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Abstract. The restricted max-min fair allocation problem (also known
as the restricted Santa Claus problem) is one of few problems that en-
joys the intriguing status of having a better estimation algorithm than
approximation algorithm. Indeed, Asadpour et al. [1] proved that a cer-
tain configuration LP can be used to estimate the optimal value within a
factor 1/(4 + ε), for any ε > 0, but at the same time it is not known how
to efficiently find a solution with a comparable performance guarantee.
A natural question that arises from their work is if the difference between
these guarantees is inherent or because of a lack of suitable techniques.
We address this problem by giving a quasi-polynomial approximation al-
gorithm with the mentioned performance guarantee. More specifically, we
modify the local search of [1] and provide a novel analysis that lets us sig-
nificantly improve the bound on its running time: from 2O(n) to nO(logn).
Our techniques also have the interesting property that although we use
the rather complex configuration LP in the analysis, we never actually
solve it and therefore the resulting algorithm is purely combinatorial.

1 Introduction

We consider the problem of indivisible resource allocation in the following clas-
sical setting: a set R of available resources shall be allocated to a set P of
players where the value of a set of resources for player i is given by the function
fi : 2R 7→ R. This is a very general setting and dependent on the specific goals
of the allocator several different objective functions have been studied.

One natural objective, recently studied in [7,8,11,15], is to maximize the
social welfare, i.e., to find an allocation π : R 7→ P of resources to players
so as to maximize

∑
i∈P fi(π

−1(i)). However, this approach is not suitable in
settings where the property of “fairness” is desired. Indeed, it is easy to come up
with examples where an allocation that maximizes the social welfare assigns all
resources to even a single player. In this paper we address this issue by studying
algorithms for finding “fair” allocations. More specifically, fairness is modeled
by evaluating an allocation with respect to the satisfaction of the least happy
player, i.e., we wish to find an allocation π that maximizes mini∈P fi(π

−1(i)). In
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contrast to maximizing the social welfare, the problem of maximizing fairness is
already NP-hard when players have linear value functions. In order to simplify
notation for such functions we denote fi(j) by vi,j and hence we have that
fi(π

−1(i)) =
∑
j∈π−1(i) vi,j . This problem has recently received considerable

attention in the literature and is often referred to as the max-min fair allocation
or the Santa Claus problem.

One can observe that the max-min fair allocation problem is similar to
the classic problem of scheduling jobs on unrelated machines to minimize the
makespan, where we are given the same input but wish to find an allocation that
minimizes the maximum instead of one that maximizes the minimum. In a classic
paper [13], Lenstra, Shmoys & Tardos gave a 2-approximation algorithm for the
scheduling problem and proved that it is NP-hard to approximate the problem
within a factor less than 1.5. The key step of their 2-approximation algorithm is
to show that a certain linear program, often referred to as the assignment LP,
yields an additive approximation of vmax = maxi,j vi,j . Bezáková and Dani [5]
later used these ideas for max-min fair allocation to obtain an algorithm that al-
ways finds a solution of value at least OPT−vmax, where OPT denotes the value
of an optimal solution. However, in contrast to the scheduling problem, this algo-
rithm and more generally the assignment LP gives no approximation guarantee
for max-min fair allocation in the challenging cases when vmax ≥ OPT .

In order to overcome this obstacle, Bansal & Sviridenko [3] proposed a
stronger linear program relaxation, known as the configuration LP, for the max-
min fair allocation problem. The configuration LP that we describe in detail
in Section 2 has been vital to the recent progress on better approximation
guarantees. Asadpour & Saberi [2] used it to obtain a Ω(1/

√
|P|(log |P|)3)-

approximation algorithm which was later improved by Bateni et al. [4] and
Chakrabarty et al. [6] to algorithms that return a solution of value at least
Ω(OPT/|P|ε) in time O(|P|1/ε).

The mentioned guarantee Ω(OPT/|P|ε) is rather surprising because the inte-
grality gap of the configuration LP is no better than O(OPT/

√
|P|) [3]. However,

in contrast to the general case, the configuration LP is significantly stronger
for the prominent special case where values are of the form vi,j ∈ {vj , 0}.
This case is known as the restricted max-min fair allocation or the restricted
Santa Claus problem and is the focus of our paper. The worst known integral-
ity gap for the restricted case is 1/2 and it is known [5] that it is NP-hard
to beat this factor (which is also the best known hardness result for the gen-
eral case). Bansal & Sviridenko [3] first used the configuration LP to obtain
an O(log log log |P|/ log log |P|)-approximation algorithm for the restricted max-
min fair allocation problem. They also proved several structural properties that
were later used by Feige [9] to prove that the integrality gap of the configuration
LP is in fact constant in the restricted case. The proof is based on repeated use
of Lovász local lemma and was turned into a polynomial time algorithm [12].

The approximation guarantee obtained by combining [9] and [12] is a large
constant and is far away from the best known analysis of the configuration LP
by Asadpour et al. [1]. More specifically, they proved in [1] that the integrality
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gap is lower bounded by 1/4 by designing a beautiful local search algorithm
that eventually finds a solution with the mentioned approximation guarantee,
but is only known to converge in exponential time. As the configuration LP
can be solved up to any precision in polynomial time, this means that we can
approximate the value of an optimal solution within a factor 1/(4 + ε) for any
ε > 0 but it is not known how to efficiently find a solution with a comparable
performance guarantee. Few other problems enjoy this intriguing status (see e.g.
the overview article by Feige [10]). One of them is the restricted assignment
problem3, for which the second author in [14] developed the techniques from [1]
to show that the configuration LP can be used to approximate the optimal
makespan within a factor 33/17 + ε improving upon the 2-approximation by
Lenstra, Shmoys & Tardos [13]. Again it is not known how to efficiently find
a schedule of the mentioned approximation guarantee. However, these results
indicate that an improved understanding of the configuration LP is likely to
lead to improved approximation algorithms for these fundamental allocation
problems.

In this paper we make progress that further substantiates this point. We
modify the local search of [1] and present a novel analysis that allows us to sig-
nificantly improve the bound on the running time from an exponential guarantee
to a quasi-polynomial guarantee.

Theorem 1. For any ε ∈ (0, 1], we can find a 1
4+ε -approximate solution to

restricted max-min fair allocation in time nO( 1
ε logn), where n = |P|+ |R|.

In Section 3.1, we give an overview of the local search of [1] together with our
modifications. The main modification is that at each point of the local search,
we carefully select which step to take in the case of several options, whereas in
the original description [1] an arbitrary choice was made. We then use this more
stringent description with a novel analysis (Section 3.3) that uses the dual of the
configuration LP as in [14]. The main advantage of our analysis (of the modified
local search) is that it allows us to obtain a better upper bound on the search
space of the local search and therefore also a better bound on the run-time.
Furthermore, our techniques have the interesting property that although we use
the rather complex configuration LP in the analysis, we never actually solve it.
This gives hope to the interesting possibility of a polynomial time algorithm
that is purely combinatorial and efficient to implement (in contrast to solving
the configuration LP) with a good approximation ratio.

Finally, we note that our approach currently has a similar dependence on ε as
in the case of solving the configuration LP since, as mentioned above, the linear
program itself can only be solved approximately. However, our hidden constants
are small and for a moderate ε we expect that our combinatorial approach is
already more attractive than solving the configuration LP.

3 Also here the restricted version of the problem is the special case where vij ∈ {vj ,∞}
(∞ instead of 0 since we are minimizing).

3



2 The Configuration LP

The intuition of the configuration linear program (LP) is that any allocation of
value T needs to allocate a bundle or configuration C of resources to each player
i so that fi(C) ≥ T . Let C(i, T ) be the set of those configurations that have
value at least T for player i. In other words, C(i, T ) contains all those subsets of
resources that are feasible to allocate to player i in an allocation of value T . For
a guessed value of T , the configuration LP therefore has a decision variable xi,C
for each player i ∈ P and configuration C ∈ C(i, T ) with the intuition that this
variable should take value one if and only if the corresponding set of resources is
allocated to that player. The configuration LP CLP (T ) is a feasibility program
and it is defined as follows:

∑
C∈C(i,T )

xi,C ≥ 1 i ∈ P

∑
i,C:j∈C,C∈C(i,T )

xi,C ≤ 1 j ∈ R

x ≥ 0

The first set of constraints ensures that each player should receive at least one
bundle and the second set of constraints ensures that a resource is assigned to
at most one player.

If CLP (T0) for some T0 is feasible, then CLP (T ) is also feasible for all
T ≤ T0, because C(i, T0) ⊆ C(i, T ) and thus a solution to CLP (T0) is a solution
to CLT (T ) as well. Let TOPT be the maximum of all such values. Every feasible
allocation is a feasible solution of configuration LP, hence TOPT is an upper
bound on the value of the optimal allocation.

We note that the LP has exponentially many constraints; however, it is known
that one can approximately solve it to any desired accuracy by designing a
polynomial time (approximate) separation algorithm for the dual [3]. Although
our approach does not require us to solve the linear program, the dual shall
play an important role in our analysis. By associating a variable yi with each
constraint in the first set of constraints, a variable zj with each constraint in the
second set of constraints, and letting the primal have the objective function of
minimizing the zero function, we obtain the dual program:

max
∑
i∈P

yi −
∑
j∈R

zj

yi ≤
∑
j∈C

zj i ∈ P, C ∈ C(i, T )

y, z ≥ 0
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3 Local Search with Better Run-time Analysis

In this section we modify the algorithm by Asadpour et al. [1] in order to sig-
nificantly improve the run-time analysis: we obtain a 1/(4 + ε)-approximate
solution in run-time bounded by nO(1/ε logn) whereas the original local search
is only known to converge in time 2O(n). For better comparison, we can write
nO(1/ε logn) = 2O(1/ε log2 n). Moreover, our modification has the nice side effect
that we actually never solve the complex configuration LP — we only use it in
the analysis.

3.1 Description of Algorithm

Throughout this section we assume that T — the guessed optimal value — is
such that CLP (T ) is feasible. We shall find an 1/α approximation where α is a
parameter such that α > 4. As we will see, the selection of α has the following
trade-off: the closer α is to 4 the worse bound on the run-time we get.

We note that if CLP (T ) is not feasible and thus T is more than TOPT ,
our algorithm makes no guarantees. It might fail to find an allocation, which
means that T > TOPT . We can use this for a standard binary search on the
interval [0, 1

|P|
∑
i vi] so that in the end we find an allocation with a value at

least TOPT /α.

Max-min fair allocation is a bipartite hypergraph problem. Similar
to [1], we view the max-min fair allocation problem as a matching problem in
the bipartite hypergraph G = (P,R, E). Graph G has an hyperedge {i} ∪C for
each player i ∈ P and configuration C ⊆ R that is feasible with respect to the
desired approximation ratio 1/α, i.e., fi(C) ≥ T/α, and minimal in the sense
that fi(C

′) < T/α for all C ′ ⊂ C. Note that the graph might have exponentially
many edges and the algorithm therefore never keeps an explicit representation
of all edges.

From the construction of the graph it is clear that a matching covering all
players corresponds to a solution with value at least T/α. Indeed, given such a
matching M in this graph, we can assign matched resources to the players and
everyone gets resources with total value of at least T/α.

Alternating tree of “add” and “block” edges. The algorithm of Asadpour
et al. [1] can be viewed as follows. In the beginning we start with an empty
matching and then we increase its size in every iteration by one, until all players
are matched. In every iteration we build an alternating tree rooted in a currently
unmatched player p0 in the attempt to find an alternating path to extend our
current matching M . The alternating tree has two types of edges: edges in the set
A that we wish to add to the matching and edges in the set B that are currently
in the matching but intersect edges in A and therefore block them from being
added to the matching. While we are building the alternating tree to find an
alternating path, it is important to be careful in the selection of edges, so as
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to guarantee eventual termination. As in [1], we therefore define the concept of
addable and blocking edges.

Before giving these definitions, it will be convenient to introduce the following
notation. For a set of edges F , we denote by FR all resources contained in edges
in F and similarly FP denotes all players contained in edges in F . We also write
eR instead of {e}R for an edge e and use eP to denote the player in e.

Definition 1. We call an edge e addable if eR ∩ (AR ∪ BR) = ∅ and eP ∈
{p0} ∪AP ∪BP .

Definition 2. An edge b in the matching M is blocking e if eR ∩ bR 6= ∅.

Note that an addable edge matches a player in the tree with resources that
currently do not belong to any edge in the tree and that the edges blocking an
edge e are exactly those in the matching that prevent us from adding e. For a
more intuitive understanding of these concepts see Figure 1 in Section 3.2.

The idea of building an alternating tree is similar to standard matching algo-
rithms using augmenting paths. However, one key difference is that the matching
can be extended once an alternating path is found in the graph case, whereas
the situation is more complex in the considered hypergraph case, since a single
hyperedge might overlap several hyperedges in the matching. It is due to this
complexity that it is more difficult to bound the running time of the hypergraph
matching algorithm of [1] and our improved running time is obtained by analyz-
ing a modified version where we carefully select in which order the edges should
be added to the alternating tree and drop edges from the tree beyond certain
distance.

We divide resources into 2 groups. Fat resources have value at least T/α
and thin resources have less than T/α. Thus any edge containing a fat resource
contains only one resource and is called fat edge. Edges containing thin resources
are called thin edges. Our algorithm always selects an addable edge of minimum
distance to the root p0 according to the following convention. The length of a
thin edge in the tree is one and the length of a fat edge in the tree is zero. Edges
not in the tree have infinite length. Hence, the distance of a vertex from the
root is the number of thin edges between the vertex and the root and, similarly,
the distance of an edge e is the number of thin edges on the way to e from p0
including e itself. We also need to refer to distance of an addable edge that is
not yet in the tree. In that case we take the distance as if it was in the tree.
Finally, by the height of the alternating tree we refer to the maximum distance
of a resource from the root.

Algorithm for extending a partial matching. Algorithm 1 summarizes the
modified procedure for increasing the size of a given matching by also matching
a previously unmatched player p0. For better understanding of the algorithm,
we included an example of an algorithm execution in Figure 1 in Section 3.2.

Note that the algorithm iteratively tries to find addable edges of minimum
distance to the root. On the one hand, if the picked edge e has blocking edges

6



Input : A partial matching M
Output: A matching of increased size assuming that T is at most TOPT

Find an unmatched player p0 ∈ P, make it a root of the alternating tree
while there is an addable edge within distance 2 log(α−1)/3(|P|) + 1 do

Find an addable edge e of minimum distance from the root
A← A ∪ {e}
if e has blocking edges b1, . . . , bk then

B ← B ∪ {b1, . . . , bk}
else// collapse procedure

while e has no blocking edges do
if there is an edge e′ ∈ B such that e′P = eP then

M ←M \ {e′} ∪ {e}
A← A \ {e}
B ← B \ {e′}
Let e′′ ∈ A be the edge that e′ was blocking
e← e′′

else
M ←M ∪ {e}
return M

end if

end while
Let e′ be the blocking edge that was last removed from B
Remove all edges in A of greater distance than e′ and the edges in
B that blocked these edges

end if

end while
return TOPT is less than T

Algorithm 1: Increase the size of the matching

that prevents it from being added to the matching, then the blocking edges are
added to the alternating tree and the algorithm repeatedly tries to find addable
edges so as to make progress by removing the blocking edges.

On the other hand, if edge e has no blocking edges, then this means that
the set of resources eR is free, so we make progress by adding e to the matching
M . If the player was not previously matched, it is the root p0 and we increased
the size of the matching. Otherwise the player eP was previously matched by an
edge e′ ∈ B such that e′P = eP , so we remove e′ from M and thus it is not a
blocker anymore and can be removed from B. This removal has decreased the
number of blockers for an edge e′′ ∈ A. If e′′ has 0 blockers, we recurse and
repeat the same procedure as with e. Note that this situation can be seen on
Figure 1(b) and 1(c) in Section 3.2.
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(a) Step 1

p0

p0

(b) Step 2

p0

p0

(c) Step 3

p0

p0

(d) Step 4

Fig. 1. Alternating tree visualization. The right part of every picture is the alternating
tree and to the left we display the positions of edges in the tree in the bipartite graph.
Gray edges are in the set A and white edges are in the set B.

3.2 Example of Algorithm Execution

Figure 1 is a visualization of an execution of Algorithm 1. The right part of every
picture is the alternating tree and to the left we display the positions of edges in
the tree in the bipartite graph. Gray edges are A-edges and white are B-edges.

In Figure 1(a) we start by adding an A-edge to the tree. There are 2 edges in
the matching intersecting this edge, so we add them as blocking edges. Then in
Figure 1(b) we add a fat edge that has no blockers, so we add it to the matching
and thus remove one blocking edge, as we can see in Figure 1(c). Then in Figure
1(d) we add a thin edge which has no blockers. Now the A and B edges form an
alternating path, so by swapping them we increase the size of the matching and
the algorithm terminates.

Note that the fat edge in step 2 is added before the thin edge from step 4,
because it has shorter distance from the root p0. Recall that the distance of an
edge e is the number of thin edges between e and the root including e, thus the
distance of the fat edge is 2 and the distance of the thin edge is 3.

8



3.3 Analysis of Algorithm

Let the parameter α of the algorithm equal 4 + ε for some ε ∈ (0, 1]. We first

prove that Algorithm 1 terminates in time nO( 1
ε logn) where n = |P|+ |R| and,

in the following subsection, we show that it returns a matching of increased size
if CLP (T ) is feasible.

Theorem 1 then follows from that, for each guessed value of T , Algorithm 1
is at most invoked n times and we can find the maximum value T for which
our algorithm finds an allocation by binary search on the interval [0, 1

|P|
∑
i vi].

Since we can assume that the numbers in the input have bounded precision, the
binary search only adds a polynomial factor to the running time.

Run-time Analysis. We bound the running time of Algorithm 1 using that
the alternating tree has height at most O(log(α−1)/3 |P|) = O

(
1
ε log |P|

)
. The

proof is similar to the termination proof in [1] in the sense that we associate
a signature vector with each tree and then show that its lexicographic value
decreases. However, one key difference is that instead of associating a value
with each edge of type A in the tree, we associate a value with each “layer” that
consists of all edges of a certain distance from the root. This allows us to directly
associate the run-time with the height of the alternating tree.

When considering an alternating tree it is convenient to partition A and B
into A0, A1, . . . , A2k and B0, B1, . . . , B2k respectively by the distance from the
root, where 2k is the maximum distance of an edge in the alternating tree (it is
always an even number). Note that Bi is empty for all odd i. Also, A2i contains
only fat edges and A2i+1 only thin edges. For a set of edges F we denote by F t

all the thin edges in F and by F f all the fat edges in F . For a set of edges F
denote by F t all the thin edges in F and by F f all the fat edges in F . We also
use Rt to denote thin resources and Rf to denote fat resources.

Lemma 1. For a desired approximation guarantee of 1/α = 1/(4 + ε), Algo-

rithm 1 terminates in time nO( 1
ε logn).

Proof. We analyze the run-time of Algorithm 1 by associating a signature vector
with the alternating tree of each iteration. The signature vector of an alternating
tree is then defined to be

(−|Af0 |, |B
f
0 |,− |At1|, |Bt2|,−|A

f
2 |, |B

f
2 |,

− |At3|, |Bt4|,−|A
f
4 |, |B

f
4 |,

...

− |At2k−1|, |Bt2k|,−|A
f
2k|, |B

f
2k|,∞).

We prove that each addition of an edge decreases the lexicographic value of
the signature or increases the size of the matching.

On the one hand, if we add an edge with no blocking edges, we either com-
pletely collapse the alternating tree or collapse only a part of it. If we completely
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collapse the tree then the algorithm terminates. Otherwise, let e′ be the last
blocking edge that was removed from B by the algorithm during the collapse
procedure. Also let B′ and A′ be the sets of blocking edges and addable edges ob-
tained after the collapse procedure. Note that e′ is a thin edge because otherwise
e′ was blocking a fat edge e that after the removal of e′ had no more blocking
edges which in turn contradicts that e′ was the last blocking edge removed from
B. Let 2` be the distance of e′, i.e., e′ ∈ Bt2`. As the algorithm drops all edges
in A of distance at least 2`+ 1 and all edges in B that blocked these edges, the
partial collapse of the tree changes its signature to

(−|A′f0 |, |B
′f
0 |,−|A′t1 |, |B′t2 |,−|A

′f
2 |, |B

′f
2 |, . . . ,−|A′t2`−1|, |B′t2`|,−|A

′f
2`|, |B

′f
2`|,∞),

which equals

(−|Af0 |, |B
f
0 |,−|At1|, |Bt2|,−|A

f
2 |, |B

f
2 |, . . . ,−|At2`−1|, |Bt2`| − 1,−|A′f2`|, |B

′f
2`|,∞).

Thus we either increase the size of the matching or decrease the signature of the
alternating tree.

On the other hand, if the added edge e has blocking edges, there are two
cases. We either open new layers A2k+1 = {e} and B2k+2 where e is a thin
edge and the signature gets smaller, since −|At2k+1| < ∞. If we do not open
a new layer, we increase the size of some A` by either a thin or fat edge and
−(|A`|+ 1) < −|A`|, so in this case the signature decreases too.

The algorithm only runs as long as the height of the alternating tree is at most

O(log(α−1)/3 |P|) = O(log1+ε/3 |P|). This can be rewritten as O
(

log |P|
log(1+ε/3)

)
=

O
(

log |P|
ε

)
where the equality follows from x ≤ 2 log(1 +x) for x ∈ (0, 1] and we

only consider ε ∈ (0, 1]. There are at most |P| possible values for each position in
a signature, so the total number of signatures encountered during the execution

of Algorithm 1 is |P|O( 1
ε log |P|). As adding an edge happens in polynomial time

in n = |P|+|R|, we conclude that Algorithm 1 terminates in time nO( 1
ε logn). ut

Correctness of Algorithm 1. We show that Algorithm 1 is correct, i.e., that
it returns an increased matching if CLP (T ) is feasible.

We have already proved that the algorithm terminates in Lemma 1. The
statement therefore follows from proving that the condition of the while loop
always is satisfied assuming that the configuration LP is feasible. In other words,
we will prove that there always is an addable edge within the required distance
from the root. This strengthens the analogous statement of [1] that states that
there always is an addable edge (but without the restriction on the search space
that is crucial for our run-time analysis). We shall do so by proving that the
number of thin blocking edges increases quickly with respect to the height of the
alternating tree and, as there cannot be more than |P| blocking edges, this in
turn bounds the height of the tree.

We are now ready to state the key insight behind the analysis that shows
that the number of blocking edges increases as a function of α and the height of
the alternating tree.
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Lemma 2. Let α > 4. Assuming that CLP (T ) is feasible, if there is no addable
edge e within distance 2D + 1 from the root for some integer D, then

α− 4

3

D∑
i=1

|Bt2i| < |Bt2D+2|.

Before giving the proof of Lemma 2, let us see how it implies that there
always is an addable edge within distance 2 log(α−1)/3(|P|) + 1 from the root
assuming the configuration LP is feasible, which in turn implies the correctness
of Algorithm 1.

Corollary 1. If α > 4 and CLP (T ) is feasible, then there is always an addable
edge within distance 2D + 1 from the root, where D = log(α−1)/3 |P|.

Proof. The proof of the corollary follows intuitively from that Lemma 2 says
that the number of blocking edges increases exponentially in terms of the height
of the tree and therefore, as there are at most |P| blocking edges, the height
must be Oα(log |P|). We now proceed with the formal proof.

Let us first consider the case when |Bt2| = 0, i.e., there are no thin edges in
the alternating tree, so its height is 0. Then there must be an addable edge (of
distance at most 1), since otherwise, by the above lemma, we get a contradiction
0 = (α− 4)/3|Bt2| < |Bt4| = 0.

From now on assume that |Bt2| ≥ 1 and suppose toward contradiction that
there is no addable edge within distance 2D + 1. Let

bi =

i∑
j=1

|Bt2j | and q = (α− 4)/3.

By Lemma 2,

qbi < |Bt2i+2| for i ≤ D and bi+1 = bi + |Bt2i+2|,

so bi+1 > (1 + q)bi for all i ≤ D, which in turn implies

bD+1 =

D+1∑
j=1

|Bt2j | > (1 + q)Db1 ≥ (1 + q)D = |P|,

where the last equality follows by the selection of D. However, this is a con-
tradiction since the number of blocking edges and hence bD+1 is at most the
number of players |P|. ut

We complete the correctness analysis of the algorithm by presenting the proof
of the key lemma.

Proof (Lemma 2). Let H2D+1 be the tree formed from the original alternating
tree by taking all edges of distance at most 2D+ 1 plus edges in the set Bt2D+2.
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The following invariant holds throughout the execution of Algorithm 1 and plays
an important role in the analysis: If there is an addable edge e with respect to
H2D+1 within distance 2D+1, then e is an addable edge within distance 2D+1
with respect to the original tree. Hence, in the proof of this lemma we only need
to consider edges in H2D+1. The invariant trivially holds in the beginning of the
algorithm and is preserved when adding an edge with blockers, because an edge
of minimum distance is selected. The situation is more complex when an edge
has no blockers. Dropping off the edges beyond certain distance in Algorithm 1
ensures that the invariant remains true even in this case.

Suppose toward contradiction that there is no addable edge within distance
2D + 1 and

α− 4

3

D∑
i=1

|Bt2i| ≥ |Bt2D+2|.

We show that this implies that the dual of the configuration LP is unbounded,
which in turn contradicts the assumption that the primal is feasible. Recall that
the objective function of the dual is max

∑
i∈P yi −

∑
j∈R zj . Furthermore, as

each solution (y, z) of the dual can be scaled by a scalar c to obtain a new
solution (c · y, c · z), any solution with positive objective implies unboundedness.

We proceed by defining such solution (y∗, z∗), that is determined by the
alternating tree. More precisely, we take

y∗i =

{
α−1
α if i ∈ P is within distance 2D from the root,

0 otherwise,

and

z∗j =


(α− 1)/α if j ∈ R is fat and within distance 2D from the root,

vj/T if j ∈ R is thin and within distance 2D + 2 from the root,

0 otherwise.

Let us first verify that (y∗, z∗) is indeed a feasible solution. We have chosen
all yi, zj to be non-negative, so it only remains to check the first condition of
the dual. Let i ∈ P and let C be such that fi(C) ≥ T , i.e., C ∈ C(i, T ). We
distinguish between the two cases when yi = 0 and yi = (α− 1)/α. On the one
hand, if yi = 0 we have that yi ≤

∑
j∈C zj , since

∑
j∈C zj is always non-negative.

On the other hand, if yi = (α − 1)/α, then we have two sub-cases. Either
there is zj = (α − 1)/α for some j ∈ C and we have

∑
j∈C zj ≥ yi. Otherwise∑

j∈C zj =
∑
j∈C∩F vj/T ≥

∑
j∈C∩F vi,j/T , where F is the set of resources

which are assigned positive value zj . Suppose
∑
j∈C∩F vj/T < (α − 1)/α, then

there is a set R = C \ F ⊆ R with fi(R) ≥ T/α and thus {i} ∪ R is an
addable edge in H2D+1 and hence an addable edge within distance 2D+1 in the
original tree. This contradicts the assumption that no such addable edges exist,
so
∑
j∈C zj ≥ yi.
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Having proved that (y∗, z∗) is a feasible solution, the proof is now completed
by showing that the value of the solution is positive. We have∑

i∈P
yi =

α− 1

α

(
1 +

D∑
i=0

|B2i|

)
,

since each player in the alternating tree has its unique blocking edge leading to
it except the root. For fat resources we have∑

j∈Rf
zj ≤

α− 1

α

D∑
i=0

|Bf2i|,

since every fat edge contains only one fat resource by minimality.
For thin resources,∑

j∈Rt
zj ≤

2

α

D+1∑
i=1

|At2i−1|+
1

α

D+1∑
i=1

|Bt2i|,

since the size of each thin edge is at most 2T/α and the part of each blocking
edge not contained in any other A-edge is at most of size T/α, because otherwise
the set of resources in the blocking edge would not be a minimal set.

We also have |At2i−1| ≤ |Bt2i| for any i, since each adding edge has to have at
least one blocking edge. This implies∑

j∈R
zj ≤

α− 1

α

D∑
i=0

|Bf2i|+
3

α

D+1∑
i=1

|Bt2i|.

By the assumption toward contradiction,

|Bt2D+2| ≤
α− 4

3

D∑
i=1

|Bt2i|, so 3

D+1∑
i=1

|Bt2i| ≤ (α− 1)

D∑
i=1

|Bt2i|.

This implies∑
j∈R

zj ≤
α− 1

α

D∑
i=0

|Bf2i|+
α− 1

α

D∑
i=1

|Bt2i| <
α− 1

α

(
1 +

D∑
i=0

|B2i|

)
=
∑
i∈P

yi,

so the dual is unbounded and we get a contradiction. ut

4 Conclusions

Asadpour et al. [1] raised as an open question whether their local search (or a
modified variant) can be shown to run in polynomial time. We made progress
toward proving this statement by showing that a modified local search procedure
finds a solution in quasi-polynomial time. Moreover, based on our findings, we
conjecture the stronger statement that there is a local search algorithm that
does not use the LP solution, i.e., it is combinatorial, and it finds a 1/(4 + ε)-
approximate solution in polynomial time for any fixed ε > 0.
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13. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46, 259–271 (1990)

14. Svensson, O.: Santa claus schedules jobs on unrelated machines. In: Proceedings
of the 43rd annual ACM symposium on Theory of computing. pp. 617–626. STOC
’11, ACM, New York, NY, USA (2011)

15. Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: Proceedings of the 40th annual ACM symposium on Theory
of computing. pp. 67–74. STOC ’08, ACM, New York, NY, USA (2008)

15


	Quasi-Polynomial Local Search for Restricted Max-Min Fair Allocation

