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Abstract

Retrieving pre-captured human motion for analyzing and synthe-
sizing virtual character movement have been widely used in Vir-
tual Reality (VR) and interactive computer graphics applications.
In this paper, we propose a new human pose representation, called
Spatial Relations of Human Body Parts (SRBP), to represent spa-
tial relations between body parts of the subject(s), which intuitively
describes how much the body parts are interacting with each other.
Since SRBP is computed from the local structure (i.e. multiple body
parts in proximity) of the pose instead of the information from in-
dividual or pairwise joints as in previous approaches, the new rep-
resentation is robust to minor variations of individual joint loca-
tion. Experimental results show that SRBP outperforms the exist-
ing skeleton-based motion retrieval and classification approaches
on benchmark databases.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality, Animation 1.3.8 [Computer
Graphics]: Applications—;
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1 Introduction

Human motion data have been used in a wide range of VR appli-
cations, such as virtual training [Pronost et al. 2008; Kyan et al.
2015] and virtual rehabilitation [Celiktutan et al. 2013], for ana-
lyzing the performance of the human subject as well as animating
virtual avatars to interact with the subject to enhance the realism
of the system. In particular, pre-captured human motions can be
used as examples to guide the movement of virtual characters in
response to the performance of the human subject [Ho et al. 2013;
Pronost et al. 2008]. However, when retrieving relevant examples
from the motion database, maintaining the temporal coherency of
the poses over successive frames is a crucial factor in producing re-
alistic movement of the virtual characters. One of the fundamental
problems in existing methods in retrieving character motion is the
use of low-level representations such as 3D joint positions to repre-
sent human poses. Subtle movements of the subject or variations in
the pose may result in significant changes in the representation and
easily results in interpenetrations of body parts when handling close
character interactions. While detecting and resolving the collisions
between characters can be a solution, additional computation cost
is required which may not be available in real-time applications.
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In this paper, we propose a new spatial relation-based approach to
tackle the aforementioned difficulties by taking the advantages of
modeling the relationships of body parts to represent human mo-
tions. In particular, human motions are represented by Spatial Re-
lations of Human Body Parts (SRBP) which encodes the local rela-
tionship of body parts in proximity to represent motions in differ-
ent classes. SRBP is intuitive and easy to interpret - the larger the
SRBP value, the more the body parts interact. In addition, poses
captured from subjects with different body sizes can be represented
and compared using the same SRBP representation. Experimental
results show that our proposed method outperforms the state-of-the-
art skeleton-based approaches on classifying and retrieving motions
on benchmark databases.

2 Related work

An early work proposed by Kovar et al. [Kovar et al. 2002] com-
pares the similarity of human skeletal poses by calculating the Eu-
clidean distance between the point clouds sampled from 3D mo-
tion data. However, logically similar postures are not necessarily
having similar 3D joint configurations which limit the discrimina-
tive power of the proposed method. Yun et al. [Yun et al. 2012]
compared the performance of two-character interaction classifica-
tion using commonly used spatial and spatio-temporal features such
as geometric relational, velocities and logical features. Miiller et
al. [Miiller et al. 2005] proposed a semantic approach based on
the correlation of four joint positions for content-based human pose
retrieval. Different combinations of joints are used to index and
retrieve 3D human postures effectively. However, this requires the
user to manually specify the combination that is suitable for each
action class. Ho and Komura [Ho and Komura 2009] proposed to
use tangle in knot theory for indexing and retrieving two-character
close interactions (such as dancing and wrestling). However, the
method becomes less effective when the body parts of the charac-
ters are not entangled. Tang et al. [Tang et al. 2012] proposed
Spacetime Proximity Graphs to extract spatio-temporal relations
between the body parts in two-character interactions such as danc-
ing and fighting. While the representation proposed in this paper
share a similar idea in extracting spatial relations of body parts
from 3D point cloud using Delaunay Tetrahedralization, the spa-
tial relation-based features are computed differently and we will
show the advantages of using our method over [Tang et al. 2012] in
Section 5.2.

3 Overview

This section gives an overview of the proposed approach for repre-
senting human motion with close interactions. Given a motion in
the form of a sequence of frames which contain 3D human skele-
tal data, two types of spatial relations-based features are extracted
(Section 4). Firstly, Relative Position features (RP) are extracted
(Section 4.1) to represent the underlying skeletal structure of the
subject. Next, the proposed method for extracting Spatial Rela-
tions of Human Body Parts (SRBP) will be explained in Section 4.2.
Specifically, feature points are extracted from the human skeleton



in each frame for analyzing the spatial relations. We then compute
SRBP based on the interaction between every pair of body parts.
Once the frames in each motion are represented by RP and SRBP,
temporal alignment is applied to the motions to remove the tem-
poral variations to facilitate motion comparison. Without loss of
generality, we will first explain our proposed method using an ex-
ample of a single pose of a subject in Sections 4.1-4.2 and present
how to extend our method to represent two-character interactions in
Section 4.3.

4 Spatial Relation-based Representation

4.1 Relative Position Features (RP)

The Relative Position features (RP) represent the spatial relations
between joints in the underlying skeletal structure of the subject.
Using Relative Position features to model the spatial relations be-
tween human body parts and object has been proposed in skeleton-
based human-object interaction recognition (e.g. [Delaitre et al.
2011]). Given the skeletal pose in each frame, the translation and
rotation around the vertical axis of the root joint (i.e. pelvis) are
removed as normalization to facilitate pose comparison in the later
stages. Next, the RP feature of every pair of connected joints can
be calculated by:

RP'L _ Vi — Vi,parent (1)

|Ui - Ui,parent‘

where v; and v; parent are the 3D positions of the i-th joint and
the parent of the i-th joint. The relative positions of the connected
joints are normalized (as in Eq. 1) to facilitate the comparison of
motions performed by subjects with different body sizes (i.e. bone
lengths).

4.2 Spatial Relations of Human Body Parts (SRBP)
4.2.1 Feature Points Sampling

The first step is to compute feature points from the joint positions
in Cartesian coordinates in each pose. While directly using joint
positions as feature points have been widely used in existing spatial
relation-based representations [Ho et al. 2010; Tang et al. 2012],
the sparsely and unevenly distributed joint positions may results in
significant change in spatial relations with subtle body movements.
For this reason, our proposed method samples feature points at a
high resolution by uniformly upsampling points from each body
part formed using the joint positions on the two ends. Sampling
feature points in high resolution can represent the topology of the
body parts, which is an abstraction of the shape of the body parts
and such information will be used for analyzing how the two body
parts interact.

4.2.2 Extraction of Spatial Relations

When analyzing the spatial relations between the body parts of hu-
man(s), one of the criteria is to evaluate the spatial distances be-
tween them. In most of the human motions, the spatial relations
between body parts in proximity represent the characteristics of the
motions (e.g. the Right Hand-Left Hand pair in Hand Clap motion)
since body parts in close distance tend to be more influential to each
other. Therefore, a reasonable way to extract important spatial rela-
tions is to analyze the structure of the feature points in proximity. In
this work, we propose to apply Delaunay Tetrahedralization to the
sampled feature points to construct a volumetric mesh to represent
the proximity information:

M = DelaunayTetrahedralization(V) 2)

where V contains the 3D positions of all sampled feature points
and M is the volumetric mesh computed from V. M contains
the connectivity information of the feature points. Since the sam-
pled points in proximity tend to be connected by edges in Delaunay
Tetrahedralization, connectivity of the mesh can be used to analyze
which entities are interacting with each other. The effectiveness of
using the connectivity of the sampled points to extract the spatial
relations of body parts for motion analysis and synthesis has been
demonstrated in [Ho et al. 2010; Tang et al. 2012].

4.2.3 The new representation - SRBP

In this subsection, the calculation of SRBP is explained. The SRBP
indicates how much the body parts are interacting with each other.
We compute SRBP based on the connectivity of the volumetric
mesh constructed using Eq. 2. Since the volumetric mesh is con-
structed by performing Delaunay Tetrahedralization on the whole
point cloud (i.e. 3D positions of all feature points), the connectivity
of the mesh is computed based on the global structure and distribu-
tion of the feature points. By this, SRBP will be mainly affected by
the global structure instead of variations of individual feature points
to robustly represent the human pose. For each pair of body parts,
the SRBP which is a scalar value can be calculated by:

Zizl Z:il conn(M, Vi,a, 'Uj,b)

niJrnj

where SRBP; ; is the SRBP of the body parts BP; and BPj, vj 4
and v;,;, are the a-th and b-th feature point sampled from BFP; and
B P;j respectively, conn (Eq. 4) is a function to compute the con-
nectivity between the feature points v;,, and v; 3, M is the volumet-
ric mesh computed using Eq. 2, and n; and n; are the total number
of feature points sampled from BP; and BP;, respectively. The
larger the SRBP, the more the pair interacts. In Eq. 3, however,
longer body parts usually have more connections with other body
parts as more feature points were sampled. To tackle this problem,
we divide the connectivity returned from the conn function by the
total number of feature points sampled from the two body parts as
normalization.

SRBPi,j = 3)

While most of the edges are short and connecting nearby points,
the extreme points in the point cloud will be connected to each
other since Delaunay Tetrahedralization produces a convex volu-
metric mesh. The long edges connecting the extreme points can-
not truly reflect the interactions between the body parts. Instead of
determining a suitable threshold value to exclude long edges from
SRBP calculation, we propose to compute the connectivity between
two feature points by a value that is inversely proportional to the
Euclidean distance between the two feature points if they are con-
nected; otherwise, zero will be returned. By this, an insignificant
small value will be returned from conn if the edge is long:

m Connected in M
conn(M,viq,vjp) = OW b ()]

Not connected in M

4.2.4 Abstraction of SRBP at Limb-level

The main purpose of computing SRBP at Limb-level is to reduce
the dimensionality of the representation. We propose to compute
the SRBP at Limb-level (SRBP-Limb) as an abstract representation.
More specifically, a human-like skeletal structure is divided into
6 limb groups: 1) Head and Neck, 2) Right Arm, 3) Left Arm, 4)
Right Leg, 5) Left Leg and 6) Torso. The calculation of SRBP-Limb
is similar to computing SRBP:

SRBP—LZmeJ = ;n:il Zb:jl COTZTL(M, Vi,a, ijb)

(&)

m; + m;



Figure 1: (a)-(b) Example poses used in the experiment presented
in Section 5.2: (a) Hug from behind and (b) Assist walk/stand in the
two-character close interaction dataset [Ho and Komura 2009].

where SRBP; ; is the SRBP of the limbs L; and Lj, v; o and v;
are the a-th and b-th feature point sampled from L; and L; respec-
tively, conn is the function defined in Eq. 4, and m; and m; are
the total number of feature points sampled from L; and L;, respec-
tively. Finally, the pose in each frame is represented by the Relative
Position features RP and a ¢C> = 15-dimensional vector of pair-
wise SRBP-Limb.

4.3 Representing Two-character Interaction

In two-character interactions, the context of the interaction is con-
centrated in the inter-relations (i.e. pairing up the limbs from dif-
ferent subjects). Using two-character interaction as an example,
6 x 6 = 36 SRBP-Limbs (i.e. a 36-dimensional vector) are used
as the representation. We expect that multi-subject interactions can
also be represented by »,C> x 36 SRBP-Limbs using the concepts
described above, where h is the number of subjects in the interac-
tion. Experimental results show that comparing poses using SRBP-
Limb in two-character interactions improves the intra- and inter-
class classification accuracy and the details are presented in Sec-
tion 5.2.

5 Experimental Results

In this section, we present the experimental results on retrieving and
classifying two-character interactions (Section 5.1 and 5.2). In par-
ticular, the benchmark SBU Kinect Interaction Dataset [Yun et al.
2012] and 3D human motions from [Ho and Komura 2009] were
used. Finally, we analyze how the parameters affect the perfor-
mance of our proposed method in Section 5.3.

Implementation Details In all experiments, we sample the fea-
ture points at every 9cm along the body segment (i.e. bone).
The volumetric mesh structure (explained in Section 4.2.2) in each
frame is computed using the Delaunay Tetrahedralization function
in MATLAB. To avoid the temporal misalignment between mo-
tions, a classical DTW function [Rabiner and Juang 1993] is used.
In the motion classification tasks , we trained linear binary SVM
classifiers by LIBSVM [Chang and Lin 2011] to classify motions
in the benchmark datasets in a one-versus-all manner. Finally, we
pick the action class which returns the highest decision value as the
class label of the testing motion.

5.1 SBU Kinect Interaction Dataset

In this experiment, we evaluate the accuracy of classifying motions
captured from two subjects simultaneously. The 3D skeletal data
in the SBU Kinect Interaction Dataset [ Yun et al. 2012] are used in
this experiment. The results (in Table 1) show that our proposed
method outperforms [Yun et al. 2012] in the overall accuracy in
both sets. Firstly, for Set 1, the results obtained using SRBP alone
outperforms the Joint Distance (JD) descriptor [Yun et al. 2012] by
3.28%. By further using SRBP and JD to represent each frame,
93.90% classification accuracy is achieved, which improves the re-
sults presented in [Yun et al. 2012] significantly by 5.01%. For Set

Accuracy
Method Set1 | Set2
Joint distance (JD) [Yun et al. 2012] | 88.89% | 89.75%
Our method (S RBP only) 92.17% | 91.19%
Our method (JD and SRBP) | 93.90% | 95.08%

Table 1: Comparison of recognition accuracy on the SBU Kinect
Interaction Dataset.

accuracy (%)
=3
o

Figure 2: Parameter evaluation of our proposed method on SBU
Kinect Interaction Dataset - Accuracy VS Feature points sampling
resolution.

2, using SRBP alone achieved 1.44% higher classification accuracy
over JD. By using both SRBP and JD, we achieved 95.08% which
significantly outperforms [Yun et al. 2012] by 5.33%. These results
highlight the consistency and robustness of our method over [Yun
et al. 2012].

5.2 Wrestling and Dancing Interactions

In this experiment, we evaluate the effectiveness of using our rep-
resentation in classifying two-character close interactions. The
poses used in the experiment are obtained from the close interac-
tion dataset in [Ho and Komura 2009]. The dataset contains 14
interactions groups. Differentiating poses between different action
groups in the dataset is challenging because the poses in same in-
teraction group have large variations in terms of low-level features
such as joint angles and positions (see Figure 1 (a) and (b)). In sum-
mary, the poses in the same action class are having large variations
while poses from different action groups are similar in low-level
joint configurations.

We compared our proposed method with the Joint Distance (JD)
descriptor [Yun et al. 2012] and Spacetime Proximity Graphs [Tang
et al. 2012] by computing similarity matrices on the selected dataset
and the results are shown in Figure 3. We also computed SRBP at
two levels - Body part- and Limb- level to show the effectiveness of
the abstraction of the spatial relations in classifying the poses. The
results show that using all pairs of joint distances (Figure 3 bottom,
(a)) to represent the poses in this challenging dataset results in low
similarity within each action group. Results obtained using Space-
time Proximity Graphs [Tang et al. 2012] (Figure 3 bottom, (b))
shows high inter-class similarity as many poses in different classes
are considered as similar (e.g. class 5-6, 8-9, 11-14) as well as low
intra-class similar (e.g. class 1, 14). On the other hand, the poses
represented by SRBP (Figure 3 bottom, (c) and (d)) show strong
intra-group similarity. By further abstracting the spatial relations
by computing the SRBP at Limb-level, logically similar poses can
be detected as brighter color is shown within each action class in
the similarity matrix (Figure 3 bottom, (d)). This experiment shows
our proposed representation can effectively represent semantically
similar two-character interactions even though they are different in
low-level features such as joint positions and angles.

5.3 Parameters Evaluation

In this section, we analyze how the parameters affect the perfor-
mance (i.e. classification accuracy) of the proposed method. We
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Figure 3: Top row: Example poses in action groups 1-14 (from left to right). Bottom row: Similarity matrices computed using (a) Joint
relative distances, (b) Spacetime Proximity Graphs [Tang et al. 2012], (c) Body segment-level SRBP, and (d) Limb-level SRBP. The red

squares on the matrices indicate the 14 action groups.

tested our method by sampling the feature points with different res-
olutions and use the computed SRBP features in classifying mo-
tions as in the cross subject experiment explained in Section 5.1.
The results (in Figure 2) indicate that using high resolution fea-
ture points improves the classification accuracy and reached the
best performance at 92.17% classification accuracy when sampling
feature points from body part on every 9 cm. For timing informa-
tion, computing SRBP for two-characters requires 0.73 seconds in
our MATLAB implementation. We expect the computational cost
can be reduced by using an optimized Delaunay Tetrahedralization
implementation.

6 Conclusions

In this work, we proposed a new representation called Spatial Re-
lations of Human Body Parts (SRBP) which is based on the spatial
relations between the body parts of the subjects for retrieving and
classifying character interactions. By representing human poses us-
ing the local spatial relations of body parts in proximity, the perfor-
mance is improved as the proposed representation is robust to the
variations on the individual joints locations. Experimental results
show that our method outperforms other commonly used skeleton-
based approaches in retrieving and classifying semantically similar
motions, even though the motions are significantly different in low-
level features such as joint positions and angles.
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