
Incorporating Road Networks into Territory Design

Nitin Ahuja, Matthias Bender, Peter Sanders, Christian Schulz and Andreas Wagner a,b,c,c,a

a PTV AG, {nitin.ahuja, andreas.wagner}@ptvgroup.com
b FZI Research Centre for Information Technology, matthias.bender@fzi.de

c Karlsruhe Institute of Technology, {sanders, christian.schulz}@kit.edu

Abstract. Given a set of basic areas, the territory design problem asks to create a predefined number of territories,
each containing at least one basic area, such that an objective function is optimized. Desired properties of territories
often include a reasonable balance, compact form, contiguity and small average journey times which are usually
encoded in the objective function or formulated as constraints. We address the territory design problem by devel-
oping graph theoretic models that also consider the underlying road network. The derived graph models enable us
to tackle the territory design problem by modifying graph partitioning algorithms and mixed integer programming
formulations so that the objective of the planning problem is taken into account. We test and compare the algorithms
on several real world instances.

Keywords: Territory Design, Graph Partitioning, Road Networks

1 Practical Motivation

The starting point for this research was a real territory design problem at the PTV AG; design
and plan service territories for companies that send agents to customers on a regular basis. In this
case, the number of territories to be planned is predetermined by the number of service agents.
Required properties of territories are manifold. For example, the obtained territories should be
reasonably balanced with respect to an activity index of the customers, they should have “good”
accessibility (non-accessible areas have to be accounted for), have to be contiguous and compact;
and most importantly the expected journey time for visiting a typical set of customers within the
territory should be small. Even small improvements in the objective save fuel and time that is
needed to visit the customers. In turn, the costs of the service company are reduced and the usage
of valuable resources is optimized. This optimization can also lead to the company serving even
more customers using the same amount of employees or increasing the face time with its customers.

More formally, given a set of basic areas such as zip code areas or customer sites, the territory
design problem asks to create a predefined number of larger territories such that an objective func-
tion encoding the desired properties is optimized and territory constraints are fulfilled. Apart from
the introduced example, other important applications include political districting, electrical power
restricting or planning territories for social facilities like hospitals or administrative units.

We organize the paper as follows. We begin in Section 2 by introducing basic concepts and by
summarizing related work. The main parts of the paper are Section 3 and Section 4. The former
introduces our rationale, graph models and the approach employing graph partitioning algorithms
to perform territory design. The latter uses a mixed integer programming approach to tackle the
problem. We report on carefully designed experiments performed on several real world instances
in Section 5. Experiments indicate that our algorithms compute high quality territories that have
small average journey times in particular. Finally, we conclude with Section 6.

ar
X

iv
:1

50
4.

07
84

6v
2 

 [
m

at
h.

O
C

] 
 5

 M
ay

 2
01

5



2 Preliminaries

2.1 Basic concepts

Consider a set of basic areas B = {b1, . . . , bn} with an activity index a : B → R≥0. We use the
short notation ai for a(bi) and extend the activity index to sets, i.e. , for a set B′ ⊆ B, its activity
a(B′) :=

∑
bi∈B′ a(bi). A territory T is defined as a subset of the set of basic areas. The activity

index of a territory T is defined as a(T ) =
∑

bi∈T a(bi). The territory design problem is to assign
each basic area to one of the k territories, where k > 1 is the number of desired territories given
in advance. A solution to the territory design problem is a set of territories T = {T1, . . . , Tk} such
that for each pair of territories, Ti ∩ Tj = ∅ and T1 ∪ · · · ∪ Tk = B. A balance constraint on the
activity index demands that a(T ) ≤ (1+ε)da(B)

k
e ∀T ∈ T for some imbalance tolerance parameter

ε ≥ 0. A solution is called feasible if it obeys the balance constraint and other constraints placed
on the contiguity and compactness of territories. The objective is to minimize the sum of pair-wise
travel distances within the territories. Note, for small values of ε a feasible solution may not exist.

Consider an undirected graph G = (V,E, c, ω) with edge weights ω : E → R>0 and node
weights c : V → R≥0. Again, we extend c and ω to sets, i.e. , for a set V ′ ⊆ V its node weight
c(V ′) :=

∑
v∈V ′ c(v) and for a set E ′ ⊆ E its edge weight ω(E ′) :=

∑
e∈E′ ω(e). The set Γ (v) :=

{u : {v, u} ∈ E} denotes the neighbors of v. A maximal connected component is a maximal
subgraph of G in which every pair of nodes are connected by a path. The graph partitioning
problem is looking for k blocks of nodes V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪ Vk = V and
Vi∩Vj = ∅ for i 6= j. Here, a balancing constraint demands that ∀i ∈ {1, . . . , k} : c(Vi) ≤ Lmax :=
(1 + ε)dc(V )/ke for some imbalance parameter ε ≥ 0. Often the objective of graph partitioning
problems is to minimize the total cut

∑
i<j w(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}.

However, during the course of the paper we will modify this objective.

2.2 Related Work

There has been a huge amount of research on territory design so that we refer the reader to the
surveys [4,8,16] for most of the material. For material related to graph partitioning, we refer the
reader to the survey [2]. Here, we focus on issues closely related to our main contributions.

The basic formulation of territory design problems is due to Hess and Samuels [6] who used
relaxations of integer linear programming models to tackle the problem. Ronen [10] presents a
mixed integer formulation to minimize the total driving distance of salesmen. However, it is as-
sumed that each trip to a customer requires a separate trip which includes that the salesmen returns
home, so that the average journey time is not measured.

Using the same assumption, Zoltner and Sinha [15] develop a linear optimization model incor-
porating road networks for the distance computation to minimize the travel time. Additionally, the
networks are used to represent connectivity between the territories which helped to compute con-
tiguous territories with improved accessibility. Note that in both cases the objective also implicitly
encodes compactness of the territories.

Forman and Yue [5] use a genetic algorithm to compute congressional territories. The basic idea
is based on an encoding and on genetic operators that where originally used to solve the Traveling
Salesman Problem. Desired properties of the territories are integrated into the fitness function of

2



the individuals. In this paper, we also use an evolutionary algorithm which instead encodes the
individuals as partitions of a graph model.

Hess et al. [7] describe a mixed integer program based on the location-allocation approach. In
each iteration basic areas are assigned to territory centers and afterwards the centers are updated.
Compact territories are achieved by minimizing the sum of the distances of the basic areas to the
territory centers. Since we also implement and extend this approach we go into more detail later.

Recently, Butsch et al. [3] used a recursive geometric bipartitioning approach to assign basic
areas to territories. The approach recursively computes bipartitions of the basic areas using their
coordinates. However, this approach may compute longish, non-compact territories and has prob-
lems incorporating geographic obstacles such as rivers or mountains. We compare our algorithm
against this approach in Section 5.

2.3 KaHIP

Within this work, we use the open source multilevel graph partitioning framework KaHIP [11,13]
(Karlsruhe High Quality Partitioning)1. More precisely, we modify the distributed evolutionary
algorithm KaFFPaE contained therein to create partitions of our graph models which in turn yield
solutions to the territory design problem. Hence, we shortly outline the main components of KaHIP.

Besides the evolutionary algorithm, KaHIP implements many different algorithms, for exam-
ple flow-based methods and more-localized local searches within a multilevel framework called
KaFFPa, as well as several coarse-grained parallel and sequential meta-heuristics. The algorithms
in KaHIP have been able to improve the best known partitioning results in the Walshaw Bench-
mark [14] for many inputs using a short amount of time to create the partitions.

Evolutionary Algorithm Outline. We now roughly outline the general structure of KaFFPaE since
one of our algorithms employs a modified version of the evolutionary algorithm. KaFFPaE starts
with a population of individuals (in our case partitions of the graph) and evolves the population
into different populations over several rounds. In each round, the evolutionary algorithm uses a
selection rule based on the fitness of the individuals of the population to select good individuals
and combines them to obtain improved

Algorithm 1 General Stucture of the Evolutionary Graph Partitioning Algorithm KaFFPaE.
create initial population P
while stopping criterion not fulfilled

select parents p1, p2 from P (using fitness function)
combine p1 with p2 to create offspring o (using a graph partitioner)
mutate offspring o
evict individual in population using o

return the fittest individual that occurred

1 available at http://algo2.iti.kit.edu/documents/kahip/

3

http://algo2.iti.kit.edu/documents/kahip/


offspring. More precisely, KaFFPaE uses a tournament selection rule to select individuals for com-
bination. In KaFFPaE, the fitness function is set to the number of edges cut, however, we will
modify the fitness function for the purpose of territory design. A combine operation then employs
a graph partitioning framework to obtain an offspring having the good cuts of both input partitions.
We refer the reader to [12] for more details. Our algorithm generates one offspring per generation.
The general structure of the evolutionary algorithm is depicted in Algorithm 1.

The algorithm is parallelized by giving each processing element its own population so that
combine and mutation operations can be performed independently. This is combined with a scal-
able communication protocol to exchange high quality solutions between the processing elements
over time.

3 Territory Design by Graph Partitioning

The territory design problem and the graph partitioning problem are closely related. Our approach
to territory design using graph partitioning consists of two steps. At first we construct a graph
that corresponds to the territory design problem. Then, a customized algorithm partitions the con-
structed graph into k blocks. We develop a one-to-one mapping between basic areas and vertices
in the constructed model. Hence, a partition of our model yields a solution of the territory design
problem. Edges are defined by a neighboring relation. We begin this section by explaining how we
construct the graph to be partitioned, then define the fitness function that is used in the evolutionary
algorithm and outline how everything is put together.

3.1 Constructing the Graph

We now explain how we construct the graph that will be partitioned by the graph partitioning
algorithm which in turn gives us a solution to the territory design problem. Every basic area bi with
activity ai corresponds to a node vi in the graph with weight ci := ai. An edge between a node vi
and vj exists if and only if the basic areas bi and bj are neighbors as described below. In general,
we set the weights of the edges in our model to one. However, as we will see later, the evolutionary
graph partitioning algorithm that is used to partition the model takes the real distances into account
to compute the value of the objective function of a solution.

Edges in our Model. The algorithm we use to compute the edges in our model is as follows. Note
that we have multiple design goals for our model. First of all, two basic areas that are close should
be connected by an edge in the model. Additionally, the model should not be too dense, e.g. if the
maximum degree of the graph is bounded, the graph should be connected and edges that are too
long should also not be contained in the model. Roughly speaking, we perform two iterations of
Kruskal’s algorithm [9] on a complete graph where every node vi corresponds to a basic area bi
and the edge weights are the distances between the basic areas ω(vi, vj) = d(bi, bj). Recall, that
Kruskal’s algorithm scans the edges of the graph in increasing order of their weight to grow a forest
and that it adds the edges joining two trees in the forest.

After the first run of Kruskal’s algorithm, every edge that is in the minimum spanning tree
(MST) computed by the algorithm is inserted into our model. For the second run of Kruskal’s

4



algorithm, we remove the just computed MST edges from the complete graph. Now, while the
algorithm scans the edges in increasing order, it adds the current edge to our model if the maximum
node degree in the current state of the model does not exceed a user defined parameter γ > 1 and
if the length of the edge is smaller or equal to β · ωavg. Here, β is a user specified factor and ωavg

denotes the average edge weight of MST edges of the first iteration of the algorithm.

3.2 Fitness Function

Recall that we are looking for a partition of the just defined graph model into k blocks of nodes
P = {V1, . . . , Vk}. Moreover, each subgraph induced by a block Vi should to be contiguous. In
other words, if nmcc(Vi) is the number of maximal connected components in the subgraph induced
by Vi, we want nmcc(Vi) = 1 for each block Vi. We define the number of connected components of a
partition P as ncon(P ) =

∑k
i=1 nmcc(Vi). To guide the evolutionary algorithm towards contiguous

blocks, we use a penalty approach. More precisely, we use the factor (1 + α(ncon(P ) − k)) with
penalty parameter α > 0 in our objective function to ensure that non-contiguous territories are
penalized. We then set the objective/fitness function of the evolutionary algorithm that partitions
our model to

fobj(P ) = (1 + α(ncon(P )− k))
k∑

i=1

∑
u,v∈Vi

d(u, v) ,

where d(u, v) is the average time needed to traverse the shortest route in the original network
between the basic areas corresponding to u and v respectively.

3.3 Overall Algorithm

To tackle the territory design problem, we use the distributed evolutionary graph partitioner KaFF-
PaE to partition our model. We modify the fitness function of the algorithm to the objective function
presented in Section 3.2. Note that the partitioning algorithms within KaFFPaE still optimize the
number of cut edges. The amount of allowed imbalance is a constraint of the partition problem in
KaFFPaE. Due to the local search algorithms in KaFFPaE no block of a partition will be empty.
However, it may be possible that partitions created during the course of the evolutionary algo-
rithm are not contiguous. Hence, whenever we create an individuum/partition, we try to make it
contiguous. This is done by grouping neighboring connected components of the partition so that
each block becomes contiguous. More precisely, excess connected components are assigned to the
neighboring block with the least activity. Doing this may result in imbalanced partitions so that
a rebalancing step is performed afterwards to ensure the balance constraint. We call the overall
algorithm to tackle the territory design problem KaTeD (Karlsruhe Territory Design).

5



4 Territory Design by Mixed Integer Programming
Besides the graph partitioning approach, we use a location-allocation method for territory design.
In this section, we first describe the location-allocation method introduced by Hess et al. [7] and
then present the details of our modified and extended location-allocation approach.

4.1 The location-allocation approach by Hess et al.
The idea of solving territory design problems by means of a location-allocation approach goes back
to Hess et al. [7]. They apply the approach to the design of legislative districts. In this application,
territories are supposed to be compact, contiguous, and balanced in terms of population. Due to the
complexity of the problem, Hess et al. [7] decompose it into two subproblems which are solved in
an iterative manner:

– The location subproblem seeks to find (virtual) territory centers which are used to calculate the
compactness measure. In the first iteration, the centers are a guess; in all subsequent iterations
they are obtained by computing the center of gravity in each territory.

– In the allocation subproblem the basic areas are assigned to territory centers. To this purpose,
Hess et al. [7] formulate an integer linear program. Let C denote the set of territory centers
and dbicj the distance between basic area bi ∈ B and center cj ∈ C. Furthermore, define the
following decision variables:

xbicj =

{
1 if basic area bi is assigned to center cj
0 otherwise

Then, the model of Hess et al. [7] can be stated as follows:

min
∑
bi∈B

∑
cj∈C

d2bicjaixbicj (1)

∑
cj∈C

xbicj = 1 bi ∈ B (2)

(1− ε)a(B)

k
≤

∑
bi∈B

aixbicj ≤ (1 + ε)
a(B)

k
cj ∈ C (3)

xbicj ∈ {0, 1} bi ∈ B, cj ∈ C (4)

The objective function (1) optimizes compactness which is measured as the sum of the squared
distances between basic areas and associated territory centers, weighted by the basic areas’
activity index. Constraints (2) in combination with the integrality conditions (4) ensure that
each basic area is assigned to exactly one territory center. Balance is achieved by the constraints
in (3) which guarantee that the activity index of a territory deviates by at most ε · 100 percent
from the mean activity index. Instead of solving the integer program, Hess et al. [7] set ε to
zero, solve the linear programming relaxation and then resolve all fractional assignments.

Hess et al. [7] perform location and allocation alternately until the solution converges. The algo-
rithm repeats if multiple initial guesses for the territory centers are available.

6



4.2 Modifications and Extensions

We now outline our modifications and extensions of the approach by Hess et al. [7]. Roughly
speaking, we use a well-known procedure to determine good initial centers, modify the balance
constraint, solve the integer program directly and apply a multi-start procedure. We call our version
of that approach KaLocAlloc (Karlsruhe Location Allocation).

Location Step. The quality of the solutions obtained by the location-allocation approach strongly
depends on the selection of the initial centers, i.e. , the centers used in the first iteration of the
algorithm. A good initial set of centers should be well-distributed across the region under study.
To this end, we adopt the initialization procedure from the k-means++ algorithm [1]: Among all
basic areas we pick the first center uniformly at random. Among all remaining basic areas the next
center is picked with a probability which is proportional to the basic area’s squared distance to the
nearest center already chosen. This is repeated until k centers have been selected.

Allocation Step. For the allocation of basic areas to centers we use model (1) - (4) with one
modification. In order to limit only the maximum activity index of the territories, we drop the
lower bound in constraints (3):

∑
bi∈B

aixbicj ≤ (1 + ε)
a(B)

k
∀ cj ∈ C (5)

Although we drop the lower bound, solutions cannot contain empty territories. This is because
the centers are picked among the basic areas and, therefore, at least the basic areas corresponding
to centers are assigned to the respective center due to a distance of 0. Another difference to Hess
et al. [7] is that we do not solve the linear programming relaxation of the model, but the integer
program.

Multi-start Procedure. As already mentioned, the selection of good initial centers is important
to achieve solutions of high quality. Therefore, we apply a multi-start procedure in which the
problem is solved multiple times with different initial centers at each start. The centers at each
start are selected randomly according to the k-means++ scheme described above. After a user-
defined number of starts the approach returns the best solution across all starts. Since in our case
the objective is to minimize the sum of pairwise travel times between all basic areas of the same
territory, the multi-start algorithm returns the best solution according to this criterion.

7



5 Experimental Evaluation

Methodology. All experiments were performed on real-world data provided by PTV Group. The
test data comprises 15 instances whose sizes range from approximately 300 to 5,000 basic areas.
The number of territories to be planned is given in the test data and varies from 3 to 46. Further-
more, road distances and travel times for the shortest path between each pair of basic areas were
available and have been used for compactness evaluation. We also compare our algorithms against
the recursive partitioning approach by Butsch et al. [3] (BKNS) which has been provided by the
authors. However, we perform only one repetition since the algorithm is deterministic.

We evaluated our approaches on all 15 instances with a time limit of 300 seconds. The im-
balance tolerance parameter ε was set to 0.05 in all experiments. From the practical experience of
PTV Group the chosen values for the time limit and for the imbalance tolerance are very acceptable
values for human planners.

Parametrization. Parameters which are specific to territory design by graph partitioning were set
as follows: penalty parameter to increase connectedness α = 0.1; edge length factor in our model
β = 5; node degree bound in our model γ = 20. We repeated both approaches 40 times using
different random seeds for initialization and the average was taken. Parameters which are specific
to the location-allocation approach were set as follows: For the allocation step, the relative MIP
optimality gap was set to 0.001. The maximum time spent on the allocation step was limited to 15
seconds, and the number of multi-starts was unrestricted.

System. All experiments have been done on an Intel Xeon CPU E3-1245 at 3,4GHz having 16 GB
RAM and Microsoft Windows 7. The location-allocation approach was implemented in Java. We
used Gurobi 5.6 to solve the integer linear program within the location-allocation approach. The
number of threads was set to 4 for KaTeD and KaLocAlloc to ensure comparability.

5.1 Computational Results

We shortly summarize the main results and present detailed per instance results in Table 2. First
of all, the balance constraint is satisfied in all cases for all approaches. In 8 of 15 instances, the
average solution quality of KaTeD outperforms KaLocAlloc. Considering the other 7 instances,
the value of the objective of the territories computed by KaLocAlloc is 1.6 percent smaller than the
ones computed by the evolutionary approach. The recursive partitioning approach BKNS always
yields worse results than both of our approaches, but is faster since we could perform only one
repetition of the algorithm due to the fact that the algorithm is deterministic. On the largest instance,
G02, the BKNS algorithm needed 203 seconds to compute a result. On average, BKNS yields
3.7 percent larger objectives than KaTeD and 4.3 percent larger objectives than KaLocAlloc. The
largest improvement over BKNS is obtained on instance BL16 (Thüringen) and amounts to 10.3
percent compared to the result of KaTeD which computes the best objective on that instance.
Figures 1 to 6 compare the visual result computed by the different algorithms on two exemplary
instances, Thüringen and Baden-Würtemberg in Germany.

8



6 Conclusion and Future Work

In this paper we addressed the territory design problem by developing graph theoretic models that
also consider the underlying road network. The derived graph models enabled us to tackle the
territory design problem by reducing it to a graph partitioning problem. The resulting graph parti-
tioning problem is then solved by using a modified evolutionary graph partitioning algorithm takes
the objective function of the territory design problem into account. On the other hand we extended
an existing mixed integer programming formulation. We tested and compared the algorithms on
several real world instances.

Important future work includes the integration of the objective function of the territory design
problem directly into a multi-level graph partitioning algorithm. In particular, it would be interest-
ing to define local search algorithms for our objective. On the other hand, it would be good to have
a graph partitioning algorithm that can ensure connectedness of blocks.

Acknowledgements. We would like to thank Alexander Butsch for providing us with an implemen-
tation of the recursive partitioning approach of Butsch et al. [3].

References
1. D. Arthur and S. Vassilvitskii. k-means++: The Advantages of Careful Seeding. In Proc. of 18th ACM-SIAM Symposium on

Discrete Algorithms, pages 1027–1035. SIAM, 2007.
2. A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph Partitioning. In Algorithm Engineer-

ing – Selected Topics, to app., ArXiv:1311.3144, 2014.
3. A. Butsch, J Kalcsics, S. Nickel, and M. Schröder. Geometric Approaches to Districting Problems. Technical report, 2013.

Working Paper.
4. J. C. Duque, R. Ramos, and J. Suriñach. Supervised Regionalization Methods: A Survey. International Regional Science

Review, 30(3):195–220, 2007.
5. S. L. Forman and Y. Yue. Congressional Districting Using a TSP-based Genetic Algorithm. In Proc. of the 2003 International

Conference on Genetic and Evolutionary Computation: PartII, GECCO’03, pages 2072–2083. Springer, 2003.
6. S. W. Hess and S. A. Samuels. Experiences with a Sales Districting Model: Criteria and Implementation. Management Science,

18(4-part-ii):P–41, 1971.
7. S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan Political Redistricting by Computer.

Operations Research, 13(6):998–1006, 1965.
8. J. Kalcsics, S. Nickel, and M. Schröder. Towards a Unified Territorial Design Approach—Applications, Algorithms and GIS

Integration. Top, 13(1):1–56, 2005.
9. J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proc. of the American

Mathematical society, 7(1):48–50, 1956.
10. D. Ronen. Sales Territory Alignment for Sparse Accounts. Omega, 11(5):501–505, 1983.
11. P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In Proc. of the 19th European Symposium

on Algorithms, volume 6942 of LNCS, pages 469–480. Springer, 2011.
12. P. Sanders and C. Schulz. Distributed Evolutionary Graph Partitioning. In Proc. of the 12th Workshop on Algorithm Engineer-

ing and Experimentation (ALENEX’12), pages 16–29, 2012.
13. P. Sanders and C. Schulz. Think Locally, Act Globally: Highly Balanced Graph Partitioning. In Proc. of the 12th International

Symposium on Experimental Algorithms (SEA’13), LNCS. Springer, 2013.
14. A. J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and Multilevel Optimisation Approach to Graph-

Partitioning. Journal of Global Optimization, 29(2):225–241, 2004.
15. A.A. Zoltners and P. Sinha. Sales Territory Alignment: A Review and Model. Management Science, 29(11):1237–1256, 1983.
16. A.A. Zoltners and P. Sinha. Sales Territory Design: Thirty Years of Modeling and Implementation. Marketing Science,

24(3):313–331, 2005.

9



A Tables and Pictures

Table 1. Sum of Pairwise Travel Times – Average

Instance #Basic Areas #Territories KaTeD avg KaLocAlloc avg BKNS avg
BL1 520 6 56 080 176 54 157 925 56 943 136
BL3 1 265 13 143 300 619 144 435 173 146 538 257
BL5 2 440 20 239 489 621 238 965 327 250 332 974
BL6 514 6 109 625 833 110 561 195 118 085 932
BL7 1 038 9 48 151 371 48 456 559 50 664 649
BL8 1 252 11 159 771 590 160 239 521 172 659 265
BL9 2 019 18 260 762 258 258 027 628 271 895 453
BL11 427 3 28 990 949 28 796 550 29 745 445
BL13 289 3 50 774 924 50 326 699 50 301 370
BL14 493 5 55 345 856 55 723 702 55 844 700
BL15 284 3 41 953 610 40 997 882 41 426 146
BL16 428 5 44 396 659 44 564 384 48 977 328
G01 4 472 41 469 430 937 459 630 225 479 442 432
G02 4 971 45 597 515 028 591 514 229 632 623 485
G03 2 241 20 333 612 833 329 314 024 343 170 613

Table 2. Sum of Pairwise Travel Times – Minimum and Maximum

Instance KaTeD min KaLocAlloc min KaTeD max KaLocAlloc max BKNS min/max
BL1 54 918 613 53 663 743 56 276 617 54 819 237 56 943 136
BL3 142 464 954 143 406 994 143 688 813 145 504 176 146 538 257
BL5 235 752 526 233 110 996 244 426 840 245 775 302 250 332 974
BL6 109 140 977 109 548 283 109 893 677 111 336 978 118 085 932
BL7 47 118 442 48 293 411 48 591 642 48 569 098 50 664 649
BL8 158 613 738 158 257 253 160 899 255 161 325 525 172 659 265
BL9 257 234 587 253 678 835 262 697 498 261 954 880 271 895 453
BL11 28 973 547 28 796 550 28 992 672 28 796 550 29 745 445
BL13 50 774 924 50 217 885 50 774 924 50 446 097 50 301 370
BL14 54 102 563 55 456 757 57 347 598 55 810 459 55 844 700
BL15 41 255 274 40 987 865 41 971 516 41 011 058 41 426 146
BL16 44 083 530 44 455 849 44 609 070 44 631 114 48 977 328
G01 459 200 690 447 119 646 473 914 701 473 030 108 479 442 432
G02 581 718 616 575 445 420 612 582 152 606 800 497 632 623 485
G03 329 746 198 326 456 733 336 518 355 333 657 431 343 170 613

10



Fig. 1. Visualization of the KaTeD result of instance BL16 (Thüringen, Germany).

Fig. 2. Visualization of the KaLocAlloc result of instance BL16 (Thüringen, Germany).

11



Fig. 3. Visualization of the BKNS result of instance BL16 (Thüringen, Germany).

Fig. 4. Visualization of the KaTeD result of instance BL8 (Baden-Wuerttemberg, Germany)

12



Fig. 5. Visualization of the KaLocAlloc result of instance BL8 (Baden-Wuerttemberg, Germany).

Fig. 6. Visualization of the BKNS result of instance BL8 (Baden-Wuerttemberg, Germany).

13


	Incorporating Road Networks into Territory Design

