunctive answer set programming (Asp), Brave Reasoning and Skeptical
Reasoning, which ask whether a given atom is contained in at least one or in all answer sets,
respectively. Both problems are located at the second level of the Polynomial Hierarchy and thus
assumed to be harder than NP or co-NP. One cannot transform these two reasoning problems into
Sat in polynomial time, unless the Polynomial Hierarchy collapses.

We show that certain structural aspects of disjunctive logic programs can be utilized to break
through this complexity barrier, using new techniques from Parameterized Complexity. In particu-
lar, we exhibit transformations from Brave and Skeptical Reasoning to Sat that run in time
O(2kn2) where k is a structural parameter of the instance and n the input size. In other words,
the reduction is fixed-parameter tractable for parameter k. As the parameter k we take the size
of a smallest backdoor with respect to the class of normal (i.e., disjunction-free) programs. Such
a backdoor is a set of atoms that when deleted makes the program normal. In consequence, the
combinatorial explosion, which is expected when transforming a problem from the second level of
the Polynomial Hierarchy to the first level, can now be confined to the parameter k, while the
running time of the reduction is polynomial in the input size n, where the order of the polynomial
is independent of k. We show that such a transformation is not possible if we consider backdoors
with respect to tightness instead of normality.

We think that our approach is applicable to many other hard combinatorial problems that lie
beyond NP or co-NP, and thus significantly enlarge the applicability of Sat.

1 Introduction

Over the last two decades, propositional satisfiability (Sat) has become one of the most successful
and widely applied techniques for the solution of NP-complete problems. Today’s Sat-solvers are
extremely efficient and robust, instances with hundreds of thousands of variables and clauses can be
solved routinely. In fact, due to the success of Sat, NP-complete problems have lost their scariness, as
in many cases one can efficiently encode NP-complete problems to Sat and solve them by means of a
Sat-solver [Gomes et al., 2008; Biere et al., 2009].

We investigate transformations into Sat for problems that are harder than NP or co-NP. In
particular, we consider various search problems that arise in disjunctive answer set programming

∗Research supported by the ERC, Grant COMPLEX REASON 239962.
†This is the author’s self-archived copy including detailed proofs. A preliminary version of the paper was presented on

the workshop ASPOCP’12.

1

http://arxiv.org/abs/1301.1391v2

(Asp). With Asp one can describe a problem by means of rules that form a disjunctive logic pro-
gram, whose solutions are answer sets. Many important problems of AI and reasoning can be rep-
resented in terms of the search for answer sets [Brewka et al., 2011; Marek and Truszczynski, 1999;
Niemelä, 1999]. Two of the most fundamental Asp problems are Brave Reasoning (is a certain atom
contained in at least one answer set?) and Skeptical Reasoning (is a certain atom contained in
all answer sets?). Both problems are located at the second level of the Polynomial Hierarchy [Eiter
and Gottlob, 1995] and thus assumed to be harder than NP or co-NP. It would be desirable to utilize
Sat-solvers for these problems. However, we cannot transform these two reasoning problems into Sat
in polynomial time, unless the Polynomial Hierarchy collapses, which is believed to be unlikely.

New Contribution In this work we show how to utilize certain structural aspects of disjunctive
logic programs to transform the two Asp reasoning problems into Sat. In particular, we exhibit a
transformation to Sat that runs in time O(2kn2) where k is a structural parameter of the instance
and n is the input size of the instance. Thus the combinatorial explosion, which is expected when
transforming problems from the second level of the Polynomial Hierarchy to the first level, is confined
to the parameter k, while the running time is polynomial in the input size n and the order of the
polynomial is independent of k. Such transformations are known as “fpt-transformations” and form the
base of the completeness theory of Parameterized Complexity [Downey and Fellows, 1999; Flum and
Grohe, 2006]. Our reductions break complexity barriers as they move problems form the second to the
first level of the Polynomial Hierarchy.

It is known that the two reasoning problems, when restricted to so-called normal programs, drop to
NP and co-NP [Bidóıt and Froidevaux, 1991; Marek and Truszczynski, 1991a; Marek and Truszczyński,
1991b], respectively. Hence, it is natural to consider a structural parameter k as the distance of a given
program from being normal. We measure the distance in terms of the smallest number of atoms that
need to be deleted to make the program normal. Following Williams et al. [2003] we call such a set of
deleted atoms a backdoor. We show that in time O(2kn2) we can solve both of the following two tasks
for a given program P of input size n and an atom a∗:

Backdoor Detection: Find a backdoor of size at most k of the given program P , or decide that a
backdoor of size k does not exist.

Backdoor Evaluation: Transform the program P into two propositional formulas FBrave(a
∗) and

FSkept(a
∗) such that (i) FBrave(a

∗) is satisfiable if and only if a∗ is in some answer set of P , and
(ii) FSkept(a

∗) is unsatisfiable if and only if a∗ is in all answer sets of P .
Tightness is a property of disjunctive logic programs that, similar to normality, lets the complexities

of Brave and Skeptical Reasoning drop to NP and co-NP, respectively [Clark, 1978; Fages, 1994].
Consequently, one could also consider backdoors to tightness. We show, however, that the reasoning
problems already reach their full complexities (i.e., completeness for the second level of the Polynomial
Hierarchy) with programs of distance one from being tight. Hence, an fpt-transformation into Sat for
programs of distance k > 0 from being tight is not possible unless the Polynomial Hierarchy collapses.

Related Work Williams, Gomes, and Selman [2003] introduced the notion of backdoors to explain
favorable running times and the heavy-tailed behavior of Sat and CSP solvers on practical instances.
The parameterized complexity of finding small backdoors was initiated by Nishimura, Ragde, and Szei-
der [2004]. For further results regarding the parameterized complexity of problems related to backdoors
for Sat, we refer to a recent survey paper [Gaspers and Szeider, 2012]. Fichte and Szeider [2012]

formulated a backdoor approach for Asp problems, and obtained complexity results with respect to
the target class of Horn programs and various target classes based on acyclicity; some results could be
generalized [Fichte, 2012]. Both papers are limited to target classes where we can enumerate the set
of all answer sets in polynomial time. The results do not carry over to the present work since here we
consider target classes where the problem of determining an answer set is already NP-hard.

Translations from Asp problems to Sat have been explored by several authors; existing research
mainly focuses on transforming programs for which the reasoning problems already belong to NP or
co-NP. In particular, translations have been considered for head cycle free programs [Ben-Eliyahu and

2

Dechter, 1994], tight programs [Fages, 1994], and normal programs [Lin and Zhao, 2004; Janhunen,
2006].

Some authors have generalized the above translations to capture programs for which the reasoning
problems are outside NP and co-NP. Janhunen et al. [2006] considered programs where the number of
disjunctions in the heads of rules is bounded. They provided a translation that allows a Sat encoding
of the test whether a candidate set of atoms is indeed an answer set of the input program. Lee and
Lifschitz [2003] considered programs with a bounded number of cycles in the positive dependency graph.
They suggested a translation that, similar to ours, transforms the input program into an exponentially
larger propositional formula whose satisfying assignments correspond to answer sets of the program. As
pointed out by Lifschitz and Razborov [2006], this translation produces an exponential blowup already
for normal programs (we note that by way of contrast, our translation is in fact quadratic for normal
programs).

Over the last few years, several Sat techniques have been integrated into practical Asp solvers.
In particular, solvers for normal programs (Cmodels [Giunchiglia et al., 2006], ASSAT [Lin and Zhao,
2004], Clasp [Gebser et al., 2007a]) use certain extensions of Clark’s completion and then utilize either
black box Sat solvers or integrate conflict analysis, backjumping, and other techniques within the Asp
context. ClaspD [Drescher et al., 2008] is a disjunctive Asp-solver that utilizes nogoods based on the
logical characterizations of loop formulas [Lee, 2005].

2 Preliminaries

Answer set programs We consider a universe of propositional atoms. A disjunctive logic program (or
simply a program) P is a set of rules of the form x1∨. . .∨xl ← y1, . . . , yn,¬z1, . . . ,¬zm where x1, . . . , xl,

y1, . . . , yn, z1, . . . , zm are atoms and l, n,m are non-negative integers. We write H(r) = {x1, . . . , xl} (the
head of r), B+(r) = {y1, . . . , yn} (the positive body of r), and B−(r) = {z1, . . . , zm} (the negative body of
r). We denote the sets of atoms occurring in a rule r or in a program P by at(r) = H(r)∪B+(r)∪B−(r)
and at(P) =

⋃

r∈P at(r), respectively. We abbreviate the number of rules of P by |P | = |{ r | r ∈ P }|.
A rule r is negation-free if B−(r) = ∅, r is normal if |H(r)| ≤ 1, r is a constraint if |H(r)| = 0, r is
constraint-free if |H(r)| > 0, r is Horn if it is negation-free and normal, r is positive if it is Horn and
constraint-free, and r is tautological if B+(r)∩(H(r)∪B−(r)) 6= ∅. We say that a program has a certain
property if all its rules have the property. We denote the class of all normal programs by Normal and
the class of all Horn programs by Horn. In the following, we restrict ourselves to programs that do not
contain any tautological rules. This restriction is not significant as tautological rules can be omitted
from a program without changing its answer sets [Brass and Dix, 1998]. Note that we state explicitly
the differences regarding tautologies in the proofs.

A set M of atoms satisfies a rule r if (H(r)∪B−(r))∩M 6= ∅ or B+(r) \M 6= ∅. M is a model of P
if it satisfies all rules of P . The GL reduct of a program P under a set M of atoms is the program PM

obtained from P by first, removing all rules r with B−(r) ∩M 6= ∅ and second, removing all ¬z where
z ∈ B−(r) from all remaining rules r [Gelfond and Lifschitz, 1991]. M is an answer set (or stable set)
of a program P if M is a minimal model of PM . The Emden-Kowalski operator of a program P and a
subset A of atoms of P is the set TP (A) := { a | a ∈ H(r), B+(r) ⊆ A, r ∈ P }. The least model LM(P)
is the least fixed point of TP (A) [Van Emden and Kowalski, 1976]. Note that every positive program P

has a unique minimal model which equals the least model LM(P) [Gelfond and Lifschitz, 1988].

Example 1. Consider the program

P = {a ∨ c← b; b← c,¬g; c← a;

b ∨ c← e; h ∨ i← g,¬c; a ∨ b;

g ← ¬i; c }.

The set A = {b, c, g} is an answer set of P since PA = { a ∨ c← b; c← a; b ∨ c← e; a ∨ b; g; c } and
the minimal models of PA are {b, c, g} and {a, c, g}.

3

The main reasoning problems for Asp are Brave Reasoning (given a program P and an atom
a ∈ at(P), is a contained in some answer set of P?) and Skeptical Reasoning (given a program P

and an atom a ∈ at(P), is a contained in all answer sets of P?). Brave Reasoning is ΣP
2 -complete,

Skeptical Reasoning is ΠP
2 -complete [Eiter and Gottlob, 1995].

Parameterized Complexity We give some basic background on parameterized complexity. For
more detailed information we refer to other sources [Downey and Fellows, 1999; Flum and Grohe, 2006;
Gottlob and Szeider, 2008; Niedermeier, 2006]. A parameterized problem L is a subset of Σ∗ × N for
some finite alphabet Σ. For an instance (I, k) ∈ Σ∗ × N we call I the main part and k the parameter.
L is fixed-parameter tractable if there exists a computable function f and a constant c such that there
exists an algorithm that decides whether (I, k) ∈ L in time O(f(k)‖I‖c) where ‖I‖ denotes the size of I.
Such an algorithm is called an fpt-algorithm. FPT is the class of all fixed-parameter tractable decision
problems.

Let L ⊆ Σ∗ × N and L′ ⊆ Σ′∗ × N be two parameterized problems for some finite alphabets Σ and
Σ′. An fpt-reduction r from L to L′ is a many-to-one reduction from Σ∗×N to Σ′∗×N such that for all
I ∈ Σ∗ we have (I, k) ∈ L if and only if r(I, k) = (I ′, k′) ∈ L′ such that k′ ≤ g(k) for a fixed computable
function g : N→ N and there is a computable function f and a constant c such that r is computable in
time O(f(k)‖I‖c) where ‖I‖ denotes the size of I [Flum and Grohe, 2006]. Thus, an fpt-reduction is,
in particular, an fpt-algorithm. It is easy to see that the class FPT is closed under fpt-reductions. We
would like to note that the theory of fixed-parameter intractability is based on fpt-reductions [Downey
and Fellows, 1999; Flum and Grohe, 2006].

Propositional satisfiability A truth assignment is a mapping τ : X → {0, 1} defined for a set X

of atoms. For x ∈ X we put τ(¬x) = 1 − τ(x). By ta(X) we denote the set of all truth assignments
τ : X → {0, 1}. We usually say variable instead of atom in the context of formulas. Given a propositional
formula F , the problem Sat asks whether F is satisfiable. We can consider Sat as a parameterized
problem by simply associating with every formula the parameter 0.

3 Backdoors of Programs

In the following we give the main notions concerning backdoors for answer set programming, as intro-
duced by Fichte and Szeider [2012]. Let P be a program, X a set of atoms, and τ ∈ ta(X). The truth
assignment reduct of P under τ is the logic program Pτ obtained from P by removing all rules r for
which at least one of the following holds: (i) H(r)∩τ−1(1) 6= ∅, (ii) H(r) ⊆ X , (iii) B+(r)∩τ−1(0) 6= ∅,
and (iv) B−(r) ∩ τ−1(1) 6= ∅, and then removing from the heads and bodies of the remaining rules all
literals v,¬v with v ∈ X . In the following, let C be a class of programs. We call C to be rule induced
if for each P ∈ C, P ′ ⊆ P implies P ′ ∈ C. A set X of atoms is a strong C-backdoor of a program P if
Pτ ∈ C for all truth assignments τ ∈ ta(X). Given a strong C-backdoor X of a program P , the answer
sets of P are among the answer sets we obtain from the truth assignment reducts Pτ where τ ∈ X ,
more formally AS(P) ⊆ {M ∪ τ−1(1) | τ ∈ ta(X ∩ at(P)),M ∈ AS(Pτ) } where AS(P) denotes the
set of all answer sets of P . For a program P and a set X of atoms we define P −X as the program
obtained from P by deleting all atoms contained in X and their negations from the heads and bodies
of all the rules of P . A set X of atoms is a deletion C-backdoor of a program P if P −X ∈ C.

Example 2. Consider the program P from Example 1. The set X = {b, c, h} is a strong Normal-back-
door since the truth assignment reducts Pb=0,c=0,h=0 = P000 = { i ← g; a; g ← ¬i }, P001 = P010 =
P011 = P101 = { a; g ← ¬i }, P100 = { a; i ← g; g ← ¬i }, and P110 = P111 = { g ← ¬i } are in the
class Normal.

In the following we refer to C as the target class of the backdoor. For most target classes C, deletion
C-backdoors are strong C-backdoors. For C = Normal even the opposite direction is true.

Proposition 1 (Fichte and Szeider, 2012). If C is rule induced, then every deletion C-backdoor is a
strong C-backdoor.

4

Lemma 1. Let P be a program. A set X is a strong Normal-backdoor of a program P if and only if
it is a deletion Normal-backdoor of P .

Proof. We observe that the class of all normal programs is rule-induced. Thus the if direction holds by
Proposition 1. We proceed to show the only-if direction. Assume X is a strong Normal-backdoor of P .
Consider a rule r′ ∈ P −X which is not tautological. Let r ∈ P be a rule from which r′ was obtained in
forming P −X . We define τ ∈ ta(X) by setting all atoms in H(r) ∪B−(r) to 0, all atoms in B+(r) to
1, and all remaining atoms in X \ at(r) arbitrarily to 0 or 1. Since r is not tautological, this definition
of τ is sound. It remains to observe that r′ ∈ Pτ . Since X is a strong Normal-backdoor of P , the rule
r′ is normal. Hence, the lemma follows.

Each target class C gives rise to the following problems:

C-Backdoor-Asp-Check

Given: A program P , a strong C-backdoor X of P , a set M ⊆ at(P),
and the size of the backdoor k = |X |.

Parameter: The integer k.

Question: Is M an answer set of P?

C-Backdoor-Brave-Reasoning

Given: A program P , a strong C-backdoor X of P , an atom a∗ ∈
at(P), and the size of the backdoor k = |X |.

Parameter: The integer k.

Question: Does a∗ belong to some answer set of P?

C-Backdoor-Skeptical-Reasoning

Given: A program P , a strong C-backdoor X of P , an atom a∗ ∈
at(P), and the size of the backdoor k = |X |.

Parameter: The integer k.

Question: Does a∗ belong to all answer sets of P?

Problems for deletion C-backdoors can be defined similarly.

4 Using Backdoors

In this section, we show results regarding the use of backdoors with respect to the target class Normal.

Theorem 1. The problem Normal-Backdoor-Asp-Check is fixed-parameter tractable. More specif-
ically, given a program P of input size n, a strong Normal-backdoor N of P of size k, and a set
M ⊆ at(P) of atoms, we can check in time O(2kn) whether M is an answer set of P .

The most important part for establishing Theorem 1 is to check whether a model is a minimal
model. In general, this is a co-NP-complete task, but in the context of Theorem 1 we can achieve
fixed-parameter tractability based on the following construction and lemma.

Let P be a given program, X a strong Normal-backdoor of P of size k, and let M ⊆ at(P). For a set
X1 ⊆M ∩X we construct a program PX1⊆X as follows: (i) remove all rules r for which H(r) ∩X1 6= ∅
and (ii) replace for all remaining rules r the head H(r) with H(r) \ X and the positive body B+(r)
with B+(r) \X1.

Recall that by definition we exclude programs with tautological rules. Since X is a strong Normal-back-
door of P , it is also a deletion Normal-backdoor of P by Lemma 1. Hence P − X is normal. Let r

be an arbitrarily chosen rule in P . Then there is a corresponding rule r′ ∈ P −X and a corresponding
rule r′′ ∈ PX1⊆X . Since we remove in both constructions exactly the same literals from the head of
every rule, H(r′) = H(r′′) holds. Consequently, PX1⊆X is normal and PM

X1⊆X is Horn (here PM
X1⊆X

denotes the GL-reduct of PX1⊆X under M).

5

For any program P ′ let Constr(P ′) denote the set of constrains of P ′ and Pos(P ′) = P ′ \Constr(P ′).
If P ′ is Horn, Pos(P ′) has a least model L and P ′ has a model if and only if L is a model of
Constr(P ′) [Dowling and Gallier, 1984].

Let X be a strong Normal-backdoor of P and X1 ⊆ X . Given M ⊆ at(P), the algorithm
MinCheck(X1) below performs the following steps:

1. Return True if X1 is not a subset of M .

2. Compute the Horn program PM
X1⊆X .

3. Compute the least model L of Pos(PM
X1⊆X).

4. Return True if at least one of the following conditions holds:

(a) L is not a model of Constr(PM
X1⊆X).

(b) L is not a subset of X ,

(c) L ∪X1 is not a proper subset of M ,

(d) L ∪X1 is not a model of PM .

5. Otherwise return False.

Lemma 2. Let X be a strong Normal-backdoor. A model M ⊆ at(P) of PM is a minimal model of
PM if and only if MinCheck(X1) returns True for each set X1 ⊆ X.

Proof. (⇒). Assume that M is a minimal model of PM , and suppose to the contrary that there is some
X1 ⊆M ∩X for which the algorithm returns False. Consequently, none of the conditions in Step 4 of
the algorithms holds. That means, the least model L of PM

X1⊆X satisfies Constr(PM
X1⊆X) and is therefore

a model of PM
X1⊆X . Moreover, since L∪X1 * M and L∪X1 is a model of PM , M cannot be a minimal

model of PM , a contradiction to our assumption. So we conclude that the algorithm succeeds and the
only-if direction of the lemma is shown.

(⇐). Assume that the algorithm returns True for each X1 ⊆M ∩X . We show that M is a minimal
model of PM . Suppose to the contrary that PM has a model M ′ (M .

We run the algorithm for X1 := M ′ ∩X . Let L be the least model of Pos(PM
X1⊆X). By assumption,

the algorithm returns True, hence some of the conditions of Step 4 of the algorithm must hold for L.
We will show, however, that none of the conditions can hold, which will yield to a contradiction, and
so establish the if direction of the lemma, and thus completes its proof.

First we show that M ′ \X is a model of PM
X1⊆X . Consider a rule r′ ∈ PM

X1⊆X and let r ∈ PM such

that r′ is obtained form r by removing X from H(r) and by removing X1 from B+(r). Since M ′ is a
model of PM , we have (i) B+(r) \M ′ 6= ∅ or (ii) H(r) ∩M ′ 6= ∅. Moreover, since B+(r′) = B+(r) \X1

and X1 = M ′ ∩X , (i) implies ∅ 6= B+(r) \M ′ = B+(r) \X1 \M ′ = B+(r′) \M ′ ⊆ B+(r′) \ (M ′ \X),
and since H(r) ∩ X1 = ∅, (ii) implies ∅ 6= H(r) ∩ M ′ = H(r) ∩ (M ′ \ X1) = H(r) ∩ (M ′ \ X) =
(H(r) \X) ∩ (M ′ \X) = H(r′) ∩ (M ′ \X). Hence M ′ \X satisfies r′. Since r′ ∈ PM

X1⊆X was chosen

arbitrarily, we conclude that M ′ \X is a model of PM
X1⊆X .

Since PM
X1⊆X has some model (namely M ′ \X), the least model L of Pos(PM

X1⊆X) must be a model

of PM
X1⊆X , thus Condition (a) cannot hold for L.

Next we show that the other conditions cannot hold either. Since M ′ \X is a model of PM
X1⊆X , as

shown above, we have L ⊆M ′ \X . We obtain L ⊆M \X since M ′ \X ⊆M \X . Further, we obtain
L∪X1 (M since L∪X1 ⊆ (M ′ \X)∪X1 = (M ′ \X)∪ (M ′ ∩X) = M ′ (M . Hence we have excluded
Conditions (b) and (c), and it remains to exclude Condition (d).

Consider a rule r ∈ PM . If X1∩H(r) 6= ∅, then L∪X1 satisfies r; thus it remains to consider the case
X1∩H(r) = ∅. In this case there is a rule r′ ∈ PM

X1⊆X with H(r′) = H(r)\X and B+(r′) = B+(r)\X1.

Since L is a model of PM
X1⊆X , L satisfies r′. Hence (i) B+(r′) \ L 6= ∅ or (ii) H(r′) ∩ L 6= ∅. Since

B+(r′) = B+(r) \X1, (i) implies that B+(r) \ (L ∪X1) 6= ∅; and since H(r′) ⊆ H(r), (ii) implies that
H(r) ∩ (L ∪X1) 6= ∅. Thus L ∪X1 satisfies r. Since r ∈ PM was chosen arbitrarily, we conclude that
L ∪X1 is a model of PM , which excludes also the last Condition (d).

6

We are now in a position to establish Theorem 1.

Proof of Theorem 1. First we check whether M is a model of PM . If M is not a model of PM then it
is not an answer set of P , and we can neglect it. Hence assume that M is a model of PM . Now we run
the algorithm MinCheck. By Lemma 2 the algorithm decides whether M is an answer set of P .

In order to complete the proof, it remains to bound the running time. The check whether M is
a model of PM can clearly be carried out in linear time. For each set X1 ⊆ M ∩ X the algorithm
MinCheck runs in linear time. This follows directly from the fact that we can compute the least
model of a Horn program in linear time [Dowling and Gallier, 1984]. As there are at most 2k sets X1

to consider, the total running time is O(2kn) where n denotes the input size of P and k = |X |. Thus,
in particular, the decision is fixed-parameter tractable for parameter k.

Example 3. Consider the program P from Example 1 and the backdoor X = {b, c, h} from Example 2.
Let N = {a, b, c, g} ⊆ at(P). Obviously N is a model of P . We apply the algorithm MinCheck for
each X1 of {b, c}. For X1 = ∅ we obtain PN

X1⊆X = { a ← b; ← a; ← e; a; g ← ¬i } and the least

model L = {a, g} of Pos(PN
∅⊆X

). Since Condition 4a holds (L is not a model of Constr(PN
X1⊆X)), the

algorithm returns True. For X2 = {b} we have PN
X2⊆X = { a; ← a; g } and L = {g} is the least model

of Pos(PN
X2⊆X). Since Condition 4a holds (L is not a model of Constr(PN

X2⊆X)), the algorithm returns

True for X2. For X3 = {c} we obtain PN
X3⊆X = { a; g }. The set L = {a, g} is the least model of

Pos(PN
X3⊆X). Since none of the Conditions 4a–d hold, more precisely L is a model of Constr(PN

X1⊆X),

L is a subset of X, L∪X1 is a proper subset of N , and L∪X1 is a model of PN . Hence, the algorithm
returns False. Thus MinCheck does not succeed, and M is not a minimal model of PM .

Example 4. Again, consider the program P from Example 1 and the backdoor X = {b, c, h} from
Example 2. Let M = {b, c, g} ⊆ at(P). Since M satisfies all rules in P , the set M is a model of P . We
apply the algorithm MinCheck for each subset of {b, c, h}. For X1 = ∅ we obtain PM

X1⊆X = { a← b; ←

a; ← e; a; g }. The set L = {a, g} is the least model of Pos(PM
X1⊆X). Since Condition 4a holds, the

algorithm returns True for X1. For X2 = {b} we have PM
X2⊆X = { a; ← a; g; ←} and the least model

L = {a, g} of Pos(PM
X2⊆X). Since Condition 4a holds, MinCheck returns True for X2. For X3 = {c}

we gain PM
X3⊆X = { a; g } and the least model L = {a, g} of Pos(PM

X3⊆X). Since Condition 4c holds, the

algorithm returns True for X3. For X4 = {b, c} we obtain PM
X4⊆X = {g}. The set L = {g} is the least

model of Pos(PM
X4⊆X). Since Condition 4c holds, the algorithm returns True for X4. For all remaining

subsets of X the Algorithm MinCheck returns True according to Condition 1. Consequently, M is a
minimal model of PM and thus an answer set of P .

Next, we state and prove that there are fpt-reductions from Normal-Backdoor-Brave-Reason-
ing and Normal-Backdoor-Skeptical-Reasoning to Sat which is the main result of this paper.

Theorem 2. Given a disjunctive logic program P of input size n, a strong Normal-backdoor X of P
of size k, and an atom a∗ ∈ at(P), we can produce in time O(2kn2) propositional formulas FBrave(a

∗)
and FSkept(a

∗) such that (i) FBrave(a
∗) is satisfiable if and only if a∗ is in some answer set of P , and

(ii) FSkept(a
∗) is unsatisfiable if and only if a∗ is in all answer sets of P .

Proof. We would like to use a similar approach as in the proof of Theorem 1. However, we cannot
consider all possible models M one by one, as there could be too many of them. Instead, we will show
that it is possible to implement MinCheck(X1) for each set X1 ⊆ X nondeterministically in such a
way that we do not need to know M in advance. Possible sets M will be represented by the truth values
of certain variables, and since the truth values do not need to be known in advance, this will allow us
to consider all possible sets M without enumerating them.

Next, we describe the construction of the formulas FBrave(a
∗) and FSkept(a

∗) in detail.
Among the variables of our formulas will be a set V := { v[a] | a ∈ at(P) } containing a variable for

each atom of P . The truth values of the variables in V represent a subset M ⊆ at(P), such that v[a] is
true if and only if a ∈M .

7

We define

FBrave(a
∗) := Fmod ∧ Fmin ∧ v[a∗] and

FSkept(a
∗) := Fmod ∧ Fmin ∧ ¬v[a∗],

where Fmod and Fmin are formulas, defined below, that check whether the truth values of the variables
in V represent a model M of PM , and whether M is a minimal model of PM , respectively.

The definition of Fmod is easy:

Fmod :=
∧

r∈P

(

∧

b∈B−(r)

¬v[b]→
(

∨

b∈B+(r)

¬v[b] ∨
∨

b∈H(r)

v[b]
)

)

.

The definition of Fmin is more involved. First we define:

Fmin :=
∧

1≤i≤2k

Fmin
i ,

where Fmin
i , defined below, encodes the Algorithm MinCheck(Xi) for each set Xi where X1, . . . , X2k

is an enumeration of all the subsets of X .
The formula Fmin

i will contain, in addition to the variables in V , p distinct variables for each atom
of P , p := min{|P |, |at(P)|}. In particular, the set of variables of Fmin

i is the disjoint union of V and

Ui where Ui := { uj
i [a] | a ∈ at(P), 1 ≤ j ≤ p }. We write U

j
i for the subset of Ui containing all the

variables u
j
i [a]. We assume that for i 6= i′ the sets Ui and Ui′ are disjoint. For each a ∈ at(P) we

also use the propositional constants X(a) and X1(a) that are true if and only if a ∈ X and a ∈ X1,
respectively.

The truth values of the variables in U
p
i represent the unique minimal model of Pos(PM

Xs⊆X).

We define the formula Fmin
i by means of the following auxiliary formulas.

The first auxiliary formula checks whether the truth values of the variables in V represent a set M

that contains Xi:

F
⊆
i :=

∧

a∈X

Xi(a)→ v[a].

The next auxiliary formula encodes the computation of the least model (“lm”) L of Pos(PM
Xi⊆X)

where M and L are represented by the truth values of the variables in V and U
p
i , respectively.

F lm
i :=

∧

a∈at(P),0≤i≤p

F
(a,i)
i , where

F
(a,0)
i := u0

i [a]↔ false,

8

F
(a,j)
i := u

j
i [a]↔

[

u
j−1
i [a] ∨

∨

r∈PXi⊆X ,a∈H(r)

(
∧

b∈B+(r)

u
j−1
i [b] ∧

∧

b∈B−(r)

¬v[b])
]

(for 1 ≤ j ≤ p− 1).

The idea behind the construction of F lm
i is to simulate the linear-time algorithm of Dowling and

Gallier [1984]. Initially, all variables are set to false. This is represented by variables u0
i [a]. Now we

flip a variable from false to true if and only if there is a Horn rule where all the variables in the rule
body are true. We iterate this process until a fixed-point is reached, then we have the least model. The
flipping is represented in our formula by setting a variable u

j
i [a] to true if and only if either u

j−1
i [a] is

true, or there is a rule r ∈ Pos(PM
Xi⊆X) such that H(r) = {a} and u

j
i [b] is true for all b ∈ B+(r). The

truth values of the variables u
p
i now represent the least model of Pos(PM

Xi⊆X).
The next four auxiliary formulas check whether the respective condition (a)–(d) of algorithm

MinCheck(Xi) does not hold for L.

F
(a)
i expresses that there is a rule in Constr(PM

Xi⊆X) that is not satisfied by L:

F
(a)
i :=

∨

r∈PXi⊆X ,H(r)⊆X

(
∧

b∈B−(r)

¬v[b] ∧
∧

b∈B+(r)

u
p
i [b]).

F
(b)
i expresses that L contains an atom that is not in M \X :

F
(b)
i :=

∨

a∈at(P)\X

(¬v[a] ∧ u
p
i [a]).

F
(c)
i expresses that L ∪Xi equals M or L ∪Xi contains an atom that is not in M :

F
(c)
i :=

∧

a∈at(P)

v[a]↔ (up
i [a] ∨Xi(a))

 ∨

∨

a∈at(P)

(up
i [a] ∨Xi(a)) ∧ ¬v[a]

 .

F
(d)
i expresses that PM contains a rule that is not satisfied by L ∪Xi:

F
(d)
i :=

∨

r∈P

[
∧

a∈B−(r)

¬v[a] ∧
∧

a∈H(r)

(¬up
i [a] ∧ ¬Xi(a)) ∧

∧

b∈B+(r)

(up
i [b] ∨Xi(b))].

Now we can put the auxiliary formulas together and obtain

Fmin
i := ¬F⊆

i ∨ (F lm
i ∧ (F

(a)
i ∨ F

(b)
i ∨ F

(c)
i ∨ F

(d)
i)).

9

It follows by Lemma 2 and by the construction of the auxiliary formulas that (i) FBrave(a
∗) is

satisfiable if and only if a∗ is in some answer set of P , and (ii) FSkept(a
∗) is unsatisfiable if and only if

a∗ is in all answer sets of P .
Hence, it remains to observe that for each i ≤ 2k the auxiliary formula F lm

i can be constructed in

quadratic time, whereas the auxiliary formulas F
⊆
i and F

(a)

i ∨ F
(b)

i ∨ F
(c)

i ∨ F
(d)

i can be constructed in
linear time. Since |X | = k by assumption, we need to construct O(2k) auxiliary formulas in order to
obtain FSkept(a

∗) and FBrave(a
∗). Hence, the running time as claimed in Theorem 2 follows and the

theorem is established.

We would like to note that Theorem 2 remains true if we require that the formulas FSkept(a
∗) and

FBrave(a
∗) are in Conjunctive Normal Form (CNF), as we can transform in linear time any propositional

formula into a satisfiability-equivalent formula in CNF, e.g., using the well-known transformation due
to Tseitin [1968], see also [Kleine Büning and Lettman, 1999]. This transformation produces for a given
propositional formula F ′ in linear time a CNF formula F such that both formulas are equivalent with
respect to their satisfiability, and the length of F is linear in the length of F ′.

Furthermore, the SAT encoding can be improved. For instance, one could share parts between the
formulas Fmin

i or replace the quadratic formula F lm
i for the computation of least models with a smaller

and more sophisticated Sat encoding [Janhunen, 2004] or a Sat(Dl) encoding [Janhunen et al., 2009]

for the Smt framework which combines propositional logic and linear constraints.
We would like to point out that our approach directly extends to more general problems, when we

look for answer sets that satisfy a certain global property which can be expressed by a propositional
formula F prop on the variables in V . We just check the satisfiability of Fmod ∧ Fmin ∧ F prop.

Example 5. Consider the program P from Example 1 and the strong Normal-backdoor X = {b, c, h}
of P from Example 2. We ask whether the atom b is contained in at least one answer set. To decide the
question, we check that Fbrave(b) is satisfiable and we answer the question positively. Since M = {b, c, g}
is model of PM we can satisfy Fmod with a truth assignment τ that maps 1 to each variable v[x] where
x ∈ {b, c, g} and 0 to each variable v[x] where x ∈ at(P) \ {b, c, g}. For i = 1 let X1 = ∅. Then we

have for the constants X1(x) = 0 where x ∈ {b, c, h}. Observe that τ already satisfies F
⊆
i and that

F lm
i encodes the computation of the least model L of Pos(PM

X1⊆X) where L is represented by the truth

values of the variables in UP
i = { up

i [x] | x ∈ at(P) }. Thus τ also satisfies F lm
i if τ maps u

p
i [a] to

1, u
p
i [g] to 1, and u

p
i [x] to 0 where x ∈ at(P) \ {a, g}. As τ satisfies F

(a)

1 , the truth assignment τ

satisfies the formula Fmin
1 . It is not hard to see that Fmin

i is satisfiable for other values of i. Hence the
formula Fbrave(b) is satisfiable and b is contained in at least one answer set.

Completeness for paraNP and co-paraNP

The parameterized complexity class paraNP contains all parameterized decision problems L such that
(I, k) ∈ L can be decided nondeterministically in time O(f(k)‖I‖c), for some computable function f

and constant c [Flum and Grohe, 2006]. By co-paraNP we denote the class of all parameterized decision
problems whose complement (the same problem with yes and no answers swapped) is in paraNP.

If a non-parameterized problem is NP-complete, then adding a parameter that makes it paraNP-com-
plete does not provide any gain, as this holds even true if the parameter is the constant 0. Therefore a
paraNP-completeness result for a problem that without parameterization is in NP, is usually considered
as an utterly negative result. However, if the considered problem without parameter is outside NP, and
we can show that with a suitable parameter the problem becomes paraNP-complete, this is in fact a
positive result. Indeed, we get such a positive result as a corollary to Theorem 2.

Corollary 1. Normal-Backdoor-Brave-Reasoning is paraNP-complete, and Normal-Backdoor-
Skeptical-Reasoning is co-paraNP-complete.

Proof. If a parameterized problem L is NP-hard when we fix the parameter to a constant, then L

is paraNP-hard (Flum and Grohe, 2006, Th. 2.14). As Normal-Backdoor-Brave-Reasoning is

10

NP-hard for backdoor size 0, we conclude that Normal-Backdoor-Brave-Reasoning is paraNP-
hard. A similar argument shows that Normal-Backdoor-Skeptical-Reasoning is co-paraNP-hard.
Sat, considered as a parameterized problem with constant parameter 0, is clearly paraNP-complete, this
also follows from the mentioned result of Flum and Grohe [2006]; hence UnSat is co-paraNP-complete.
As Theorem 2 provides fpt-reductions from Normal-Backdoor-Brave-Reasoning to Sat, and
from Normal-Backdoor-Skeptical-Reasoning to UnSat, we conclude that Normal-Backdoor-
Brave-Reasoning is in paraNP, and Normal-Backdoor-Skeptical-Reasoning is in co-paraNP.

5 Finding Backdoors

In this section, we study the problem of finding backdoors, formalized in terms of the following param-
eterized problem:

Strong C-Backdoor-Detection

Given: A (disjunctive) program P , and an integer k.

Parameter: The integer k.

Question: Find a strong C-backdoor X of P of size at most k, or report
that such X does not exist.

We also consider the problem Deletion C-Backdoor-Detection, defined similarly.
Let P be a program. Let the head dependency graph UH

P be the undirected graph UH
P = (V,E)

defined on the set V = at(P) of atoms of the given program P , where two atoms x, y are joined by an
edge xy ∈ E if and only if P contains a non-tautological rule r with x, y ∈ H(r). A vertex cover of a
graph G = (V,E) is a set X ⊆ V such that for every edge uv ∈ E we have {u, v} ∩X 6= ∅.

Lemma 3. Let P be a program. A set X ⊆ at(P) is a deletion Normal-backdoor of P if and only if
X is a vertex cover of UH

P .

Proof. Let X be a deletion Normal-backdoor of P . Consider an edge uv of UH
P , then there is a

rule r ∈ P with u, v ∈ H(r) and u 6= v. Since X is a deletion Normal-backdoor set of P , we have
{u, v} ∩X 6= ∅. We conclude that X is a vertex cover of UH

P .
Conversely, assume that X is a vertex cover of UH

P . Consider a rule r ∈ P − X for proof by
contradiction. If |H(r)| ≥ 2 then there are two variables u, v ∈ H(r) and an edge uv of UH

P such that
{u, v} ∩X = ∅, contradicting the assumption that X is a vertex cover. Hence the lemma prevails.

Theorem 3. The problems Strong Normal-Backdoor-Detection and Deletion Normal-Back-
door-Detection are fixed-parameter tractable. In particular, given a program P of input size n, and
an integer k, we can find in time O(1.2738k + kn) a strong Normal-backdoor of P with a size ≤ k or
decide that no such backdoor exists.

Proof. In order to find a deletion Normal-backdoor of a given program P , we use Lemma 3 and find
a vertex cover of size at most k in the head dependency graph UD

P . A vertex cover of size k, if it
exists, can be found in time O(1.2738k + kn) [Chen et al., 2006]. Thus the theorem holds for deletion
Normal-backdoors. Lemma 1 states that the strong Normal-backdoors of P are exactly the deletion
Normal-backdoors of P (as we assume that P does not contain any tautological rules). The theorem
follows.

In Theorem 2 we assume that a strong Normal-backdoor of size at most k is given when solving the
problems Strong Normal-Backdoor-Brave-Reasoning and Skeptical-Reasoning. As a direct
consequence of Theorem 3, this assumption can be dropped, and we obtain the following corollary.

Corollary 2. The results of Theorem 2 and Corollary 1 still hold if the backdoor is not given as part
of the input.

11

6 Backdoors to Tightness

We associate with each program P its positive dependency graph D+
P . It has the atoms of P as vertices

and a directed edge (x, y) between any two atoms x, y ∈ at(P) for which there is a rule r ∈ P with
x ∈ H(r) and y ∈ B+(r). A program is called tight if D+

P is acyclic [Lee and Lifschitz, 2003]. We
denote the class of all tight programs by Tight.

It is well known that the main Asp reasoning problems are in NP and co-NP for tight programs; in
fact, a reduction to Sat based on the concept of loop formulas has been proposed by Lin and Zhao [2004].
This was then generalized by Lee and Lifschitz [2003] with a reduction that takes as input a disjunctive
normal program P together with the set S of all directed cycles in the positive dependency graph of P ,
and produces a CNF formula F such that answer sets of P correspond to the satisfying assignments of
F . This provides an fpt-reduction from the problems Brave Reasoning and Skeptical Reasoning
to Sat, when parameterized by the number of all cycles in the positive dependency graph of a given
program P , assuming that these cycles are given as part of the input.

The number of cycles does not seem to be a very practical parameter, as this number can quickly
become very large even for very simple programs. Lifschitz and Razborov [2006] have shown that
already for normal programs an exponential blowup may occur, since the number of cycles in a normal
program can be arbitrarily large. Hence, it would be interesting to generalize the result of Lee and
Lifschitz [2003] to a more powerful parameter. In fact, the size k of a deletion Tight-backdoor would
be a candidate for such a parameter, as it is easy to see, it is at most as large as the number of cycles,
but can be exponentially smaller. This is a direct consequence of the following two observations: (i) If
a program P has exactly k cycles in D+

P , we can construct a deletion Tight-backdoor X of P by taking
one element from each cycle into X . (ii) If a program P has a deletion Tight-backdoor of size 1, it can
have arbitrarily many cycles that run through the atom in the backdoor.

In the following, we show that this parameter k is of little use, as the reasoning problems already
reach their full complexity for programs with a deletion Tight-backdoor of size 1.

Theorem 4. The problems Tight-Backdoor-Brave-Reasoning and Tight-Backdoor-
Skeptical-Reasoning are ΣP

2 -hard and ΠP
2 -hard, respectively, even for programs that admit a

strong Tight-backdoor of size 1, and the backdoor is provided with the input. The problems remain
hard when we consider a deletion Tight-backdoor instead of a strong Tight-backdoor.

Proof. Consider the reduction from Eiter and Gottlob [Eiter and Gottlob, 1995] which reduces the
ΣP

2 -hard problem ∃∀-QBF Model Checking to the problem Consistency (which decides whether
given a program P has an answer set). A ∃∀ quantified boolean formula (QBF) has the form
∃x1 · · · ∃xn∀y1 · · · ∀ymD1 ∨ . . . ∨ Dr where each Di = li,1 ∧ li,2 ∧ li,3 and li,j is either an atom
x1, . . . , xn, y1, . . . , ym or its negation. Their construction yields a program P := {xi ∨ vi; yi ∨ zj ; yj ←
w; zj ← w; w ← yj , zj; w ← g(lk,1), g(lk,2), g(lk,3); w ← ¬w} for each i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
k ∈ {1, . . . , r}, and g maps as follows g(¬xi) = vi, g(¬yj) = zj , and otherwise g(l) = l. Since
Pw=0 = {xi∨vi ←; yj ∨zj} and Pw=1 = {xi∨vi; yj ∨zj ; yj; zj ; } are both in Tight, the set X = {w}
is a strong Tight-backdoor of P of size 1. Thus the restriction does not yield tractability. The in-
tractability of Skeptical Reasoning follows directly by the reduction of Eiter and Gottlob [Eiter and
Gottlob, 1995] from the problem Consistency. Hardness of the other problems can be observed easily.
Since P − {w} := {xi ∨ vi; yi ∨ zj ; yj ; zj ; ← yj, zj ; ← g(lk,1), g(lk,2), g(lk,3); } for each i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}, k ∈ {1, . . . , r} is tight, we obtain a deletion Tight-backdoor of size 1. In consequence
we established the theorem.

7 Experiments

Although our main results are theoretical, we have performed first experiments to determine the size of
smallest strong Normal-backdoors for answer set programs representing structured and random sets
of instances. Our experimental results summarized in Table 1 indicate, as expected, that structured
instances have smaller backdoors than random instances. As instances from ConformantPlanning

12

instance set atoms backdoor (%) stdev

ConformantPlanning 1378.21 0.69 0.39
MinimalDiagnosis 97302.5 14.19 3.19
MUS 49402.3 1.90 0.35
StrategicCompanies 2002.0 6.03 0.04
Mutex 6449.0 49.94 0.09
RandomQBF 160.1 49.69 0.00

Table 1: Size of smallest strong Normal-backdoor for benchmark sets, given as % of the total number
of atoms by the mean over the instances. ConformantPlanning: secure planning under incomplete initial
states [To et al., 2009] encodings provided by Gebser and Kaminski [2012]. MinimalDiagnosis: an application
in systems biology [Gebser et al., 2008] instances provided by Calimeri et al. [2011]. MUS: problem whether
a clause belongs to some minimal unsatisfiable subset [Janota and Marques-Silva, 2011] encoding provided
by Gebser and Kaminski [2012]. StrategicCompanies: encoding the ΣP

2 -complete problem of producing and
owning companies and strategic sets between the companies [Gebser et al., 2007b]. Mutex: equivalence test of
partial implementations of circuits, provided by Maratea et al. [2008] based on QBF instances of Ayari and
Basin [2000]. RandomQBF: translations of randomly generated 2-QBF instances using the method by Chen and
Interian [2005] instances provided by Gebser [2007b].

have rather small backdoors our translation seems to be feasible for these instances. Furthermore,
we have compared the size of a smallest strong Normal-backdoor with the size of a smallest strong
Horn-backdoor [Fichte and Szeider, 2012] for selected sets. It turns out that for ConformantPlanning
smallest strong Normal-backdoors are significantly smaller (0.7% vs. 8.8% of the total number of
atoms).

8 Conclusion

We have shown that backdoors of small size capture structural properties of disjunctive Asp instances
that yield to a reduction of problem complexity. In particular, small backdoors to normality admit an fpt-
translation from Asp to Sat and thus reduce the complexity of the fundamental Asp problems from the
second level of the Polynomial Hierarchy to the first level. Thus, the size of a smallest Normal-backdoor
is a structural parameter that admits a fixed-parameter tractable complexity reduction without making
the problem itself fixed-parameter tractable.

Our complexity barrier breaking reductions provide a new way of using fixed-parameter tractability
and enlarges its applicability. In fact, our approach as exemplified above for Asp is very general and
might be applicable to a wide range of other hard combinatorial problems that lie beyond NP or co-NP.
We hope that our work stimulates further investigations into this direction such as the application to
abduction very recently established by Pfandler et al. [2013].

Our first empirical results suggest that with an improved SAT encoding and preprocessing techniques
to reduce the size of Normal-backdoors (for instance, shifting, Janhunen et al., 2007), our approach
could be of practical use, at least for certain classes of instances, and hence might fit into a portfolio-
based solver.

References

[Ayari and Basin, 2000] Abdelwaheb Ayari and David Basin. Bounded model construction for monadic
second-order logics. In E. Emerson and A. Sistla, editors, Computer Aided Verification, volume 1855
of Lecture Notes in Computer Science, pages 99–112. Springer Verlag, 2000.

[Ben-Eliyahu and Dechter, 1994] R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunc-
tive logic programs. Ann. Math. Artif. Intell., 12(1):53–87, 1994.

13

[Bidóıt and Froidevaux, 1991] Nicole Bidóıt and Christine Froidevaux. Negation by default and un-
stratifiable logic programs. Theoret. Comput. Sci., 78(1):85–112, 1991.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[Brass and Dix, 1998] Stefan Brass and Jürgen Dix. Characterizations of the disjunctive well-founded
semantics: Confluent calculi and iterated GCWA. Journal of Automated Reasoning, 20:143–165,
1998.

[Brewka et al., 2011] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[Calimeri et al., 2011] Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano, An-
namaria Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber, Onofrio Febbraro, Nicola Leone,
Marco Manna, Alessandra Martello, Claudio Panetta, Simona Perri, Kristian Reale, Maria Santoro,
Marco Sirianni, Giorgio Terracina, and Pierfrancesco Veltri. The third answer set programming com-
petition: Preliminary report of the system competition track. In James Delgrande and Wolfgang
Faber, editors, Logic Programming and Nonmonotonic Reasoning, volume 6645 of Lecture Notes in
Computer Science, pages 388–403. Springer Verlag, 2011.

[Chen and Interian, 2005] Hubie Chen and Yannet Interian. A model for generating random quantified
boolean formulas. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI’05), volume 19, pages 66–71,
Edinburgh, Scotland, August 2005. Morgan Kaufmann.

[Chen et al., 2006] J. Chen, I. Kanj, and G. Xia. Improved parameterized upper bounds for vertex
cover. In Proceedings of the 31st International Symposium on Mathematical Foundations of Computer
Science (MFCS’06), pages 238–249. Springer Verlag, 2006.

[Clark, 1978] Keith L. Clark. Negation as failure. Logic and Data Bases, 1:293–322, 1978.

[Dowling and Gallier, 1984] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulae. J. Logic Programming, 1(3):267–284, 1984.

[Downey and Fellows, 1999] Rod G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer Verlag, New York, 1999.

[Drescher et al., 2008] Christian Drescher, Martin Gebser, Torsten Grote, Benjamin Kaufmann, Arne
König, Max Ostrowski, and Torsten Schaub. Conflict-driven disjunctive answer set solving. In
Gerhard Brewka and Jérôme Lang, editors, Proceedings of the 11th International Conference on
Principles of Knowledge Representation and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive
logic programming: Propositional case. Ann. Math. Artif. Intell., 15(3–4):289–323, 1995.

[Fages, 1994] Francois Fages. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1(1):51–60, 1994.

[Fichte and Szeider, 2012] Johannes Klaus Fichte and Stefan Szeider. Backdoors to tractable answer-
set programming. Technical report, arXiv:1104.2788, 2012. Extended and updated version of a
paper that appeared in Proceedings of the 22nd International Conference on Artificial Intelligence
(IJCAI’11).

[Fichte, 2012] Johannes Fichte. The good, the bad, and the odd: Cycles in answer-set programs. In
Daniel Lassiter and Marija Slavkovik, editors, New Directions in Logic, Language and Computation,
volume 7415 of Lecture Notes in Computer Science, pages 78–90. Springer Verlag, 2012.

14

[Flum and Grohe, 2006] Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV
of Theoret. Comput. Sci. Springer Verlag, Berlin, 2006.

[Gaspers and Szeider, 2012] Serge Gaspers and Stefan Szeider. Backdoors to satisfaction. In Hans
Bodlaender, Rod Downey, Fedor Fomin, and Dániel Marx, editors, The Multivariate Algorithmic
Revolution and Beyond, volume 7370 of Lecture Notes in Computer Science, pages 287–317. Springer
Verlag, 2012.

[Gebser and Kaminski, 2012] Martin Gebser and Roland Kaminski. Personal communication, 2012.

[Gebser et al., 2007a] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer
set solving. In Manuela M. Veloso, editor, Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI’07), pages 386–392, Hyderabad, India, January 2007.

[Gebser et al., 2007b] Martin Gebser, Lengning Liu, Gayathri Namasivayam, André Neumann, Torsten
Schaub, and Miros law Truszczyński. The first answer set programming system competition. In
Chitta Baral, Gerhard Brewka, and John Schlipf, editors, Proceedings of the 9th Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume 4483 of Lecture Notes in Computer
Science, pages 3–17. Springer Verlag, 2007.

[Gebser et al., 2008] Martin Gebser, Torsten Schaub, Sven Thiele, Björn Usadel, and Philippe Veber.
Detecting inconsistencies in large biological networks with answer set programming. In Maria Garcia
de la Banda and Enrico Pontelli, editors, Logic Programming, volume 5366 of Lecture Notes in
Computer Science, pages 130–144. Springer Verlag, 2008.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings of the 5th
International Conference and Symposium (ICLP/SLP’88), volume 2, pages 1070–1080. MIT Press,
1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Comput., 9(3/4):365–386, 1991.

[Giunchiglia et al., 2006] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based
on propositional satisfiability. Journal of Automated Reasoning, 36(4):345–377, 2006.

[Gomes et al., 2008] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Chapter 2
satisfiability solvers. In Vladimir Lifschitz Frank van Harmelen and Bruce Porter, editors, Handbook
of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence, pages 89 – 134.
Elsevier Science Publishers, North-Holland, 2008.

[Gottlob and Szeider, 2008] G. Gottlob and S. Szeider. Fixed-parameter algorithms for artificial intel-
ligence, constraint satisfaction and database problems. The Computer Journal, 51(3):303–325, 2008.

[Janhunen et al., 2006] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J.H. You. Unfolding par-
tiality and disjunctions in stable model semantics. ACM Trans. Comput. Log., 7(1):1–37, 2006.

[Janhunen et al., 2007] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modu-
larity aspects of disjunctive stable models. In Chitta Baral, Gerhard Brewka, and John S. Schlipf,
editors, Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), volume 4483 of Lecture Notes in Computer Science, pages 175–187, Berlin,
Heidelberg, 2007. Springer-Verlag.

[Janhunen et al., 2009] Tomi Janhunen, Ilkka Niemela, and Mark Sevalnev. Computing stable models
via reductions to difference logic. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Pro-
ceedings of the 10th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR ’09), volume 5753 of Lecture Notes in Computer Science, pages 142–154. Springer Verlag,
2009.

15

[Janhunen, 2004] Tomi Janhunen. Representing normal programs with clauses. In Ramon López de
Mántaras and Ramon Saitta, editors, Proceedings of the 16th Eureopean Conference on Artificial
Intelligence (ECAI’04), volume 16, pages 358–362. IOS Press, 2004.

[Janhunen, 2006] Tomi Janhunen. Some (in)translatability results for normal logic programs and propo-
sitional theories. Journal of Applied Non-Classical Logics, 16(1-2):35–86, 2006.

[Janota and Marques-Silva, 2011] Mikoláš Janota and Joao Marques-Silva. A tool for circumscription-
based mus membership testing. In James Delgrande and Wolfgang Faber, editors, Logic Programming
and Nonmonotonic Reasoning, volume 6645 of Lecture Notes in Computer Science, pages 266–271.
Springer Verlag, 2011.

[Kleine Büning and Lettman, 1999] Hans Kleine Büning and Theodor Lettman. Propositional logic:
deduction and algorithms. Cambridge University Press, Cambridge, 1999.

[Lee and Lifschitz, 2003] Joohyung Lee and Vladimir Lifschitz. Loop formulas for disjunctive logic
programs. In Catuscia Palamidessi, editor, Logic Programming, volume 2916 of Lecture Notes in
Computer Science, pages 451–465. Springer Verlag, 2003.

[Lee, 2005] J. Lee. A model-theoretic counterpart of loop formulas. In Leslie Pack Kaelbling and
Alessandro Saffiotti, editors, Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI’05), volume 19, pages 503–508. Professional Book Center, 2005.

[Lifschitz and Razborov, 2006] V. Lifschitz and A. Razborov. Why are there so many loop formulas?
ACM Transactions on Computational Logic (TOCL), 7(2):261–268, 2006.

[Lin and Zhao, 2004] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[Maratea et al., 2008] Marco Maratea, Francesco Ricca, Wolfgang Faber, and Nicola Leone. Look-back
techniques and heuristics in dlv: Implementation, evaluation, and comparison to qbf solvers. Journal
of Algorithms, 63(1-3):70 – 89, 2008.

[Marek and Truszczynski, 1991a] Wiktor Marek and M. Truszczynski. Computing intersection of au-
toepistemic expansions. In Proceedings of the 1st International Conference on Logic Programming
and Nonmonotonic Reassoning (LPNMR’91), pages 37–50. MIT Press, 1991.

[Marek and Truszczyński, 1991b] Wiktor Marek and Miros law Truszczyński. Autoepistemic logic. J.
ACM, 38(3):588–619, 1991.

[Marek and Truszczynski, 1999] Victor W. Marek and Miroslaw Truszczynski. Stable models and an
alternative logic programming paradigm. In Krzysztof R. Apt, Victor W. Marek, Miroslaw Truszczyn-
ski, and David S. Warren, editors, The Logic Programming Paradigm: a 25-Year Perspective, pages
375–398. Springer Verlag, September 1999.

[Niedermeier, 2006] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, 2006.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell., 25(3):241–273, 1999.

[Nishimura et al., 2004] Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting backdoor
sets with respect to Horn and binary clauses. In Holger H. Hoos and David G. Mitchell, editors,
Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing
(SAT’04), volume 3542 of Lecture Notes in Computer Science, pages 96–103, Vancouver, BC, Canada,
May 2004. Springer Verlag.

16

[Pfandler et al., 2013] A. Pfandler, S. Rümmele, and S. Szeider. Backdoors to abduction. In Proceedings
of the 23nd International Joint Conference on Artificial Intelligence (IJCAI’13). AAAI Press/IJCAI,
2013. To appear.

[To et al., 2009] S.T. To, E. Pontelli, and T.C. Son. A conformant planner with explicit disjunctive
representation of belief states. In Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis
Refanidis, editors, Proceedings of the 19th International Conference on Automated Planning and
Scheduling (ICAPS’09), pages 305–312, Thessaloniki, Greece, September 2009. AAAI Press.

[Tseitin, 1968] G. S. Tseitin. On the complexity of derivation in propositional calculus. Zap. Nauchn.
Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:23–41, 1968. Russian. English translation in J.
Siekmann and G. Wrightson (eds.) Automation of Reasoning. Classical Papers on Computer Science
1967–1970, Springer Verlag, 466–483, 1983.

[Van Emden and Kowalski, 1976] M. H. Van Emden and R. A. Kowalski. The semantics of predicate
logic as a programming language. J. ACM, 23:733–742, October 1976.

[Williams et al., 2003] Ryan Williams, Carla Gomes, and Bart Selman. Backdoors to typical case
complexity. In Georg Gottlob and Toby Walsh, editors, Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI’03), pages 1173–1178, Acapulco, Mexico, August 2003.
Morgan Kaufmann.

17

