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ABSTRACT
We introduce a new Manycore Workflow Runtime Environment
(MWRE) to efficiently enact traditional scientific workflows on
modern manycore computing architectures. In contrast to existing
engines that enact workflows acting as external services, MWRE
is compiler-based and translates workflows specified in the XML-
based Interoperable Workflow Intermediate Representation (IWIR)
into an equivalent C++-based program. This program efficiently
enacts the workflow as a stand-alone executable by means of a
new callback mechanism that resolves dependencies, transfers data,
and handles composite activities. Experimental results on a num-
ber of real-world workflows demonstrate that MWRE clearly out-
performs existing Java-based workflow engines designed for dis-
tributed (Grid/Cloud) computing infrastructures in terms of enact-
ment time, is generally better than an existing script-based engine
for manycore architectures (Swift), and sometimes gets even close
to an artificial baseline implementation of the workflows in the
standard OpenMP language for shared memory systems.

Keywords
Scientific workflows, heterogeneous manycore parallel architectures,
enactment engine, source-to-source compiler.

1. INTRODUCTION
Nowadays, computers exhibit an ever higher number of hetero-

geneous processing cores with a growing trend to combine general-
purpose CPUs with specialized computing units. As a result, mod-
ern shared memory heterogeneous manycore systems have become
increasingly complex to program, since established programming
paradigms are no longer able to fully exploit their heterogeneous
performance, but need enhancements or alternative solutions in or-
der to do so. Furthermore, there is also a noticeable trend to employ
so called multi-objective optimization methods which consider sev-
eral possibly conflicting objectives like e.g. performance, energy
consumption and costs when optimizing an application.

On the other hand, scientific workflows are a widely success-
ful and established paradigm for programming heterogeneous dis-
tributed computing infrastructures (DCI) such as Grids and Clouds.
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Workflows allow to easily create new larger and more complex ap-
plications by reusing existing (often legacy and monolithic) soft-
ware components named activities and interconnecting them by us-
ing well-defined control flow and data flow dependencies. Also
they facilitate algorithms for full-ahead scheduling (e.g. HEFT [20])
and furthermore multi-objective optimization [3]. Existing DCI
workflow engines are currently mature and come with rich ecosys-
tems that support the user in all aspects of a workflow life-cycle
including creation, execution, monitoring and steering, interfaced
towards the domain scientists and ease of use rather than the com-
puter science underneath.

Because of the similarity in terms of scale and heterogeneity,
workflow systems represent today a promising alternative for de-
velopment and execution of scientific applications on shared mem-
ory heterogeneous manycore architectures. Moreover, as large-
scale DCI infrastructures are nowadays composed of powerful many-
core parallel machines, exploiting them in an efficient fashion be-
comes an increasingly important requirement. However, existing
workflow engines are typically engineered as external services that
target loosely-coupled DCI systems prone to high overheads and
latencies. While such overheads are acceptable in distributed sys-
tems, tightly-coupled manycore parallel machines are much more
sensitive to latencies and other sources of performance penalties.

For this purpose, we propose in this paper a new Manycore Work-
flow Runtime Engine (MWRE), purposely designed to efficiently
exploit the low latency characteristics and resources of manycore
parallel architectures. The distinguishing characteristic of MWRE
is that it compiles an input workflow to an imperative stand-alone
workflow program, instead of interpreting and orchestrating the
workflow specification as traditionally done by today’s scientific
workflow engines acting as external services. MWRE is based
on a source-to-source compiler able to process abstract scientific
workflows in the Interoperable Workflow Intermediate Representa-
tion (IWIR) [15], a common workflow specification developed in
the European SHIWA project (SHaring Interoperable Workflows
for large-scale scientific simulations on Available DCIs)1 that en-
ables translation of workflow across four major scientific work-
flow systems: ASKALON [4], MOTEUR [5], Triana [17] and WS-
PGRADE [7]. Using an activity repository, the compiler gener-
ates a stand-alone C++ workflow program that independently ex-
ecutes on the underlying manycore infrastructure with the help of
a workflow engine, linked as an external shared C++ library. Our
engine uses a novel low-overhead callback mechanism to resolve
dependencies, transfer data, and handle composite activities, rather
than high-overhead reflection and type introspection as done in
existing DCI engines. Experimental results on a number of real-
world workflows indicate that MWRE clearly outperforms a rep-

1http://www.shiwa-workflow.eu/



resentative engine designed for DCIs (ASKALON), is better than
lighter script-based one for manycore parallel platforms (Swift),
and even comes close an artificial baseline implementation based
on OpenMP, the today’s de-facto standard for shared memory par-
allel programs.

The paper is organised as follows. The next section discusses the
related work. Section 3 introduces our workflow model, followed
by the main architectural design of our new engine in Section 4.
Section 5 presents important technical details about our workflow
runtime environment that lead to the performance benefits evalu-
ated in Section 6. Section 7 concludes the paper.

2. RELATED WORK
Most scientific workflow systems like ASKALON [4],

MOTEUR [5], Pegasus [1], Kepler [9], Taverna [11], Triana [17],
or WS-PGRADE [7] are targeted at DCIs such as Grids and Clouds.
Swift [19] is an exception by being a lighter parallel script-based
engine not restricted to DCIs, but open for general use. Swift is the
best suited workflow engine for manycore systems aside our pro-
posed system, but is limited to files in modelling data dependencies
and provides no ways of calculating complete workflow schedules.

The most prevalent parallel programming API on shared mem-
ory systems is OpenMP2. Other native parallel programming APIs
like MPI3 or Charm++ [8] target distributed memory systems, but
they all have the common drawback of not modelling data depen-
dencies and not providing means of generating a complete work-
flow execution plan or schedule.

StarSS [14] is a dependency-driven task execution API for shared
memory systems, which also supports distributed memory systems
through a hybrid MPI/StarSS approach. It provides directives that
annotate C/Fortran source code to define tasks and dependencies
between them. StarSS does not allow reusing legacy workflows
and does not provide any infrastructure for advanced scheduling.

JOpera [12] is a management tool for business workflows that
creates Java byte code from the workflow specification through an
event driven state machine instead of directly interpreting the spec-
ification. JOpera comes with an integrated workflow design and
execution environment as an Eclipse plugin hiding the compilation
process from the user. JOpera is tailored to business workflows and
does not support advanced full-ahead scheduling.

To the best of our knowledge there is no related work which im-
plements a specialised compiled-based scientific workflow engine
for manycore parallel architectures.

3. WORKFLOW MODEL
In our workflow model, designing and implementing scientific

workflows are accomplished in two parts: an abstract part and a
concrete part. A short overview of these two phases of a scientific
workflow implementation is described below:

3.1 Workflow Design – Abstract Part
In the abstract part of a scientific workflow design, the following

information are formulated from the available dependent or inde-
pendent tasks: 1 the structure of the workflow, 2 the activities
involved in the workflow (identified by a unique name and a type),
and 3 the dependency criteria between the workflow activities.

We define the structure of a workflow as a Directed Acyclic
Graph (DAG): W = (A,D,S) (see Figure 1), where A represents
workflow activities, D represents the data dependencies, and S de-

2http://openmp.org/
3http://www.mpi-forum.org/

Figure 1: The abstract part of a scientific workflow.

notes the initial start activity. We represent the dependencies be-
tween workflow activities Ai and A j as:

D =
{(

Ai,A j,Datai j
)
|Ai,A j ∈ A

}
,

where Datai j denotes the data exchanged between Ai and A j, usu-
ally modelled as ports (see Figure 1).

There are two different types of workflow activities:

1. Atomic activities are basic and indivisible units of computa-
tions such as a legacy software;

2. Composite activities combine several fine granular workflow
activities, including atomic and other composite ones, to form
coarse granular activities and impose a control flow on the
contained activities.

Typical composite activities are sequential and parallel loops, con-
ditional activities, and sub-workflows.

3.2 Workflow Implementation – Concrete Part
The concrete part of a scientific workflow implementation con-

tains detailed information about the atomic activities. This part is
often highly specific to each individual workflow system and the
underlying DCI and usually contains information about the avail-
able activity implementations, locations where they are installed,
and how they can be executed.

3.3 Workflow Enactment
The workflow activities are mapped to the available resources

with the help of scientific workflow enactment engines, optionally
in combination with full-ahead DAG schedulers [18]. The respon-
sibility of a workflow enactment engine is to:

• traverse through the structure of a workflow;

• unroll the composite activities whenever required as a prepa-
ration for advanced full-ahead scheduling; and

• formulate a Workflow Execution Plan (WEP).

In short, WEPs are represented as DAGs where all composite ac-
tivities have been unrolled into atomic ones.



ParallelFor

Render

Convert

Figure 2: The POV-Ray workflow.

4. MANYCORE WORKFLOW RUNTIME
ENGINE (MWRE)

Based on the requirements outlined in the introduction, we de-
signed a Manycore Workflow Runtime Engine (MWRE) tailored to
heterogeneous shared-memory manycore systems. Our main de-
sign principle was to provide a set of feature similar to the ones
found in the current DCI workflow engines, while addressing the
special characteristics and requirements of manycore systems. At
first, we briefly describe how we envision the basic architecture
of the workflow system, before presenting in detail how our new
workflow engine MWRE works. Then, we discuss our workflow
representation and at last, we talk about how a workflow is enacted.

We use the Persistence of Vision Raytracer (POV-Ray) workflow
as a running example to illustrate the workflow representation and
its new enactment mechanism. POV-Ray [13] is a free tool for
creating three-dimensional graphics, which is known to be a time-
consuming process used not only by hobbyists and artists but also
in biochemistry research, medicine, architecture, and mathemati-
cal visualization. We modeled a POV-Ray rendering scenario as a
workflow, depicted in Figure 2, where the description of a movie
can be separated in several scenes, each scene being composed of
several frames that can be rendered (for example, in .png format)
in a parallel for loop. Finally, all frames are merged into a
.mpg movie using a Convert activity (e.g. running a png2yuv fol-
lowed by a ffmpeg conversion).

Figure 3 presents the overall architecture of the MWRE con-
sisting of three main parts: 1 the workflow specification, 2 a
source-to-source compiler, and 3 the workflow runtime environ-
ment. The main difference between MWRE and the traditional DCI
workflow engines is the source-to-source compiler that generates a
C++ program from the workflow specification. Furthermore, we
do the mapping of abstract activity types to concrete activity im-
plementations at compile-time, instead of runtime as done by most
DCI engines.

4.1 Workflow Specification
The input to MWRE is a workflow specification encoded in the

Interoperable Workflow Intermediate Representation (IWIR) [15],
an intermediate language that enables interoperability of workflows
across different environments. IWIR is currently supported by four
workflow systems: ASKALON [4], MOTEUR [5], Triana [17] and
WS-PGRADE [7]. Using IWIR for the workflow representation
has several advantages. First, because it is designed for interoper-
ability, it captures all concepts and constructs found in most work-
flow languages, and can therefore be seen as a superset of the major

Listing 1 IWIR specification of the POV-Ray workflow.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <IWIR xmlns="http://shiwa-workflow.eu/IWIR" version="1.1" wfname="Povray">

3 <blockScope name="toplevel">

4 <inputPorts>

5 <inputPort name="povFile" type="file" />

6 <inputPort name="totalFrames" type="integer" />

7 <inputPort name="framesPerActivity" type="integer" />

8 </inputPorts>

9 <body>

10 <parallelFor name="PForLoop">

11 <inputPorts>

12 <inputPort name="numFrames" type="integer" />

13 <inputPort name="totalFrames" type="integer" />

14 <inputPort name="povFile" type="file" />

15 <loopCounter name="frameCounter" from="1" to="" step="" />

16 </inputPorts>

17 <body>

18 <task name="Render" tasktype="RenderTask">

19 <inputPorts>

20 <inputPort name="povFile" type="file" />

21 <inputPort name="startFrame" type="integer" />

22 <inputPort name="numFrames" type="integer" />

23 </inputPorts>

24 <outputPorts>

25 <outputPort name="frames" type="collection/file" />

26 </outputPorts>

27 </task>

28 </body>

29 <outputPorts>

30 <outputPort name="frames" type="collection/collection/file" />

31 </outputPorts>

32 <links>

33 <link from="PForLoop/numFrames" to="Render/numFrames" />

34 <link from="PForLoop/frameCounter" to="Render/startFrame" />

35 <link from="PForLoop/totalFrames" to="Render/totalFrames" />

36 <link from="PForLoop/povFile" to="Render/povFile" />

37 <link from="Render/frames" to="PForLoop/frames" />

38 </links>

39 </parallelFor>

40 <task name="Convert" tasktype="ConvertTask">

41 <inputPorts>

42 <inputPort name="frames" type="collection/collection/file" />

43 </inputPorts>

44 <outputPorts>

45 <outputPort name="outFile" type="file" />

46 </outputPorts>

47 </task>

48 </body>

49 <outputPorts>

50 <outputPort name="finalMovie" type="file" />

51 </outputPorts>

52 <links>

53 <link from="toplevel/povFile" to="PForLoop/povFile" />

54 <link from="toplevel/totalFrames" to="PForLoop/frameCounter/to" />

55 <link from="toplevel/totalFrames" to="PForLoop/totalFrames" />

56 <link from="toplevel/framesPerActivity" to="PForLoop/frameCounter/step" />

57 <link from="toplevel/framesPerActivity" to="PForLoop/numFrames" />

58 <link from="PForLoop/frames" to="Convert/frames" />

59 <link from="Convert/outFile" to="toplevel/finalMovie" />

60 </links>

61 </blockScope>

62 </IWIR>

workflow languages. Second, it is well-defined and easy to parse.
Third, it allows automatic translation and reuse of workflows across
different systems without further modifications. Fourth, it allows
integration of new languages and new platforms with O(1) com-
plexity through IWIR front-end or back-end support. The advan-
tage of such an approach is that a scientist can develop and interact
with a workflow application by using his favourite language and en-
vironment tools, recognised by all interoperable workflow system
through automatic IWIR translation.

Listing 1 shows the IWIR specification of our POV-Ray work-
flow. The toplevel composite activity starts at line 3 and ends
at line 61. The input ports of the toplevel activity (one file and
two integers), which also represent the workflow input ports, are
defined in lines 4 – 8. A real-world POV-Ray workflow has more
input parameters, but we omitted them here brevity reasons. The
output ports of the toplevel activity (one file), which again rep-
resent the workflow output ports, are defined in lines 49 – 51.

4.2 Source-to-Source Compiler
The IWIR workflow specification is then given to the source-

to-source compiler ( 2 ), which translates it into a C++ workflow
program using the API provided by MWRE. We believe that com-
piling the workflow application into a native executable program



Figure 3: The MWRE architecture.

is the way to achieve the “best” performance while minimizing
enactment latencies and other middleware overheads. The com-
piler is also responsible for mapping the abstract workflow activity
types to concrete activity implementations. Performing this task
at compile-time, instead of runtime as done by most DCI workflow
systems, saves additional overhead and eases the configuration. For
this purpose, the compiler has access to a repository that contains
activity implementations in form of pre-compiled libraries, binary
executables, CUDA or OpenCL kernels, source-code snippets, and
shell-scripts. The compiler also allows a 1-to-n mapping of activity
types to implementations, while meta-data stored for each mapping
allows to efficiently select a suitable implementation at runtime.
Optionally, the mapping phase can also be performed at runtime by
employing special stub functions that can dynamically load code.

4.3 Runtime Environment
The runtime environment of MWRE ( 3 ) invokes and executes

the workflow program created by the source-to-source compiler.
During the execution of the workflow program, the pre-defined
functions interact with the workflow engine. The workflow engine
is implemented as a C++ library considering several performance
concerns, such as overhead, memory footprint, and resource uti-
lization. More detailed information about the MWRE workflow
engine and the POV-Ray example is given in Section 5.

5. RUNTIME ENVIRONMENT
This section describes the workflow execution methodology, im-

plemented as the runtime environment of MWRE.

5.1 Workflow Engine
To meet the requirements of manycore systems, we designed a

novel workflow engine that works differently from most traditional
workflow engines for DCIs. We paid special attention to efficiently
use resources, have low overhead, and be able to use arbitrarily
complex data types for ports.

5.1.1 Design
Workflow engines for DCIs usually rely on reflection and type

introspection to be fully aware of the complete workflow structure
and details of the activities. Based on this information, the engine
executes the workflow and handles the dependency resolution and
the data transfers. One problem with this approach is its high over-
head and increased resource use. Furthermore, to reduce the com-
plexity and simplify the engine implementation, only a restricted
set of data types for ports is usually supported. While this ap-
proach is sufficient for DCIs since complex data structures are usu-
ally transmitted via files, on shared memory systems it is more ef-
ficient to directly transfer complex data structures via shared mem-

Figure 4: The MWRE callback design.

ory requiring support for arbitrarily complex data types.

5.1.2 Callbacks
To circumvent these problems, we use a novel design which, in-

stead of relying on reflection and type introspection, employs a call-
back mechanism to resolve dependencies, transfer data, and han-
dle composite activities (see Figure 4). At first ( 1 ), the engine
reads the workflow specification and constructs a DAG ( 2 ). When
traversing the DAG, the engine executes so-called visitor functions
for each node. In traditional engines, the visitor functions are di-
rectly responsible for the dependency resolution and data transfers.
In contrast, the visitor functions in our engine are only responsi-
ble for orchestrating the execution of the associated pre-compiled
callback functions ( 3 ) that directly modify the state of the asso-
ciated workflow activities ( 4 ). The callback functions are part
of the workflow specification and it is in the responsibility of the
source-to-source compiler to generate them. Each callback func-
tion implements a specific behaviour, such as transferring the input
data, collecting the output data from children for composite activi-
ties, or resolving the condition of a while loop. This approach has
the advantage of keeping the workflow engine lightweight and effi-
cient. Instead of knowing all details about the workflow, the engine
only knows what it needs to know to traverse the workflow struc-
ture and keep track of the execution status, with no need to imple-
ment generic functionality for dependency resolution, data transfer
and other tasks, that introduce performance overheads. Another ad-
vantage is that it allows arbitrary data type support and facilitates
extensibility. Every functionality that needs information about data
types is encapsulated in a purposely-tailored callback function used
in a particular workflow. New functionality can be implemented in
callback functions too.

5.1.3 Workflow Execution Plan
Our engine implements two modes of evaluating the WEP for

full-ahead scheduling.

Early Evaluation.
In this mode, the engine evaluates the workflow structure as soon

as possible by traversing its structure. For example, it unrolls a for
loop as soon as it has enough data to evaluate the loop counter in-
stead of waiting for all the input data to be available. This mode has
the benefit of generating a complete workflow DAG ahead of time
that can be subject to full-ahead optimised scheduling (even though
it cannot yet be executed because of the lack of input data). This
mode is a prerequisite for IWIR’s data streaming extension. Its dis-
advantage is that it causes additional overheads since every finished



Listing 2 Visitor function of a parallel for loop.
1: function VISITPFOR(activity instance AIi)
2: if ¬AIi.ALLINPUTSAVAILABLE then
3: AIi .INPUTCALLBACK
4: end if
5: if AIi.state < ReadyForExecution then
6: AIi .FORCOUNTERCALLBACK
7: end if
8: if AIi.state = ReadyForExecution then
9: if ¬AIi.ISUNROLLED then
10: UNROLLLOOP(AIi)
11: end if
12: VISITCHILDREN(AIi)
13: end if
14: if AIi.state ≥ ReadyForExecution ∧¬AIi.ALLOUTPUTSAVAILABLE then
15: AIi .OUTPUTCALLBACK
16: end if
17: if AIi.state < Finished ∧ all children are finished then
18: AIi.SETSTATE(Finished)
19: end if
20: end function

activity immediately triggers the evaluation of its successors.

Late Evaluation.
In this mode, the engine postpones the evaluations of activities

until really necessary for continuing the execution. For example,
a for loop gets unrolled only when all the input data is available.
This mode causes lower overheads at the expense of not supporting
full-ahead optimised scheduling and data streaming.

5.1.4 Scheduling and Activity Execution
After the WEP has been evaluated, the scheduler is notified of

any changes in the WEP. The responsibility of the scheduler is then
to map the atomic activities to computing resources. For this pur-
pose, MWRE provides a generic interface designed to plugin new
scheduling algorithms, including any information about the WEP
and its activities. A scheduler implementation should then use the
meta-information of the activity implementations to select an ap-
propriate implementation for execution on a specific device. While
the activity implementation meta-information can consist of arbi-
trary key-value pairs, each execution subsystem provides its own
set of well-defined key-value pairs on which the scheduler can base
its decisions. After an activity implementation has been mapped
onto a computing resource, the activity and its associated informa-
tion is sent to the appropriate execution subsystem (e.g. pthread
subsystem for x86 code, CUDA/OpenCL subsystem for GPU ker-
nels). For this purpose, MWRE provides again a common exten-
sible interface for the execution subsystems designed to support a
wide variety of computing resources and to allow the scheduler in-
teract without knowing the details of the underlying subsystem.

5.1.5 Parallel for example
Listing 2 shows the visitor function executed when visiting a

parallel for loop. At first, it checks whether all input data is
already available and if not, calls the input callback function (see
Listing 5, line 1) in line 3. When the for loop is in a state be-
fore ReadyForExecution, the for counter callback (see Listing 5,
line 24) gets executed in line 6. If the activity state is ReadyForEx-
ecution, indicating that the for loop counter has been correctly
set up, the loop will be unrolled and an activity instance is created
for each child and each iteration in line 10. Afterwards, the visi-
tor functions for these activity instances are called in line 12. In
our case, the atomic activity render is the only child. The visitor
function of an atomic activity executes the input callback function,
which sets the activity state to ReadyForExecution when all the

Listing 3 POV-Ray workflow program snippet.
1: ActivityImplemenation RenderImpls[] = {
2: /* {type, function-pointer, key-value pairs} */
3: PThread, &renderImplFunc, {{“key1”, “value1”}, {“key2”, “value2”}}
4: };

5: ActivityImplemenation ConvertImpls[] = {
6: PThread, &convertImplFunc1, {{“key1”, “value1”}, {“key2”, “value2”}}
7: PThread, &convertImplFunc2, {{“key3”, “value3”}}
8: };

9: ActivityTemplate Activities[] = {
10: /* (name, ID, parentID, branchID, succs, preds, callbacks, activity-specific) */
11: AT::Container(“wf_container”, 1, 0, 0, {}, {}, callbacks, ...),
12: AT::PForLoop(“for”, 2, 1, 0, {4}, {}, callbacks, ...),
13: AT::Atomic(“render”, 3, 2, 0, {}, {}, callbacks, RenderImpls, 1, ...),
14: AT::Atomic(“convert”, 4, 1, 0, {}, {2}, callbacks, ConvertImpls, 2, ...),
15: };

16: Workflow workflow(“povray”, Activities, 1);

17: int main() {
18: wf_input wf_int = ...;
19: wf_output wf_out = WorkflowEngine.startWorkflow(workflow, wf_in);
20: }

inputs are available. Afterwards, the visitor function of the for

loop activity executes the output callback function in line 15 and,
when all child activities have finished their execution, the activity
state is set to Finished in line 18.

When the engine has finished traversing the workflow structure,
the (either complete or incomplete) WEP is sent to the scheduler
which executes all ready-to-execute atomic activities. When an
atomic activity finished its execution, the scheduler notifies the en-
gine which re-evaluates the WEP starting from the recently finished
activity. The extend of reevaluation depends on the selected WEP
evaluation mode. This process continues until all activities reach
the finished state and the workflow results can be retrieved from
the toplevel activity output data structure.

5.2 Workflow Program

5.2.1 Model
Generally speaking, a workflow program consists of data struc-

tures representing the input and output ports, the callback functions,
tables representing activity implementations, activities and their re-
lations, and a main function that starts the workflow engine and
passes the activity tables. Mathematically speaking, a workflow
WP=(MW ,A,AS) consists of workflow meta-information MW (e.g.
workflow name), n activities A =

⋃n
i=0 Ai, and a start activity AS.

An activity Ai = (MA, IN,OUT, pred (Ai) ,succ(Ai) , I,H) consists
of activity meta-information MA (e.g. activity name and activ-
ity identifier), an input data structure IN, an output data structure
OUT , immediate predecessors pred (Ai) and successors succ(Ai),
n activity implementations I =

⋃n
i=0 Ii (empty set in case of com-

posite activities), and m activity-specific callback functions H =⋃m
i=0 Hi. An activity implementation Ii = (MI , f ) consists of im-

plementation meta-information MI (e.g. type of implementation
and implementation specific information), and a function pointer f
to the actual code.

5.2.2 POV-Ray
Listing 3 shows the tables representing the activities and the

workflow itself. The table in line 1 represents the single implemen-
tation of the Render activity, while the table in line 5 represents the
two separate implementations of the Convert activity. The sup-
plied key-value pairs are used to select an appropriate implementa-



Listing 4 Data structures representing the ports of a POV-Ray
workflow (we omitted the boolean "valid data" flag for each
structure component and the structures for the Convert activity
for brevity reasons).
1: struct toplevel_input {
2: string povFile;
3: int totalFrames;
4: int framesPerActivity;
5: }
6: struct toplevel_output {
7: string finalMovie;
8: }
9: struct PForLoop_input {
10: string povFile;
11: int totalFrames;
12: int numFrames;
13: }
14: struct PForLoop_output {
15: collection frames;
16: }
17: struct RenderTask_input {
18: string povFile;
19: int startFrame;
20: int numFrames;
21: }
22: struct RenderTask_output {
23: collection frames;
24: }

tion at runtime. Line 9 features a table representing the workflow
activities. Each table entry contains some meta-information about
an activity (e.g. name and activity identifier), dependencies to other
activities (e.g. parent activity, successors and predecessors), point-
ers to the associated callback functions, and other activity type-
related information. Line 16 defines the workflow itself through its
name, reference to the activity table, and start activity. Lines 17 –
20 finally execute the workflow.

The execution of the POV-Ray workflow starts with the toplevel
activity (see Listing 3, line 11), whose input and output ports rep-
resent the workflow inputs and outputs. The toplevel activity
usually does not have an input callback, as the input data structure
already contains the required valid data. Therefore, its children are
visited next starting with the parallel for loop.

Listing 4 shows the data structures representing the input and
output ports of the POV-Ray workflow activities. Each activity is
represented by two data structures, one containing the data fields
for each input port and the other for each output port. For ex-
ample, lines 1 – 5 represent the input ports and lines 6 – 8 rep-
resent the output ports of the toplevel activity, which correspond
to the lines 4 – 8 and lines 49 – 51 in the IWIR specification (see
Listing 1). Each data field also includes a boolean flag to indi-
cate whether it contains valid data. They are never accessed by the
workflow engine, but only by the callback functions.

Listing 5 shows the callback functions of the parallel for

loop of the POV-Ray workflow. The first callback (line 1) is re-
sponsible for initializing the input data structure. To achieve this, it
accesses the input data structure of the parent activity, checks if it
contains valid data, saves it into the input structure of the for ac-
tivity, and sets the allInputsAvailable flag to true if all input
data fields contain valid data to avoid unnecessary function invo-
cations. The second callback (line 12) is responsible for filling in
the output data structure by accessing the output data structures
of its children, checking the validity of the data, storing the data
into the output structure of the for loop, and setting the allOut-

putsAvailable flag to true if all output data fields contain valid
data. The third callback (line 24) is responsible for setting the loop
counter of the for loop activity PForLoop by checking if all re-

Listing 5 Callback functions related to the parallel for loop
activity of the POV-Ray workflow.
1: function FORLOOPINPUTCALLBACK(ForLoopInstance f or)
2: f or_in← RETRIEVEINSTRUCT( f or) . Initialisation of f or_in input port
3: parent_in← RETRIEVEINSTRUCT(GETPARENTINSTANCE( f or))
4: if ISVALID(parent_in.povFile) then
5: f or_in.povFile← parent_in.povFile
6: end if

7: [. . . ] . Similar code for initializing totalFrames and f ramesPerActivity ports

8: if ISVALID( f or_in.povFile, f or_in.totalFrames, f or_in. f ramesPerActivity)
then

9: f or.SETALLINPUTSAVAILABLE(true)
10: end if
11: end function

12: function FORLOOPOUTPUTCALLBACK(ForLoopInstance f or)
13: f or_out← RETRIEVEOUTSTRUCT( f or)
14: for i← 0 to f or.getIterationCount() do
15: child_out← RETRIEVEOUTSTRUCT(GETCHILDINSTANCE( f or, i,0))
16: if ISVALID(child_out. f rames) then
17: f or_out. f rames.set(i, child_out. f rames)
18: end if
19: end for
20: if CONTAINSNVALIDENTRIES( f or.GETITERATIONCOUNT, f or_out. f rames)

then
21: f or.SETALLOUTPUTSAVAILABLE(true)
22: end if
23: end function

24: function FORLOOPCOUNTERCALLBACK(ForLoopInstance f or)
25: f or_in← RETRIEVEINSTRUCT( f or)
26: if isValid( f or_in.totalFrames, f or_in. f ramesPerActivity) then
27: f or.SETCOUNTER(0, f or_in.totalFrames/ f or_in. f ramesPerActivity, 1)
28: f or.SETSTATE(ReadyForExecution)
29: end if
30: end function

quired data is available, setting the counter, and changing the activ-
ity state to ReadyForExecution.

6. EXPERIMENTS
We evaluated MWRE by comparing it with two related ones: a

fully-fledged workflow environment for Grid and Cloud comput-
ing (ASKALON [4]) and a general purpose lightweight workflow
scripting language (Swift [19]). The goal of the experiments was
to verify the callback-driven approach used in designing the engine
and to test its scalability.

To allow a low baseline comparison in the evaluation, we also
implemented synthetic OpenMP versions for each workflow appli-
cation, as OpenMP is the current standard for programming par-
allel applications on shared memory architectures. We automat-
ically generated the MWRE workflow programs from the IWIR
specifications (exported from ASKALON) and the concrete parts
from the ASKALON’s resource management deployment files us-
ing a Java source-to-source compiler that translates IWIR to C++.
We conducted the experiments on a system with 4 Intel Xeon E7-
4870 10-core CPUs at 2.40 GHz with a total of 128 GB of RAM.
We used the GNU C compiler (GCC) version 4.9.1 to compile the
MWRE and OpenMP programs with the -O3 optimization flag. For
each experiment, we recorded the enactment time of the work-
flow programs in both early (labelled MWRE-Early) and late (la-
belled MWRE-Late) modes, and their memory utilisation. Enact-
ment time refers to the time spend by the engine while evaluating
the WEP and resolving dependencies. Regarding memory, we used
the resident size reported by the operating system for MWRE and
OpenMP, while for ASKALON and Swift we used the memory
statistics delivered by the Java runtime API. Since there is no dif-
ference in memory consumption between MWRE-Early and MWRE-
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Figure 5: Experimental results for the POV-Ray workflow.

Late, we report a joint result for both. To obtain a more accu-
rate measure of the workflow enactment overhead and its memory
consumption, we replaced the actual atomic activities with dummy
implementations that only create empty files to satisfy data depen-
dencies, and recorded the makespan of the workflow executions.
We did not use the advanced features provided by the MWRE-Early
mode (e.g. streaming and taking advantage of the additional in-
formation for scheduling) because we were only interested in eval-
uating the engine’s overhead. The real benefits of these features
are highly dependent on the scheduler that is not in the scope of
this paper. We used the minimum completion time [10] scheduling
algorithm in all experiments as it has low overhead, a low linear
complexity and is resilient to prediction inaccuracies.

We use a logarithmic y-axis in all the figures for a better visuali-
sation of the results.

6.1 POV-Ray
POV-Ray is our running workflow example with a simple struc-

ture presented in detail in Section 4 and Figure 2.
The results in Figure 5 show that until about 2000 activities

the enactment time of MWRE is between 0.04− 18 seconds for
5−2000 activities, which is similar to OpenMP. Above 2000 activ-
ities, OpenMP stays between 15−69 seconds, while MWRE-Early
increases up to 1640 seconds showing the same performance as
Swift for 8000 activities. MWRE-Late shows a better performance
increasing only up to 820 seconds for 8000 activities. Since the
POV-Ray workflow consists mostly of a single parallel loop, nearly
all activities are scheduled for execution at the same time, which

Parallel

ForEach

linearModel

prepareLM

IF

PPS

IF

PPF

Figure 6: The RainCloud workflow.

overloads MWRE’s engine and limits its scalability. MWRE-Late

prevents many reevaluations and gets twice better performance than
MWRE-Early. Swift is 50 times worse than MWRE for a low num-
ber of activities, but this difference decreases showing the same
performance as MWRE-Early for 8000 activities, and twice worse
than MWRE-Late. The reason for this result is that Swift does
not provide support for maintaining a complete WEP (i.e. it op-
erates in “late” mode with no support for “early”), but is rather
designed to efficiently use local resources. ASKALON shows an
enactment time between 11−1350 seconds for 5−2000 activities.
Above 2000 activities, ASKALON’s enactment engine begins to
exceed the amount of available memory. Like Swift, ASKALON
has been designed for heavy-weight distributed systems that do not
submit many concurrent sequential tasks to individual cores, but a
smaller number of bags of tasks or parallel programs instead. Simi-
lar to MWRE, ASKALON generates complete WEPs for full-ahead
scheduling (i.e. operates in “early” mode) which brings additional
performance and memory penalties.

After a rapid increase in the beginning, MWRE’s memory uti-
lization remains relatively constant between 90− 110 megabytes
and slowly increases with the number of activities. We consider
this a low consumption given that real-world activity implemen-
tations typically consume gigabytes of memory. In comparison,
OpenMP uses between 10− 15 megabytes, Swift between 280−
1000 megabytes, and ASKALON between 590−8500 megabytes.

6.2 RainCloud
RainCloud is a meteorological workflow for investigating and

simulating precipitations in mountainous regions using a simple
numerical linear model of orographic precipitations [16]. The work-
flow is currently used by the Tyrolean avalanche service for their
daily avalanche bulletins. Its structure, displayed in Figure 6, is
very similar to POV-Ray, but contains a few additional conditional
activities. In our experiments, the conditional activities always
evaluate to true so that the PPS and PPF activities are executed.

The results in Figure 7 are similar to POV-Ray. In the begin-
ning, the enactment time of MWRE is between 0.8−30 seconds for
11−3000 activities, which is similar to OpenMP. Above 3000 ac-
tivities, OpenMP stays between 25−66 seconds with 3000−9000
activities, while MWRE-Early worsens up to 835 seconds for 9000
activities, and even exceeds Swift at around 7000 activities. MWRE-
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Figure 7: Experimental results for the RainCloud workflow.

Late performs better up to 338 seconds for 9000 activities, which
is still worse than OpenMP but better than Swift. The reason for
these results is similar to the POV-Ray case because of its similar
structure. However, since the linearModel and PPS activities are
sequentially executed in each parallel loop iteration, the number
of activities to be simultaneously scheduled is lower than for POV-
Ray. Because of this, MWRE’s performance only starts to signifi-
cantly worsen above 3000 activities (instead of 2000). Swift shows
an enactment time between 3−513 seconds for 5−9000 activities.
For a low number of activities, it is 40 times higher than MWRE,
but this difference decreases to 1.5 times higher than MWRE-Late

and even 1.6 times faster than MWRE-Early for 9000 activities.
ASKALON shows an enactment time between 28− 2813 seconds
for 11−6600 activities. Above 6600 activities, ASKALON’s mem-
ory utilisation begins to exceed its allocated size again.

After a rapid increase, the memory utilization of MWRE is rel-
atively constant between 60− 95 megabytes and slowly increases
with the number of activities. In comparison, OpenMP uses be-
tween 16− 21 megabytes, Swift between 283− 590 megabytes,
and ASKALON between 590−6200 megabytes.

6.3 Montage
Montage [6] is a well-known workflow in the scientific com-

puting community created by NASA/IPAC, which stitches together
multiple images to create mosaics of the sky. Montage has a rather
complex structure briefly sketched in Figure 8, making its enact-
ment the most computationally expensive from all our workflows.

The results in Figure 9 show that until about 600 activities the
enactment time of MWRE is between 2− 5 seconds for 300−
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mProjectPP
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mBgModel

mImgTbl

mAdd

mShrink

mJpeg

Parallel

ForEach

mBackground

Figure 8: The Montage workflow.

600 activities, which is similar to OpenMP. Above 600 activities,
OpenMP stays between 4.6− 27.6 seconds for 600− 3000 activ-
ities, while MWRE-Early increases up to 2074 seconds for 3000
activities, and even exceeds Swift at around 2000 activities due
to the high number of reevaluations caused by the complex work-
flow structure. In contrast, MWRE-Late always performs similar to
OpenMP with an enactment time of 4.8− 38.7 seconds for 600−
3000 activities due to the small number of activities simultane-
ously scheduled. Swift shows an enactment time between 14−968
seconds for 300− 3000 activities. For a low number of activi-
ties, it is seven times higher than MWRE-Early, but this differ-
ence decreases until Swift gets even twice faster. Compared to
MWRE-Late and OpenMP, Swift’s performance gets up to 35 times
worse. ASKALON’s enactment time is between 23−958 seconds
for 16−160 activities. Above 160 activities, ASKALON’s memory
utilisation begins to exceed its allocated size again due to the inter-
nal implementation of the collection data type, extensively used for
activity ports in Montage.

The memory utilisation of MWRE is relatively constant between
65−207 megabytes and slowly increases with the number of activ-
ities. In comparison, OpenMP uses between 21− 30 megabytes,
Swift between 312− 6500 megabytes, and ASKALON between
614−9000 megabytes.

6.4 Sparselu
The Sparselu workflow (see Figure 10) adapted from the sparselu

program from the BOTS benchmark suite [2] does LU factorisation
of sparse matrices. The workflow comes in two flavours: with a
for and with a while sequential outermost loop. In terms of WEP
generation in MWRE, there is a big difference between a while

and a for loop. While we can unroll a for loop once we know
the loop iteration counter and generate the complete WEP, this is
not possible for a while loop that requires reevaluation of the loop
condition after each iteration with no indication on the total number
of iterations. The workflow contains three consecutive parallel
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Figure 9: Experimental results for the Montage workflow.

for loops with the same number of iterations within the sequential
outermost loop. The experiments labelled *-Length in Figures 12
and 11 only modify the iteration number of the sequential outer-
most loop (i.e. the length of the workflow), while the experiments
labelled *-Width only modify the iteration number of the inner
parallel for loops (i.e. the width of the workflow). In the first
case, we increase of total number of activities while keeping the
number of activities scheduled at the same time constant, while in
the second case we also modify the number of activities simultane-
ously scheduled.

The results in Figures 12 and 11 show that the enactment time of
MWRE is similar to the one of OpenMP in most cases. The per-
formance of MWRE-Early begins to degrade in the *-Width experi-
ments above 30000 activities, but is still better than Swift. OpenMP
and both MWRE variants have an enactment time of about 1.3−
680 seconds for 250− 62000 activities in the *-Length experi-
ments and about 2.8− 300 seconds for 402− 30000 activities in
the *-Width experiments. Above 30000 activities, MWRE-Early
increases up to 830 seconds for 42000 activities in the *-Width ex-
periments, while OpenMP and MWRE-Late exhibit about 300−400
seconds between 30000− 42000 activities. Because of the nested
loop structure, only a small number of activities are simultaneously
scheduled for execution (much less than in Montage), which al-
lows MWRE to efficiently execute WEPs containing a very high
number of activities. When the number of activities simultaneously
scheduled is kept constant (the *-Length experiments), there is no
performance penalty when increasing the total number of activi-
ties. However, when we increase this number (the *-Width exper-

Sequential

For / While

mProjectPP

Parallel

For
fwd

Parallel

For
bdiv

Parallel

For
bmod

Figure 10: The Sparselu workflow.

iments), we see a performance degradation above 30000 activities.
Finally, there is no difference in MWRE’s performance between the
For-* and While-* experiments, which indicates that construct-
ing the complete WEP in the beginning or progressively during
execution presents no differences in performance. The enactment
time of Swift is between 7− 1200 seconds for 250− 62000 activ-
ities in the *-Length experiments, and between 17− 3600 sec-
onds for 400−42000 activities in the *-Width experiments. For a
low number of activities, it is five times higher than OpenMP and
MWRE, but this difference decreases up to 1.7 times higher for
62000 activities in the *-Length experiments, and 1.5 times for
around 2500 activities in the *-Width experiments. Afterwards, it
starts to increase again until it gets 8.6 times higher than OpenMP
and MWRE-Late, or four times higher than MWRE-Early for 42000
activities. ASKALON’s enactment time is between 1000− 26000
seconds for 250− 6000 activities in the For-Length experiment,
and between 248− 5800 seconds for 400− 2600 activities in the
For-Width experiment. Above 6000 respectively 2600 activities,
ASKALON’s memory utilisation is exceeds its allocated size again.
As ASKALON does not support while loops, we report no results
for this flavor of Sparselu.

The memory utilisation of MWRE is significantly higher than in
the previous experiments (between 15−820 megabytes), but com-
parable if we take into account the higher number of activities in-
volved. In comparison, OpenMP uses between 15−32 megabytes,
Swift between 550− 4100 megabytes, and ASKALON between
770−7200 megabytes.

7. CONCLUSIONS
We described a new lightweight Manycore Workflow Runtime

Environment (MWRE), purposely designed to efficiently enact tra-
ditional scientific workflows on modern manycore computing ar-
chitectures. In contrast to existing external service-based engines,
MWRE is compiler-based and translates workflows represented in
the XML-based IWIR specification into an equivalent C++-based
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Figure 11: Experimental results for the Sparselu-For work-
flows.
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Figure 12: Experimental results for the Sparselu-While work-
flows.



workflow program. The workflow program efficiently enacts the
workflow as a stand-alone executable by means of a new callback
mechanism to resolve dependencies, transfer data, and handle com-
posite activities, rather than high-overhead reflection and type in-
trospection used in existing DCI engines.

We compared MWRE with two representative workflow engines:
a Java-based one designed for DCIs (ASKALON) and a script-
based one designed for manycore architectures (Swift). Our re-
sults demonstrate that employing a compiled workflow program
tailored to the needs of manycore platforms exhibits a lower en-
actment time and less memory consumption. In particular, MWRE
efficiently handles complex workflows with a high number of ac-
tivities, and even achieves a similar enactment time to synthetic
OpenMP versions for certain types of workflow applications. The
main contributing factor to the performance of MWRE is the length
of the WEP and the ratio of the activities simultaneously scheduled
to the overall number of activities. The smaller this ratio is, the
lower the performance penalty gets. MWRE performs much bet-
ter than ASKALON in all situations, and it can also perform better
than Swift depending on the workflow. It can even come close
to the performance of OpenMP. The experiments also showed that
MWRE performs especially well with complex workflows which
have a long critical path compared to the other workflow engines.
Incidentally, this is also the class of applications that will benefit
the most from advanced full-ahead scheduling which we plan to
investable in future research.

The memory consumption of MWRE is significantly higher than
OpenMP, but within low acceptable limits, and much better in other
workflow engines designed for distributed systems. While the late
WEP evaluation mode exhibits in general less overhead than the
early one, early evaluation usually provides more information for
full-ahead scheduling and adds support for streaming. The best
WEP evaluation mode usually depends on the workflow structure,
the number of activities, and the desired feature set.

While the WEP-Late evaluation mode exhibits in general less
overhead than the early one, WEP-Early provides more informa-
tion that can be used for full-ahead scheduling and adds stream-
ing support. The specific performance difference between the two
modes is highly dependent on the workflow structure and size. In
future research, we plan to investigate heuristics that allow to au-
tomatically select the best evaluation mode for a given workflow,
including hybrid modes that dynamically switch between early and
late evaluation to gain performance while keeping the benefits of
the early evaluation.
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