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ABSTRACT

In this paper, we propose and compare three ways of mod-
eling photographers’ location familiarity: a social network
driven model, a time driven model and a location driven
model. Then, the integration of the three models is fur-
ther discussed. Experimental evaluations and analysis on a
real data set consisting of 14,112 images collected from three
cities well demonstrate the performance of the proposed clas-
sification methods. Many applications could benefit from
information about the location familiarity, such as personal-
ized geo-social recommendation, epidemic dispersion, urban
computing, and so on.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models; H.2.8 [Database Applications]: Data mining

Keywords

User profiling, location familiarity, geo-tagged image, prob-
abilistic model, social network.

1. INTRODUCTION
A number of algorithms have been proposed to detect

users’ different attributes. For instances, the location in-
ference related works have been done from a wide variety
of social media, such as Tweets [4], geo-referenced pages on
Wikipedia [8], image tags on Flickr [10], and social network
structures on Facebook [2]. Besides the location informa-
tion, a variety of other user attributes have also been inves-
tigated by using NLP related technologies, including gender,
age, and even political orientation [9].

However, to the best of our knowledge, how to estimate
a user’s location familiarity by analyzing geo-tagged images
has not yet been well studied. In [15], we are trying to
develop a sightseeing recommendation system by dividing
sightseeing spots into four quadrants on the basis of their
“popularity”and“sightseeing quality”. We have verified that
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the location familiarity is essential for discovering the ob-
scure spots. Located in the quadrant with high sightseeing
quality but low popularity, an obscure sightseeing spot is a
considerable choice for in-depth travel to not only enjoy the
beautiful scenery but also experience local culture.

By analyzing the image taken time information, Fischer
[1] presents the mobility behaviors of Flickr photographers
to a city scale. Compared with tourists, locals always have
very different mobility behaviors when taking photographs.
By further analysis, we find that the reason for this phe-
nomenon occurred is the information asymmetry between
different groups. Intuitively, the familiar ones (e.g., locals)
are always having more choices for visit. On the basis of
this observation, we assume that the obscure spots can be
discovered by comparing the visiting frequencies of different
photographer groups. The key problem is how to identify
these groups.

In this paper, we focus on the photographer classifica-
tion task. By analysis of geo-tagged images from Flickr, we
propose three models to estimate photographers’ location
familiarity, based on which we can detect the spots that
are obscure to travelers who are unfamiliar with the city.
First, we introduce a social network driven model, where a
graph based method is used. Second, we introduce a time
driven model, which estimates someone’s location familiar-
ity based on their visiting frequency. Third, considering the
fact that different photographers have different mobility be-
haviours, a location driven model is devised. In addition to
our goal, many other applications could benefit from infor-
mation about the location familiarity, such as personalized
geo-social recommendation [13], epidemic dispersion [7], ur-
ban computing [14], and so on.

2. MODELS
Our problem is defined as: given a Flickr photographer,

his/her location familiarity will be estimated. Three totally
different models will be introduced in this section.

2.1 Social Network Driven Model
If a photographer is a resident, we assume s/he is famil-

iar with the target city. However, few users specify their
residency information on Flickr. Due to this, we propose
a social network based method to calculate the familiarity
of a photographer with a given city c. We assume that a
photographer with many friends who are familiar with city
c will also be familiar with the city c.

Fs(c) = αB ·N · Fs(c) + (1− αB)dc. (1)



Represented by a transition matrix, N is a directed graph
N(V, E), where V is the photographer set of vi and E is the
friendship set of e(vi, vj) from vi to vj . For the normalized
bias distribution dc, compared with the TruskRank [6], our
system can automatically select good seeds due to whether a
vi is a resident or not as detected from his/her profile. While
the others are assigned to 0, the entries of the vector dc that
correspond to good seeds sum up to 1. αB is the decay
factor. Given a city c, Fs(c) is initialized to dc before the
iteration of the above computation. The computation would
be finished when either it reached the maximum number of
iterations (i.e., MB) or Fs(c) was converged.

2.2 Time Driven Model
In the time driven model, we devise a method by con-

sidering photographers’ visiting frequencies. Intuitively, if
a photographer has visited the target city c frequently and
recently, s/he may be familiar with c. Considering the time
sensitivity of location familiarity, we calculate the score of
each location before a year λ.

Ft(vi, c, λ) = diag(rTi · (wi ·Mi))[c] (2)

A matrix Mi is a mapping between a photographer vi
and all the cities Ci that s/he has been to. For example,
Mi[y = 2014, c = kyoto] = 10, c ∈ Ci means that among
vi’s images taken in Kyoto in 2014, there are 10 different
dates detected from the images’ taken dates. Before λ, the
reproducibility of cities is denoted as a matrix ri. Assuming
that we collect 10 years’ worth of image data of vi, for each
year x, ri[x, c] =

5
10

if we detect that vi went to c in five of the
years; We also introduce a diagonal matrix, ωi(x, y) ∀x, y ∈
{1, 2, ..., n}, to characterize the staleness of information. n
equals the number of detected years before λ.

Obviously, the accuracy of Ft highly depends on the spar-
sity of the familiarity matrix Mi. For a photographer who
has uploaded few images, this method would not be effective.

2.3 Location Driven Model
The geographical information about where a user has been

to in a city c is also essential for the estimation of their loca-
tion familiarity. By introducing Bayes’ theorem, we model
user mobility behavior based on the following observations.

For each user vi, when given a city c, there exists an in-
herent property which describes his/her familiarity with the
target city. For instance, there are three different groups
labeled by red, blue, and yellow in [1]. Accordingly, in our
location driven model, we introduce a latent variable group,
denoted as g, to represent this property. Furthermore, for
the users from different groups, they prefer visiting different
regions of a city. Namely, some regions appealed to more
users from the red group, while some others attracted many
users from the blue group.

Table 1 shows the notations used in this model. To gen-
erate such a map illustrated in [1], Algorithm 1 presents the
generative process. The whole generative process above can
be explained by the following joint distribution.

p(t, g | ~α, ~β,Λ) = p(lt | r,Λ)p(vt | g, ~α)p(g | ~β). (3)

Given the priors ~α, ~β, and Λ, by introducing a latent vari-
able group g, the model is aiming to generate each tuple
t = {vt, lt} (i.e., t of an image in our dataset) in the set
T . Λ denote all the priors of the Gaussian Mixture Model
(GMM). More specifically, there are a Dirichlet distribution

Table 1: Notations used in the model
Size Description

V [1, V ] The user set, v is a particular user in V
R [1, R] The region set, r is a region in R
G [1, G] The group set, g is a group in G
T [1, T ] t ∈ T is a user-coordinate tuple: {vt, lt}
µr R

2 Mean location of a latent region r
Σr R

2×2 Covariance matrix of a latent region r
~ϑr 1× |G| A region-dependent group distribution
~ϕg 1× |V | A group-dependent user distribution

~α, ~β Hyperparameters of Dirichlet priors
Λ Denote all the priors of the GMM

Algorithm 1 A probabilistic generative process

1: R ∼
∑R

r=1 πrN (x | µr,Σr) ⊲ initialize R using GMM
2: for all groups g ∈ [1, G] do ⊲ Observation 3
3: sample mixture components ~ϕg ∼ Dir(~α)
4: end for

5: for all regions r ∈ [1, R] do ⊲ Observation 2

6: sample mixture proportion ~ϑr ∼ Dir(~β)
7: for all tuples t ∈ [1, Nr] in region r do

8: sample a coordinate lt ∼ N (µr,Σr)

9: sample a group grt ∼ Mult( ~ϑr)
10: sample a user vrt ∼ Mult( ~ϕgrt )
11: end for

12: end for

over the mixing coefficients πr, and a Gaussian-Wishart dis-
tribution governing the mean µr and precision Σ−1

r of each
Gaussian component.

In accordance with our goal of user classification, the tar-
get of model inference is the distribution p(g | t), where the
hyperparameters are omitted. By seeing the Eq. 3, when a
region r is given in the initialization stage, g is independent
(⊥⊥) of lt. Intuitively, for all tuples t in a specific region
r, we can regard them as bag of instances of different users
by ignoring the location information. Note that, in spite
of g ⊥⊥ lt | vt, r, our model is flexible enough to describe
the situation that different instances vt of the same user v
could be assigned to different g. Accordingly, we divide the
inference procedure into two steps as follows.

Step 1. lt − generation: Since a city c is described by a
GMM, and each region r is a component of the GMM, we
utilize a variational Bayesian machinery for the inference of
GMM. As mentioned above, because it is not necessary to
identify the exact location information, given r a random
coordinate is assigned to each lt in the r.

Therefore, we simply utilized the implementation intro-
duced in the section 10.2 of [3]. It has the advantage that
the number of mixture components (i.e., |R|) can be auto-
matically identified with a relatively large initial value.

Step 2. vt − generation: After eliminating the lt, the
joint distribution in Eq. 3 has been simplified as follows:

p(t, g | ~α, ~β) = p(vt | g, ~α)p(g | ~β). (4)

There have been three strategies, EM with variational in-
ference, EM with expectation propagation, and Gibbs sam-
pling, which can be applied in our inferential problem. We
use the Gibbs sampling method, whose performance is com-
parable with the other two but is tolerant better to local
optimization.



Table 2: Datasets of the three cities

Beijing Kyoto SF

Geo-tagged images 4,002 6,121 3,989
Target photographers 230 300 536
% of images from top 20% 85.7% 84.4% 78.6%

Table 3: Context data used in Eq. 1 and 2

Eq. 1: A friendship based directed social network.
Nodes: 837,633; Edges: 3,082,408.

Eq. 2: 1066 familiarity matrices.
Year range: 2005 ∼ 2015; Cities: 17,460.

2.4 Model Integration
By model integration, one important goal is to identify the

latent groups generated in the location driven model. Be-
cause only photographer ids and geo-coordinates are used,
the system cannot automatically know the meanings (i.e.,
close to the familiar or unfamiliar groups) of the groups when
using this model alone. Another goal is to make the clas-
sification much more stable and robust, by considering the
different available information for each photographer.

In this integration method, we simply use the scores ob-
tained from the three models as features to train a classifica-
tion model. For instance, if the number of groups |G| = 2 in
the location driven model, there would be four features for
the SVM model training. In the process of implementation,
we utilize SVM with the RBF kernel. Then, a grid search
method [11] is applied on a 3-fold cross validation to find the
best RBF kernel’s parameter γ and the penalty parameter
C in SVMs. At last, by comparing the average classification
accuracy, the most powerful model is chosen.

To make a summary, since the three original models are es-
tablished using completely different information, predictably
the integration method would obtain a better performance.
However, the only drawback is that a manually labeled train-
ing data set is needed. Although how to establish a com-
prehensive training data set could be further discussed, cur-
rently we do a random sampling and manually label them.

3. EXPERIMENT
We first show an outline of the retrieved data sets and

parameter selections in our experiments. Then, the perfor-
mance of all the three photographer classification methods
(i.e., Eq. 1, 2, 3) will be presented.

3.1 Data Preparation
Table 2 summarizes three target datasets of Beijing, Ky-

oto, and San Francisco, respectively. For all the datasets,
the approximate top 20% photographers are vital, while the
photographers at the long tail remain very inactive. In Ta-
ble 3, it shows the context data that would be used in the
social network driven model and the time driven model. For
instance, we totally collected 837,633 photographers to con-
struct the social network N , in which all the 230+300+536
target photographers are included. Also, we retrieved all the
images uploaded by the target photographers to create the
familiarity matrices M . As a result, these photographers
have visited about 17,460 cities during the last ten years.

3.2 Parameter Selection

Table 4: Labelling results of the 300 photographers

Cities familiar No. unfamiliar No.

Beijing ≈ 36 ≈ 64
Kyoto ≈ 31 ≈ 69
San Francisco ≈ 76 ≈ 24

Table 5: Accuracy on integration method: SVM

(γ, C) All models Time driven model excluded

(2−7, 23) 0.877 0.798
(21, 2−1) 0.880 0.820

Social Network Driven Model: We applied our biased
PageRank by setting the decay factor αB = 0.85, and the
number of iterations MB = 1000.

Time Driven Model: Because the wi in Eq. 2 are used
to character the staleness of information, we set them to the
practical exponential decay: 0.8(λ−x).

Location Driven Model: We set the number of groups
|G| = 2. Based on the experimental results below, these two
latent groups well demonstrate our intentions. In accordance
with the conclusion in [5], as the relationship between hy-
perparameters and group number is a mutual one, we set
the symmetric Dirichlet priors as α = 0.01 and β = 50/ |G|.

3.3 Photographer Classification Evaluation
ROC based Evaluation: The receiver operating charac-

teristic (ROC) curve is a graphical plot that illustrates the
performance of a binary classifier model as its discrimina-
tion threshold is varied. In our experiments, we use the two
criteria, “sensitivity (true positive rate)” and “1-specificity
(false positive rate)” shown in Figure 1, to do the evalua-
tion. By using these two criteria, the area under the ROC
curve (AUC) is recognized as the measurement of a test’s
discriminatory power. Intuitively, the maximum value for
AUC is 1.0 indicating 100% sensitivity and 100% specificity,
while an AUC value of 0.5 means no discriminative value.

Ground Truth: We invited 9 subjects to manually align
photographers’ familiarity with a specific city using all their
online information. For each city (i.e., Beijing, Kyoto, and
San Francisco), 3 different subjects are assigned to label 100
photographers that have been picked out. Table 4 shows the
labeling results, from which about 36, 31 and 76 familiar
ones are returned by majority voting.

To make sure that the labeling is credible, all the sub-
jects are familiar with the corresponding cities and recorded
reasons for each of their labels. Furthermore, when select-
ing the target 300 photographers, we chose those who have
uploaded a lot of images on Flickr to make subjects’ tasks
much easier. Even so, there are some differences between
labeling results from different subjects. The Jaccard index
similarities between any two of the subjects vary between
0.75 and 0.87.

Experiment Results: Figure 1(a) shows the perfor-
mance of the social network driven model. By proposing
a similar assumption, the state-of-art location prediction
method in [12] obtained an accuracy of 68.2% for predictions
on the city-scale. Considerably, our model achieved a better
improvement with AUC = 0.81 on average. Moreover, we
analyze the situations of different cities to gain a deep insight
into this model. By investigating the lower AUC for Kyoto,
we find that, since Kyoto is a very traditional city, few online
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(a) Social network driven model
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(c) Location driven model

Figure 1: Performance of our models evaluated by ROC and AUC.

social relationships are established compared with an open
society, like San Francisco. In some senses, the performance
of this model depends on different kinds of social culture.

Figure 1(b) shows the performance of the time driven
model. Because all the 300 target photographers uploaded
a lot of images, this model obtained very good results that
close to the ground truth. However, for the photographers
who have shared few images, obtaining the very sparse ma-
tricesMi, apparently its performance would decrease sharply.

Figure 1(c) presents the location driven model’s perfor-
mance. Although this model didn’t achieve an extremely
good result as the time driven model did, it has proved
that the location information is also an important feature
for getting the stable and robust results. Less influenced
by the number of images, this method tends to be good at
classifying the photographers who have strong preferences.

At last, Table 5 shows the accuracy of our integration
method. Since the time driven model would always obtain
a good result, we also present the accuracy when only the
scores from the other two models are used. By seeing the
average accuracy of the 3-fold cross validations, this method
performed as well as expected.

4. CONCLUSION
In this paper, to solve the problem of discovering obscure

sightseeing locations, we propose three methods to estimate
photographers’ location familiarity, including a social net-
work driven model, a time driven model, and a novel location
driven model that establishes a relationship between people
and space. In the experiments, we employ human effort to
obtain ground truth and compare the performance of each
proposed method. By analyzing the results, we also discuss
the utility of different kinds of photographers’ available in-
formation for the classification task. Our work is intended
to inspire more interest in information asymmetry analysis
and diverse sightseeing resources discovering.
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