
MIT Open Access Articles

Queues with Redundancy

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Joshi, Gauri, Emina Soljanin, and Gregory Wornell. “Queues with Redundancy.” ACM 
SIGMETRICS Performance Evaluation Review 43, no. 2 (September 16, 2015): 54–56. .

As Published: http://dx.doi.org/10.1145/2825236.2825258

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/113424

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/113424
http://creativecommons.org/licenses/by-nc-sa/4.0/


Queues with Redundancy: Latency-Cost Analysis

Gauri Joshi
EECS Dept., MIT

Cambridge MA, USA

gauri@mit.edu

Emina Soljanin
Bell Labs Alcatel-Lucent

Murray Hill NJ, USA

emina@bell-labs.com

Gregory Wornell
EECS Dept., MIT

Cambridge, MA, USA

gww@mit.edu

1. INTRODUCTION
A major advantage of cloud computing and storage is the

large-scale sharing of resources, which provides scalability
and flexibility. But resource-sharing causes variability in
the latency experienced by the user, due to several factors
such as virtualization, server outages, network congestion
etc . This problem is further aggravated when a job consists
of several parallel tasks, because the task run on the slowest
machine becomes the latency bottleneck.

A promising method to reduce latency is to assign a task
to multiple machines and wait for the earliest to finish. Sim-
ilarly, in cloud storage systems requests to download the
content can be assigned to multiple replicas, such that it
is sufficient to download any one replica. Although studied
actively in systems in the past few years, there is little work
on rigorous analysis of how redundancy affects latency. The
effect of redundancy in queueing systems was first analyzed
only recently in [2, 3, 6], assuming exponential service time.
General service time distribution, in particular the effect of
its tail, is considered in [7, 8].

This work analyzes the trade-off between latency and the
cost of computing resources in queues with redundancy, with-
out assuming exponential service time. We study a general-
ized fork-join queueing model where finishing any k out of
n tasks is sufficient to complete a job. The redundant tasks
can be canceled when any k tasks finish, or earlier, when
any k tasks start service. For the k = 1 case, we get an el-
egant latency and cost analysis by identifying equivalences
between systems without and with early redundancy can-
cellation to M/G/1 and M/G/n queues respectively. For
general k, we derive bounds on the latency and cost. Please
see [4] for an extended version of this work.

2. PROBLEM SETUP
Consider a distributed system with n statistically identical

servers. Jobs arrive according to a rate λ Poisson process.
The scheduler forks each incoming job into n tasks, and
assigns them respectively to first-come first-serve queues at
the n servers. The n tasks are designed such that completion
of any k tasks is sufficient to complete the job. The case
k = 1 corresponds to running replicas of a job on multiple

This work was supported in part by NSF under Grant No.
CCF-1319828, AFOSR under Grant No. FA9550-11-1-0183,
and a Schlumberger Faculty for the Future Fellowship.

Copyright is held by author/owner(s).

X 

X 

X 

λ 

λ 
 
λ 

X 

X 

X 

λ 

λ 
 
λ 

Abandon 

1 task served 2 tasks served 

Fig. 1: The (3, 2) fork-join system. When any 2 tasks of a
job finish, the third task abandons its queue.

X 

X 

X 

λ 

λ 
 
λ 

X 

X 

X 

λ 

λ 
 
λ 

Abandon Abandon 

Start of service Start of service 

Fig. 2: The (3, 2) fork-early-cancel system. When any 2
tasks of a job start service, the third abandons its queue.

machines. General k arise in approximate computing, or in
content download from coded distributed storage.

The time taken to serve a task, is modeled by the ran-
dom variable X, with distribution FX , and is assumed to be
i.i.d. across requests and servers. Dependence across servers
due to the job size can be modeled by adding a constant
proportional to average job size to service time X.

When any k out of the n tasks of a job are served, the
scheduler immediately cancels the remaining n−k redundant
tasks, as illustrated in Fig. 1. We refer to this system as the
(n, k) fork-join system, defined formally as follows.

Definition 1 ((n, k) fork-join system). A job is forked
into n tasks that join first-come first-serve queues at the n
servers. When any k tasks finish service, all other tasks are
canceled and abandon their queues immediately. 1

Instead of waiting for k tasks to finish, we could cancel the
redundant tasks as soon as k tasks start service. This vari-
ant, called the (n, k) fork-early-cancel system is formally
defined as follows.

Definition 2 ((n, k) fork-early-cancel system). A
job is forked into n tasks that join queues at the n servers.
When any k tasks start service, all redundant tasks are can-
celed immediately. If more than k tasks start service simul-
taneously, we retain any k chosen uniformly at random. The
job is complete when these k tasks finish.

1The (n, k) fork-join system is a generalization of the well
known fork-join queue, which corresponds to the k = n case.



Table 1: Summary of Results on Latency-Cost Analysis. We get exact analysis for k = 1, and bounds for general k.

Replicated System (k = 1) General k

(n, 1) fork-join (n, 1) fork-early-cancel (n, k) fork-join (n, k) fork-early-cancel

Latency
E [T ]

Thm. 1, using
≡ to M/G/1 queue

Thm. 2, using
≡ to M/G/n queue

Bounds in Thm. 3
Upper Bound
(generalizing [5])

Cost E [C] nE [X1:n], where

X1:n , min(X1, . . . , Xn)

E [X], where X is
the task service time

Bounds in Thm. 4
(Tight for k = 1, n)

kE [X]

Fig. 1 and Fig. 2 illustrate the (n, k) fork-join and fork-
early-cancel systems respectively for n = 3 and k = 2. Early
cancellation of redundant tasks can save computing cost, but
could result in higher latency because of loss of diversity. In
this work we develop insights into when early cancellation
is better. We now define the latency and computing cost
metrics, and analyse their trade-off afterwards.

Definition 3 (Latency). The latency E [T ] is defined
as the expected time from the instant when a job arrives,
until any k of its tasks are served.

Definition 4 (Computing Cost). The computing cost
E [C] is the expected total time spent serving the tasks of a
job, not including the waiting time in queue.

We now express the service capacity of the system in terms
of E [C], the average total server time utilized per job.

Claim 1 (Service Capacity in terms of E [C]). For
a system of n servers, and task assignment symmetric across
the servers, the maximum λ for which E [T ] <∞ is

λmax =
n

E [C]
. (1)

Thus E [C] can be used to compare systems in the high λ
regime. We will illustrate this new technique in Fig. 4, com-
paring the system with and without early cancellation.

Table 1 summarizes the key results of the latency-cost
analysis presented in Sections 3 and 4 below. We use the
notation Xi:n to denote the ith smallest of i.i.d. random
variables X1, . . . Xn, with distribution FX . All proofs are
omitted here and can be found in the extended version [4].

3. REPLICATED SYSTEM (k = 1)
Observing that the (n, 1) fork-join system is equivalent

to an M/G/1 queue, and the (n, 1) fork-early-cancel system
is equivalent to an M/G/n queue will help us derive the
latency and the cost of these systems.

Theorem 1. The latency and computing cost of an (n, 1)
fork-join system is given by

E [T ] = E [X1:n] +
λE
[
X2

1:n

]
2(1− λE [X1:n])

, (2)

E [C] = nE [X1:n] . (3)

To prove Thm. 1 we identify that in the (n, 1) fork-join
system, all tasks of a job start service simultaneously. Thus,
it is equivalent to an M/G/1 queue with service time X1:n,
whose latency is given by the Pollaczek-Khinchine formula
(2). Fig. 3 shows the latency-cost trade-off when the service
time X = ∆ + Exp(µ), a shifted exponential with µ = 0.5,

2 4 6 8 10

Computing Cost E[C]

0

2

4

6

8

10

L
at

en
cy
E

[T
]

∆ = 0

∆ = 1

∆ = 1.5

Fig. 3: For X ∼ ∆+Exp(µ), µ = 0.5, and λ = 0.25, latency
decreases and cost increases, as n increases along each curve.
But for ∆ = 0 latency reduces at no additional cost.

and λ = 0.25. As n increases along each curve, E [T ] de-
creases and E [C] = nE [X1:n] increases. Only when X is a
pure exponential (∆ = 0), we can reduce latency without
any additional cost. Also, the system reduces to an M/M/1
queue and the latency T ∼ Exp(µ−λ). In [4], we show that
if the tail distribution F̄X is log-convex (e.g. hyperexponen-
tial), then latency and cost reduce simultaneously with n.

Theorem 2. The latency and cost of the (n, 1) fork- early
cancel system are given by

E [T ] = E
[
TM/G/n

]
≈ E [X] +

E
[
X2
]

2E [X]2
E
[
WM/M/n

]
, (4)

E [C] = E [X] , (5)

where E
[
WM/M/n

]
is the expected waiting time in an M/M/n

queueing system with service time X ∼ FX .

To prove Thm. 2, we identify that in the (n, 1) fork-early-
cancel system, one task of each job joins the shortest queue
available, and the other tasks are canceled before they begin
service. Thus, it is equivalent to an M/G/n system whose
latency is given by the well-known approximation (4). Since
the cost is E [C] = E [X] which is independent of n, there is
no latency-cost trade-off similar to Fig. 3.

In Fig. 4, we compare the (4, 1) system with and without
early cancellation by plotting latency vs. λ. The service time
X ∼ 2 + Exp(0.5), a shifted exponential. Early cancellation
gives lower latency in the high λ regime. This can be inferred
from Claim 1, since E [C] with early cancellation (E [X]) is
smaller than that without (nE [X1:n]), when X is shifted
exponential. If we plot latency vs. ∆, the constant part of
the service time, we observe that early cancellation gives
lower latency for higher ∆ (‘less random’ X).



0.0 0.2 0.4 0.6 0.8 1.0

λ, arrival rate of jobs

0

5

10

15

20

25

30

35

L
at

en
cy
E

[T
]

(n, 1) fork-join
(n, 1) fork-early-cancel

Fig. 4: Comparison of E [T ] of the (4, 1) system with and
without early cancellation, vs. λ for X ∼ 2+Exp(0.5). Early
cancellation is gives higher service capacity (by Claim 1).

4. GENERAL CASE: 1 ≤ k ≤ n
In the traditional fork-join queue (k = n case in Def. 1

with exponential service time), an exact expression for la-
tency can be found only for n = 2 [1]. Only bounds are
known for general k and n [3, 5]. We present the first la-
tency and cost bounds for general FX .

Theorem 3. The latency E [T ] of the (n, k) fork-join sys-
tem is bounded as

E [T ] ≤ E [Xk:n] +
λE
[
X2

k:n

]
2(1− λE [Xk:n])

, (6)

E [T ] ≥ E [Xk:n] +
λE
[
X2

1:n

]
2(1− λE [X1:n])

. (7)

To get (6), we use the split-merge system, in which no two
jobs are served simultaneously. In (7), we use the waiting
time of the (n, 1) fork-join system to lower bound that of
the (n, k) system. Fig. 5 shows the latency bounds and
simulation values vs. k for n = 10, λ = 0.5, and X following
the Pareto distribution with xm = 0.5 and α = 2.5. For
k = n, we can get a tighter bound than (6) by generalizing
the approach used in [5]. The same approach can be used
to upper bound E [T ] of the (n, k) fork-early-cancel system.

Theorem 4. The computing cost E [C] of the (n, k) fork-
join system is bounded as

E [C] ≤ (k − 1)E [X] + (n− k + 1)E [X1:n−k+1] , (8)

E [C] ≥
k∑

i=1

E [Xi:n] + (n− k)E [X1:n−k+1] . (9)

The key idea for proving Thm. 4 is our observation that for
each job, some n − k + 1 of its tasks start service simulta-
neously, which allowed us to analyze them separately. The
bounds are tight for k = 1 and k = n as seen in Fig. 6.

For the (n, k) fork-early-cancel system, since exactly k
tasks start and finish service, it follows that E [C] = kE [X].

5. REFERENCES
[1] Flatto, L., and Hahn, S. Two parallel queues

created by arrivals with two demands I. SIAM Journal
on Applied Mathematics 44, 5 (1984), 1041–1053.

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
at

en
cy
E

[T
]

Upper Bound
Simulation
Lower Bound

Fig. 5: Bounds E [T ] vs. k, with service time X =
Pareto(0.5, 2.5) with n = 10, and λ = 0.5. The k = n upper
bound is determined by generalizing the approach in [5].

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

C
om

pu
ti

ng
C

os
t
E

[C
]

Upper Bound
Simulation
Lower Bound

Fig. 6: Bounds on E [C] vs. k, for the same parameters as
Fig. 5. The bounds are tight for k = 1 and k = n.

[2] Joshi, G., Liu, Y., and Soljanin, E. Coding for fast
content download. Allerton Conference on
Communication, Control and Computing (Oct. 2012),
326–333.

[3] Joshi, G., Liu, Y., and Soljanin, E. On the
Delay-storage Trade-off in Content Download from
Coded Distributed Storage. IEEE Journal on Selected
Areas on Communications (May 2014).

[4] Joshi, G., Soljanin, E., and Wornell, G. Efficient
redundancy techniques for latency reduction in cloud
systems. arXiv [cs.dc] (Aug. 2015).

[5] Nelson, R., and Tantawi, A. Approximate analysis
of fork/join synchronization in parallel queues. 739–743.

[6] Shah, N., Lee, K., and Ramachandran, K. The
mds queue: Analyzing the latency performance of
erasure codes. IEEE International Symposium on
Information Theory (July 2014).

[7] Shah, N., Lee, K., and Ramchandran, K. When do
redundant requests reduce latency? In Allerton
Conference on Communication, Control and Computing
(Oct. 2013), pp. 731–738.

[8] Wang, D., Joshi, G., and Wornell, G. Using
straggler replication to reduce latency in large-scale
parallel computing (extended version).
arXiv:1503.03128 [cs.dc] (Mar. 2015).


