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1. INTRODUCTION
A major advantage of cloud computing and storage is the

large-scale sharing of resources, which provides scalability
and flexibility. But resource-sharing causes variability in
the latency experienced by the user, due to several factors
such as virtualization, server outages, network congestion
etc . This problem is further aggravated when a job consists
of several parallel tasks, because the task run on the slowest
machine becomes the latency bottleneck.

A promising method to reduce latency is to assign a task
to multiple machines and wait for the earliest to finish. Sim-
ilarly, in cloud storage systems requests to download the
content can be assigned to multiple replicas, such that it
is sufficient to download any one replica. Although studied
actively in systems in the past few years, there is little work
on rigorous analysis of how redundancy affects latency. The
effect of redundancy in queueing systems was first analyzed
only recently in [2, 3, 6], assuming exponential service time.
General service time distribution, in particular the effect of
its tail, is considered in [7, 8].

This work analyzes the trade-off between latency and the
cost of computing resources in queues with redundancy, with-
out assuming exponential service time. We study a general-
ized fork-join queueing model where finishing any k out of
n tasks is sufficient to complete a job. The redundant tasks
can be canceled when any k tasks finish, or earlier, when
any k tasks start service. For the k = 1 case, we get an el-
egant latency and cost analysis by identifying equivalences
between systems without and with early redundancy can-
cellation to M/G/1 and M/G/n queues respectively. For
general k, we derive bounds on the latency and cost. Please
see [4] for an extended version of this work.

2. PROBLEM SETUP
Consider a distributed system with n statistically identical

servers. Jobs arrive according to a rate λ Poisson process.
The scheduler forks each incoming job into n tasks, and
assigns them respectively to first-come first-serve queues at
the n servers. The n tasks are designed such that completion
of any k tasks is sufficient to complete the job. The case
k = 1 corresponds to running replicas of a job on multiple
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Fig. 1: The (3, 2) fork-join system. When any 2 tasks of a
job finish, the third task abandons its queue.
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Fig. 2: The (3, 2) fork-early-cancel system. When any 2
tasks of a job start service, the third abandons its queue.

machines. General k arise in approximate computing, or in
content download from coded distributed storage.

The time taken to serve a task, is modeled by the ran-
dom variable X, with distribution FX , and is assumed to be
i.i.d. across requests and servers. Dependence across servers
due to the job size can be modeled by adding a constant
proportional to average job size to service time X.

When any k out of the n tasks of a job are served, the
scheduler immediately cancels the remaining n−k redundant
tasks, as illustrated in Fig. 1. We refer to this system as the
(n, k) fork-join system, defined formally as follows.

Definition 1 ((n, k) fork-join system). A job is forked
into n tasks that join first-come first-serve queues at the n
servers. When any k tasks finish service, all other tasks are
canceled and abandon their queues immediately. 1

Instead of waiting for k tasks to finish, we could cancel the
redundant tasks as soon as k tasks start service. This vari-
ant, called the (n, k) fork-early-cancel system is formally
defined as follows.

Definition 2 ((n, k) fork-early-cancel system). A
job is forked into n tasks that join queues at the n servers.
When any k tasks start service, all redundant tasks are can-
celed immediately. If more than k tasks start service simul-
taneously, we retain any k chosen uniformly at random. The
job is complete when these k tasks finish.

1The (n, k) fork-join system is a generalization of the well
known fork-join queue, which corresponds to the k = n case.



Table 1: Summary of Results on Latency-Cost Analysis. We get exact analysis for k = 1, and bounds for general k.

Replicated System (k = 1) General k

(n, 1) fork-join (n, 1) fork-early-cancel (n, k) fork-join (n, k) fork-early-cancel

Latency
E [T ]

Thm. 1, using
≡ to M/G/1 queue

Thm. 2, using
≡ to M/G/n queue

Bounds in Thm. 3
Upper Bound
(generalizing [5])

Cost E [C] nE [X1:n], where

X1:n , min(X1, . . . , Xn)

E [X], where X is
the task service time

Bounds in Thm. 4
(Tight for k = 1, n)

kE [X]

Fig. 1 and Fig. 2 illustrate the (n, k) fork-join and fork-
early-cancel systems respectively for n = 3 and k = 2. Early
cancellation of redundant tasks can save computing cost, but
could result in higher latency because of loss of diversity. In
this work we develop insights into when early cancellation
is better. We now define the latency and computing cost
metrics, and analyse their trade-off afterwards.

Definition 3 (Latency). The latency E [T ] is defined
as the expected time from the instant when a job arrives,
until any k of its tasks are served.

Definition 4 (Computing Cost). The computing cost
E [C] is the expected total time spent serving the tasks of a
job, not including the waiting time in queue.

We now express the service capacity of the system in terms
of E [C], the average total server time utilized per job.

Claim 1 (Service Capacity in terms of E [C]). For
a system of n servers, and task assignment symmetric across
the servers, the maximum λ for which E [T ] <∞ is

λmax =
n

E [C]
. (1)

Thus E [C] can be used to compare systems in the high λ
regime. We will illustrate this new technique in Fig. 4, com-
paring the system with and without early cancellation.

Table 1 summarizes the key results of the latency-cost
analysis presented in Sections 3 and 4 below. We use the
notation Xi:n to denote the ith smallest of i.i.d. random
variables X1, . . . Xn, with distribution FX . All proofs are
omitted here and can be found in the extended version [4].

3. REPLICATED SYSTEM (k = 1)
Observing that the (n, 1) fork-join system is equivalent

to an M/G/1 queue, and the (n, 1) fork-early-cancel system
is equivalent to an M/G/n queue will help us derive the
latency and the cost of these systems.

Theorem 1. The latency and computing cost of an (n, 1)
fork-join system is given by

E [T ] = E [X1:n] +
λE
[
X2

1:n

]
2(1− λE [X1:n])

, (2)

E [C] = nE [X1:n] . (3)

To prove Thm. 1 we identify that in the (n, 1) fork-join
system, all tasks of a job start service simultaneously. Thus,
it is equivalent to an M/G/1 queue with service time X1:n,
whose latency is given by the Pollaczek-Khinchine formula
(2). Fig. 3 shows the latency-cost trade-off when the service
time X = ∆ + Exp(µ), a shifted exponential with µ = 0.5,
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Fig. 3: For X ∼ ∆+Exp(µ), µ = 0.5, and λ = 0.25, latency
decreases and cost increases, as n increases along each curve.
But for ∆ = 0 latency reduces at no additional cost.

and λ = 0.25. As n increases along each curve, E [T ] de-
creases and E [C] = nE [X1:n] increases. Only when X is a
pure exponential (∆ = 0), we can reduce latency without
any additional cost. Also, the system reduces to an M/M/1
queue and the latency T ∼ Exp(µ−λ). In [4], we show that
if the tail distribution F̄X is log-convex (e.g. hyperexponen-
tial), then latency and cost reduce simultaneously with n.

Theorem 2. The latency and cost of the (n, 1) fork- early
cancel system are given by

E [T ] = E
[
TM/G/n

]
≈ E [X] +

E
[
X2
]

2E [X]2
E
[
WM/M/n

]
, (4)

E [C] = E [X] , (5)

where E
[
WM/M/n

]
is the expected waiting time in an M/M/n

queueing system with service time X ∼ FX .

To prove Thm. 2, we identify that in the (n, 1) fork-early-
cancel system, one task of each job joins the shortest queue
available, and the other tasks are canceled before they begin
service. Thus, it is equivalent to an M/G/n system whose
latency is given by the well-known approximation (4). Since
the cost is E [C] = E [X] which is independent of n, there is
no latency-cost trade-off similar to Fig. 3.

In Fig. 4, we compare the (4, 1) system with and without
early cancellation by plotting latency vs. λ. The service time
X ∼ 2 + Exp(0.5), a shifted exponential. Early cancellation
gives lower latency in the high λ regime. This can be inferred
from Claim 1, since E [C] with early cancellation (E [X]) is
smaller than that without (nE [X1:n]), when X is shifted
exponential. If we plot latency vs. ∆, the constant part of
the service time, we observe that early cancellation gives
lower latency for higher ∆ (‘less random’ X).
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Fig. 4: Comparison of E [T ] of the (4, 1) system with and
without early cancellation, vs. λ for X ∼ 2+Exp(0.5). Early
cancellation is gives higher service capacity (by Claim 1).

4. GENERAL CASE: 1 ≤ k ≤ n
In the traditional fork-join queue (k = n case in Def. 1

with exponential service time), an exact expression for la-
tency can be found only for n = 2 [1]. Only bounds are
known for general k and n [3, 5]. We present the first la-
tency and cost bounds for general FX .

Theorem 3. The latency E [T ] of the (n, k) fork-join sys-
tem is bounded as

E [T ] ≤ E [Xk:n] +
λE
[
X2

k:n

]
2(1− λE [Xk:n])

, (6)

E [T ] ≥ E [Xk:n] +
λE
[
X2

1:n

]
2(1− λE [X1:n])

. (7)

To get (6), we use the split-merge system, in which no two
jobs are served simultaneously. In (7), we use the waiting
time of the (n, 1) fork-join system to lower bound that of
the (n, k) system. Fig. 5 shows the latency bounds and
simulation values vs. k for n = 10, λ = 0.5, and X following
the Pareto distribution with xm = 0.5 and α = 2.5. For
k = n, we can get a tighter bound than (6) by generalizing
the approach used in [5]. The same approach can be used
to upper bound E [T ] of the (n, k) fork-early-cancel system.

Theorem 4. The computing cost E [C] of the (n, k) fork-
join system is bounded as

E [C] ≤ (k − 1)E [X] + (n− k + 1)E [X1:n−k+1] , (8)

E [C] ≥
k∑

i=1

E [Xi:n] + (n− k)E [X1:n−k+1] . (9)

The key idea for proving Thm. 4 is our observation that for
each job, some n − k + 1 of its tasks start service simulta-
neously, which allowed us to analyze them separately. The
bounds are tight for k = 1 and k = n as seen in Fig. 6.

For the (n, k) fork-early-cancel system, since exactly k
tasks start and finish service, it follows that E [C] = kE [X].
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