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Abstract
There is a vast number and variety of file systems cur-
rently available, each optimizing for an ever growing number
of storage devices and workloads. Users have an unprece-
dented, and somewhat overwhelming, number of data man-
agement options. At the same time, the fastest storage de-
vices are only getting faster, and it is unclear on how well
the existing file systems will adapt. Using emulation tech-
niques, we evaluate five popular Linux file systems across
a range of storage device latencies typical to low-end hard
drives, latest high-performance persistent memory block de-
vices, and in between. Our findings are often surprising. De-
pending on the workload, we find that some file systems
can clearly scale with faster storage devices much better
than others. Further, as storage device latency decreases, we
find unexpected performance inversions across file systems.
Finally, file system scalability in the higher device latency
range is not representative of scalability in the lower, sub-
millisecond, latency range. We then focus on Nilfs2 as an
especially alarming example of an unexpectedly poor scala-
bility and present detailed instructions for identifying bottle-
necks in the I/O stack.

Categories and Subject Descriptors D.4.2 [Storage Man-
agement]: Secondary storage; D.4.3 [File Systems Manage-
ment]: File organization; D.4.8 [Performance]: Measure-
ments; D.4.8 [Performance]: Modeling and prediction

General Terms Measurement, Performance, Design

Keywords File systems, high-speed devices

1. Introduction
The number and variety of available file systems can give
users decision paralysis. To complicate matters, storage de-
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vices are getting faster and faster, and it is not clear that a
file system that works well on todays hardware will continue
to work well on the next generation hardware. Further, the
workload type, of which there is no shortage, also has a large
impact on file system selection. Due to the broad prolifera-
tion of file systems, this problem impacts numerous system
domains, ranging from servers, laptops, embedded devices,
mobile phones, and virtual machines to large distributed file
systems in the enterprise.

The problem is further complicated by the fact that we
are about to enter an era where storage latency across de-
vice types varies by as much as four orders of magnitude.
While disk drives offer multi-millisecond latencies, flash-
based solid-state drives provide latencies in sub-millisecond
range and the newer persistent memory based storage de-
vices offer even lower latencies of 200-300ns [11]. These
diverse device characteristics are in many cases hidden from
the file system. For example, VMs and storage virtualization
abstract the true nature of the underlying hardware, but still
allow users to request a block device with specific latency
bounds [15]. Given these developments, file systems should
be capable of performing well on storage devices with arbi-
trary performance characteristics.

Conventionally, the evaluation of file systems has focused
on a single type of storage hardware. Without a compre-
hensive study that can keep up with the changing landscape
of available file systems and storage hardware, users often
make implicit generalizations of file system performance
for similar or dissimilar hardware and workloads. Given the
rapid pace of change, there is a need to reevaluate this con-
ventional thinking, and be much more comprehensive with
respect to how file systems are evaluated.

In this paper, we motivate the evaluation of file sys-
tem performance across both workloads and storage device
speeds. Using an instrumented block device layer that is
capable of emulating both multi- and sub-millisecond la-
tencies, we evaluate five Linux file systems—Ext4, XFS,
BTRFS, Nilfs2, and F2FS—using several common work-
loads. Our initial findings are both unexpected and counter-
intuitive and motivate substantial follow-on work to under-
stand in greater detail how popular file systems perform



across a variety of device characteristics in both end-user
and enterprise settings.

We make several specific observations.

Observation 1. File systems are not created equal for all
storage speeds; not only do some file systems scale better
than others as storage latencies decrease, their relative scal-
ing capabilities are highly workload-sensitive.

Observation 2. With some workloads unexpected perfor-
mance inversions occur; file systems that perform faster than
other file systems at higher latencies perform slower at lower
latencies, and vice versa.

Observation 3. File system performance models built on
the reasonable expectation that performance scales with the
storage device speed are arbitrarily inaccurate, especially in
the lower, sub-millisecond, latency range; file system scaling
properties are complex and require further investigation.

Understanding the root causes of unexpected behavior is
critical to file system evolution for supporting next gener-
ation storage devices efficiently. For example, our experi-
ments revealed that for some workloads Nilfs2 throughput
remains almost flat across high- and low-latency devices. We
used Nilfs2 as a case study to develop a general guide for
identifying bottlenecks in a file system and an I/O stack. We
uncovered a high level of metadata contention in Nilfs2 that
fetters its ability to scale as device latency decreases. Ulti-
mately, our work motivates revisiting file system designs for
the new era of diverse storage device characteristics.

2. Goals and Models
File systems remain the most common abstraction through
which applications access underlying storage. Block-based
file systems translate file-level operations into block-level
accesses to the storage device. While some recent proposals
eliminate the block abstraction for fast persistent memory
based devices [10–12, 20], other proposals have advocated
the opposite [7, 9] for backward compatibility. We believe
that the block abstraction will remain a significant building
block in the foreseeable future.

The main goal of our study therefore is to gain initial in-
sights in how file systems perform across a range of block
device latencies. Specifically, we are interested in under-
standing file system scaling characteristics with faster stor-
age devices. We believe this work can provide a direct ben-
efit to the file system research community by identifying
bottlenecks across diverse storage devices and workloads,
as well as indicating potential performance improvements
when users upgrade their storage. However, our methodol-
ogy is not designed to gain a precise understanding of file
system behaviors. Instead, the goal is to identify general
trends in file system performance to further research and en-
gineering efforts. To this end, we introduce a user-centric
performance model to guide our efforts.

User Performance Expectation Model (UPEM) repre-
sents file system performance as expected by users. Let’s
assume that the average latency of a storage device and I/O
software stack are ldev and lsw, respectively. The value of
lsw is constant for a specific system setup, file system, and
workload, while ldev is a device-specific characteristic. The
total average latency of a single I/O operation is proportional
to (ldev + lsw). Then file system throughput is inversely pro-
portional to the latency:

Throughput(ldev) =
C

ldev + lsw

where C is a coefficient of proportionality specific to the
system setup, file system, and workload.

If the file system throughput is known for two ldev laten-
cies, then two constants C and lsw can be computed from
the system of equations. Our experiments evaluated perfor-
mance for device latencies between 0–10ms to represent
both currently available and future storage devices. To cal-
culate C and lsw and thereby calibrate this model, we picked
the slowest latency of 10ms and the middle-range latency of
5ms. We believe that providing the model with information
of half of the range should provide reasonable model accu-
racy. We use the rest of the latencies (0–5ms) to compare
model predictions against experimental results.

It is important to distinguish UPEM, whose goal is to
capture user performance expectations (i.e., ”My file system
should go faster with a faster storage device”), from a real
”file system performance model” that describes the specifics
of a file system’s design and implementation.

3. Testing Methodology
Evaluating the performance of multiple file systems across
multiple workloads and devices is a challenging but feasible
task. Our approach is both systematic and pragmatic.
Hardware and Operating System. All experiments were
run on identical IBM System x3650 M4 servers equipped
with two 8-core Intel Xeon CPUs and 96GB of memory,
running Red Hat Enterprise Linux 7.0 (RHEL7). We encoun-
tered issues with BTRFS on RHEL7’s 3.10 Linux kernel, so
we switched to the vanilla 3.14 kernel for all experiments.
File Systems. We chose five local file systems available in
the Linux kernel: 1) Ext4, 2) XFS, 3) BTRFS, Nilfs2, and
5) F2FS. These file systems have significantly different in-
ternal architectures and we consider them representative of
recent developments in file system design for both conven-
tional and newer block storage devices. Ext4 [3] is a tradi-
tional FFS-like file system that uses inode tables, bitmaps,
and indirect blocks, and implements journaling, extents, and
delayed allocation. XFS [19] uses B+ trees instead of lin-
ear structures for data management. Designed as a highly
scalable local file system, it is the default file system in
RHEL7. BTRFS [16] combines a volume manager and file
system and uses COW B-trees for storing data and metadata.



Nilfs2 [5] is a log-structured file system (LFS [17]) imple-
mentation for Linux. F2FS [13] was designed to provide op-
timal performance for block-based NAND devices. As with
Nilfs2, it uses a log-structured approach to avoid expensive
random writes. F2FS also implements a hot/cold data sepa-
ration scheme and NAND-friendly index block updates. We
used default mount and format options for all file systems.

Emulating Devices. Real physical devices can exhibit
a whole spectrum of performance irregularities depend-
ing on the technology used, specific device implementa-
tion, and workload. For tractability, we eschew low-level
device-specific performance features and emulate devices
that present a constant latency per I/O operation indepen-
dent of type and size. In the cloud storage era, the practice
of exporting virtual block devices to users with guaranteed
latency service level agreement (SLA) will become com-
monplace [15]. The device emulation approach used in our
study is particularly well-suited for evaluating file systems
when using such opaque, but performant, virtual devices.
However, as demonstrated in Section 4, we also found a
good match between performance of our emulator and real
physical devices, such as SSDs.

We emulated devices with configurable latencies using
dm-delay [2]. The dm-delay virtual block device delays ev-
ery I/O request to the underlying storage for a configurable
number of milliseconds. We deployed a RAM disk under-
neath dm-delay to emulate low latency devices. The RAM
disk latency was at most 5µs when measured from user space
and represents the true baseline latency in our experiments.

The original dm-delay implementation supports a min-
imum delay granularity of 1ms. To emulate devices with
sub-millisecond delays we modified dm-delay using high-
resolution Linux timers that provide 1ns granularity. After
a request arrival from the upper layer, dm-delay sets up a
high-resolution timer to trigger request processing at an ap-
propriate later time. After the timer is triggered the request is
passed to the lower layer almost instantly with a slight extra
delay caused by the task scheduler. We posted our patches
to the device-mapper’s developers mailing list [1]. In this
study we measured file system performance for delays incre-
mented in 1ms steps between 1ms and 10ms and in 100µs
steps between 0 and 1ms (1000µs).

Dm-delay allows to specify different delays for read and
write operations but the delay remains the same across all
I/O sizes. In this study, we set both read and write delays to
identical values. There is also no additional queuing delay
in dm-delay, i.e., all requests are executed practically in
parallel. We believe that this setup is sufficient to observe
general file system performance trends. That said, there are
limitations to this model that we discuss in Section 4.

Workloads. We used three workload personalities from
Filebench [4] to evaluate the file systems across a range of
emulated devices. Web-server is a read-dominated work-
load. File-server is metadata-heavy workload that performs

lots of file creates and deletes. Finally, mail-server personal-
ity generates a balanced mix of read and write operations.

Workload performance is significantly influenced by
caching effects in the operating system. Picking the right
cache-to-dataset size ratio for evaluation is hard since it
varies significantly in real environments. While we did not
want to make the cache so small that it is entirely ineffective,
we also did not want to evaluate caching performance exclu-
sively. We fixed a 1:2 (cache:dataset) ratio that ensures both
cache and I/O activity across all workloads. Each experiment
ran for 20 minutes and was repeated several times.

4. Findings
Our findings are based on a large number of experiments
across multiple file systems, workloads, and device speeds.
Figures 1–5 depict the throughput of Ext4, XFS, Nilfs2,
F2FS, and BTRFS under the Web-, File-, and Mail-server
workloads. In each plot, the X-axis denotes the latency
for the storage device and the Y-axis denotes the through-
put reported by Filebench. Inset graphs zoom into the sub-
millisecond range. Each figure plots the experimental results
(solid-line) and the UPEM curve (dashed-line). We report
means and 95% confidence intervals. Figure 6 combines the
performance data for all file systems in a single plot.

To validate that dm-delay works properly we first col-
lected average request latencies from /proc/diskstats

and they matched the values set. We also wanted to get a
sense of how far off is our emulated device from a real
one. We ran the above workloads on a Micron MTFD-
DAK128MAR-1J SSD and collected average request laten-
cies at the block layer along with the Filebench-reported
throughput. The big yellow circles on Figures 1–5 depict
these results. Some graphs are missing real device points be-
cause request latencies were higher than 10ms. These large
latencies were caused by large delays in the block-level and
device queues and are typical for write-intensive workloads.
For the Web-server workload, which is read-intensive, the
latency was always within 10ms.

From the data, we also conclude that in the majority of
the cases our model’s performance matched the performance
of the real device. The only case when SSD performance
was much higher than the one of an emulated device was
F2FS under Mail workload. Further investigation revealed
that for this workload, although the average SSD latency was
about 4ms, the average read latency was only 1.5ms. The
performance of the foreground File-server workload was
mostly impacted by reads and not by writes which can be
completed asynchronously. Since the emulated device had a
latency set to 4ms for both reads and writes, F2FS could not
achieve the same throughput due to the higher read latencies
it experienced. When we set the read delay for the emulated
device to 1.5ms, the throughput of F2FS increased to almost
4,000 ops/sec—close to the one reported by the real SSD—
validating our hypothesis.
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Figure 1. Ext4 throughput depending on the underlying storage speed for three different workloads. Yellow circle represents
real SSD performance.
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Figure 2. XFS throughput depending on the underlying storage speed for three different workloads. Yellow circle represents
real SSD performance.
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Figure 3. Nilfs2 throughput depending on the underlying storage speed for three different workloads. Yellow circle represents
real SSD performance.
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Figure 4. F2FS throughput depending on the underlying storage speed for three different workloads. Yellow circle represents
real SSD performance.

Below we describe three observations about the behavior
of file system performance as the speed of storage increases:

Observation 1. Almost all file systems improve their per-
formance as underlying storage latency decreases. However,
the rate of improvement and the range of latencies with the
most rapid improvements varies drastically across the file
systems and workloads.

Performance generally grows much slower below 1ms—
flat lines are prevalent in the inset graphs. This fact stresses
the need for optimizing or redesigning modern storage soft-
ware stack to successfully break sub-millisecond perfor-
mance barriers.

Performance is also somewhat unstable, leading to wide
confidence intervals. This is more common in the sub-
millisecond range, e.g., Ext4-(Web), XFS-(Web), but occurs
for high latencies as well, e.g., Nilfs2-(File). We ran over
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Figure 5. BTRFS throughput depending on the underlying storage speed for three different workloads. Yellow circle represents
real SSD performance.

Web File Mail

Ext4 ∅ F2FS XFS, BTRFS
XFS ∅ BTRFS, F2FS Ext4
BTRFS F2FS XFS, F2FS Ext4
Nilfs2 F2FS ∅ F2FS
F2FS BTRFS, Nilfs2 Ext4, XFS, BTRFS Nilfs2

Table 1. The listed file systems experienced performance
inversions for the given workload.

one hundred experiments for cases with wide confidence
intervals, and the resulting uniform distribution of results
leads us to believe that there is a lot of unknown activity that
justifies further investigation.

The performance leader is typically Ext4, as shown in
Figure 6, for almost all latencies and all workloads except
Mail-server, in which XFS dominated (except with 0 la-
tency). Nilfs2 performs poorly for write-intensive File- and
Mail-server workloads, but interestingly scaled rather well
for the read-only Web-server workload.

Observation 2. While the relative performance of file sys-
tems is maintained across workloads in the majority of cases,
we did observe several performance inversions between file
systems as device latencies change. We list the set of inver-
sions we observed in Table 1. The performance inversions
can be best observed in Figure 6. Let us consider F2FS
performance for the File-server workload as an example.
BTRFS performs better than F2FS for high-latency devices
but then performs worse in sub-millisecond latency range.
Further, F2FS which performs worse than BTRFS, Ext4, and
XFS at higher device latencies outperforms all of these file
systems when device latency approaches zero. Further inves-
tigation into file system design specifics is required to under-
stand what makes a file system excel at one latency but then
slow down for a different latency.

Observation 3. We classify the remaining observed be-
haviors with respect to our User Performance Expectation
Model into three classes.

Class I systems follow UPEM closely until the storage la-
tency reaches approximately 1ms, but not from 1ms to 0ms.
Ext4-(Web, File), XFS-(Mail), Nilfs2-(Web), and BTRFS-
(Web) fall into this category. This indicates that upgrading
storage devices in Class I systems will generally show clear
benefits, but if the new storage device has a latency below
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Figure 6. Throughput of Ext4, XFS, Nilfs2, F2FS, and
BTRFS depending on storage speed for Web-, File-, and
Mail-server workloads.

1ms, then the user will experience diminishing returns on
the investment.

Class II systems outperform UPEM. Specifically, for
Ext4-(Mail), XFS-(Web, File), and F2FS-(File, Mail), the
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Figure 7. CPU utilization vs. time with Nilfs2 under File-server workload
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Figure 8. Nilfs2’s i mutex dir key lock contention under File-server workload

UPEM curve is below the experimental data curve indicat-
ing that the file systems perform better than expected. This
means that users will find surprisingly faster systems after
upgrading their storage (to any latency).

Class III systems initially scale as expected with higher
latencies, but then perform worse than UPEM at some point
as the latency gets lower. All combinations in this class
perform worse than UPEM at the 1ms mark, but some
much sooner. For example, Nilfs2-(Mail) scaling slows at 4–
5ms delay and BTRFS-(Mail) at 2–3ms delay. Interestingly,
F2FS-(Web) scales poorly and well below expectations, but
then does significantly better in the 0ms to 1ms range.

For Nilfs2-(File), the performance actually decreases as
devices get faster. The UPEM curve is missing because the
model cannot fit such a poorly scaling curve. We present a
detailed analysis of this behavior in the following section.

5. Nilfs2 Analysis
One of the unexpected findings is related to Nilfs2 and the
File-server workload where the performance decreases as
the device gets faster (see Figure 4(b)). The analysis method-

ology we discuss below is broadly applicable and can be
used to analyze other performance behaviors as well.

The first step is to understand the workload itself. The
File-server workload uses 82K small files. Average file size
is 128KB; files are distributed across directories that contain
20 files on average. 50 threads operate on these files issu-
ing create, write, append, read, and delete operations. Files
are read and written completely and sequentially, and the av-
erage append size is 16KB. The file set is preallocated and
caches are dropped before every experiment so that the sys-
tem state is the same across all experiments.

Next, to understand workload performance behavior, we
examine how CPU time is spent by the workload across dif-
ferent device delays. Figure 7 shows a break-down of CPU
utilization across user, system, I/O wait, and idle time, as the
execution of the workload progresses for three different de-
vice delay values, 0ms, 1ms, and 10ms. With large device
delays (Figure 7(c)), we expect that a significant amount of
time would be spent waiting for I/O by the workload threads.
We also anticipate that this I/O wait time would decrease as
the latency of the device decreases; this is corroborated by



Figures 7(a) and 7(b). Furthermore, since both Nilfs2 and
ramdisk operations consume time, we anticipate that the per-
cent of time spent within the system software to increase as
I/O wait times decrease. However, as we see in Figures 7(b)
and 7(a), while the I/O wait time decreases significantly as
the latency of the device decreases, the system time does
not increase accordingly. In fact, if we compare the system
CPU utilization for 0ms and 10ms latencies, we notice that
the slower device spends more system time than the faster
device. High idle time with a busy workload implies that
the worker threads are sleeping. This led us to the hypoth-
esis that as device speed increases, the Filebench threads
increasingly contend for a shared resource, thus increasing
system idle time. To evaluate this hypothesis, we obtained
block level statistics for the emulated devices for each delay.
For a delay of 10ms, the average throughput for the device
is 38MB/s for reads and 98MB/s for writes. For a delay of
1ms, the throughput of the device is 44MB/s for reads and
110MB/s for writes. An increase was expected because I/O
performance increased but it was not as significant as we had
expected, indicating the existence of other resource bottle-
necks. Finally, for an emulated device with no added delay
the throughput is 42MB/s for reads and 101MB/s for writes.
Given that the utilization of the device remains roughly the
same as with 1ms delay, our hypothesis was strengthened
and we pursued it further.

Locks are a common shared resource inside the kernel.
The Linux perf tool [6] reports on various events inside the
kernel including locks acquired, locks released, and locks
contended. We recorded the lock events reported by perf
for 60 seconds for the workload in question. Under smaller
latencies we identified a single lock that caused a large
amount of contention named i mutex dir key. It is used
when requesting information about the inode mapping file,
checkpoint files, and regular file inodes. Backtracking the
function references to Nilfs2 code, this mutex is used only
when an inode is being unlocked, which occurs if newly
initialized from storage or just created.

Perf lock reports the amount of contention on each in-
stance of the i mutex dir key. Figure 8 depicts the five
mutex instances with most wait times are shown for differ-
ent delays over the 60 second recording. When the device
latency is 10ms, the contention on this type of lock is very
low, only 3 seconds for one instance and under half a sec-
ond for the rest. As the latency of the device decreases, the
contention across different instances increases significantly
reaching 33 seconds in total for the 1ms delay and over 50
seconds when the device has no added delay.

Nilfs2 uses the concept that everything is a file, including
file metadata, which also have an inode that references them
(referred to ifile). Design knowledge helps in associating
file system performance with workload characteristics; the
File-server workload is write intensive and involves a lot of
metadata operations. Finally, Nilfs2 is fully log-structured.

Every time that a block is modified, it is copied from the
previous segment where it was stored into an uncommitted
segment. This operation also involves copying a new version
of the inode into the given segment and an update in the
DAT file that is used to optimize the index updates of a
data block. All of these operations increase the amount of
inode-level lock contention traffic to the detriment of Nilfs
performance.

6. Related Work
A number of studies in the past conducted performance anal-
ysis across file systems [8, 18]. However, the authors over-
whelmingly used only one and rarely just a few storage de-
vices. Unlike other studies, we systematically evaluate the
entire spectrum of current and future device speeds. Several
studies proposed accurate models of storage devices [22]
and file systems [23]. In contrast, we use the simpler but
more generic latency-based model that characterizes trends
in file system behavior as device latencies change, providing
us coarse-grained, easy-to-use insights. Some recent studies
proposed improving file system performance for fast devices
by completely eliminating the block abstraction [11, 21].
Others optimized existing I/O stack performance for fast
block devices [7, 14], but the scaling limits of existing file
systems were never evaluated. Our complementary contri-
bution establishes the latencies below which current block-
based file systems do not scale.

7. Conclusion
Computer systems are entering an era of diverse storage de-
vices with latencies ranging from a few microseconds to sev-
eral milliseconds. Users expect their file systems to perform
in a predictable manner on devices of various speeds. In par-
ticular, when upgrading underlying storage to faster alter-
natives users expect file systems to become proportionally
faster. Our study demonstrated that in practice it is hard to
predict file system performance for fast devices based on
performance numbers for slower devices. Furthermore, per-
formance improvements are highly sensitive to both file sys-
tem and workload selection. Across all three of our work-
loads, we found that performance limits as well as perfor-
mance inversions exist across all five file systems. These
findings are revealing and provide pointers for future work
on building file systems that can better utilize next genera-
tion high-speed block devices.

In this study, we also demonstrated how the empirical
measurements are valuable in finding underlying file sys-
tem bottlenecks such as the significantly increased lock con-
tention we found in Nilfs2 with high speed devices. Future
work along these lines involves analyzing more file systems
in depth. One caveat with the the device emulation based
approach is that it may need fine tuning to better match the
performance characteristics of a real device under consider-
ation. One specific instance was the anomaly we found in



the case of F2FS for one workload; we pinned this down to
a read vs. write performance discrepancy between the em-
ulated device and actual-device behavior. Such fine tuning
should ideally consider read-write latency differences, I/O
sizes, as well as I/O parallelism, among other device-specific
properties. While these considerations are important for in-
depth comparative analysis, we found that simple device em-
ulation could provide a wealth of information and guide de-
tailed analysis well.
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