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The midpoint method for deriving efficient scan-conversion algorithms to draw geometric curves on 
raster displays is described. The method is general and is used to transform the nonparametric 
equation f(z, y) = 0, which describes the curve, into an algorithm that draws the curve. Floating- 
point arithmetic and time-consuming operations such as multiplies are avoided. The maximum error 
of the digital approximation produced by the algorithm is one-half the distance between two adjacent 
pixels on the display grid. The midpoint method is compared with the ~UJO-point method used by 
Bresenham, and is seen to be more accurate (in terms of the linear error) in the general case, without 
increasing the amount of computation required. The use of the midpoint method is illustrated with 
examples of lines, circles, and ellipses. The considerations involved in using the method to derive 
algorithms for drawing more general classes of curves are discussed. 

Categories and Subject Descriptors: 1.3.3 [Computing Methodologies]: Computer Graphics- 
Picture/image generation 

General Terms: Algorithms 
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1. INTRODUCTION 

In this paper, we describe the midpoint method for converting a nonparametric 
equation for a curve into a scan-conversion algorithm that draws the curve into 
a bit-mapped frame buffer that drives a raster display. The goals in designing a 
curve-drawing algorithm are (1) to achieve a representation that closely approx- 
imates the true curve, while (2) reducing the amount of computation required to 
plot each point. The midpoint method produces algorithms that are computa- 
tionally efficient, eliminating the need for floating-point arithmetic, and elimi- 
nating or significantly reducing the number of multiplication operations required. 
The maximum error of the digital approximation of the curve, drawn by an 
algorithm based on the midpoint method, is bounded at half the distance between 
vertically or horizontally adjacent pixels on the raster display grid if an g-way- 
stepping algorithm is used or is bounded at half the distance between diagonally 
adjacent pixels if a 4-way-stepping algorithm is used. 
.,The method presented here is general and can be applied in straightforward 

fashion to derive efficient algorithms for drawing various curves. Examples are 
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presented to demonstrate the derivation of algorithms for drawing lines, circles, 
and ellipses. Finally, some of the limitations of the method, as understood by the 
authors, are discussed. 

A significant body of work in curve-drawing algorithms for raster display 
devices has already been published. Algorithms based on various empirical 
methods have been described for approximating curves, such as lines and circles 
to varying degrees of accuracy and computational efficiency [3, 4, 6, 81. The 
relative accuracies of several algorithms are determined experimentally in [lo]. 
Bresenham [I] solved the problem of constructing an algorithm to draw the best- 
fit approximation to an arbitrary straight line. Pitteway [8] described an algo- 
rithm for drawing a general conic section based on a technique to be referred to 
in this paper as the midpoint method.* Horn [5] used a similar technique to 
derive an algorithm for the special case of a circle. Jordan, Lennon and Holm [6] 
described algorithms for drawing various conic sections based on a technique to 
be referred to in this paper as the two-point method. Bresenham [2] used a 
similar technique to derive a circle-drawing algorithm, and proved that the 
algorithm gave best-fit accuracy in the case of integer radii. McIlroy [7] extended 
the proof of best-fit accuracy of Bresenham’s algorithm to the more general case 
in which the square of the circle’s radius is an integer. The same paper compared 
the two approaches used in the circle-drawing algorithms of Bresenham and 
Horn. A comparison of the midpoint method and two-point method was presented 
by one of the authors [ll] for the case of an ellipse in standard position. The 
superior accuracy of the midpoint method was demonstrated. 

BASIC CONCEPTS 

This paper discusses the derivation of algorithms for drawing curves described 
by nonparametric equations of the form f(zc, y) = 0, where f(x, y) is a polynomial 
in x and y. The fundamental problem to be solved in developing an incremental 
curve-drawing algorithm is to determine at each step of the plotting process 
which of a pair of pixels lies closer to the curve being approximated. The B-way- 
stepping ellipse-drawing algorithm presented later in this paper in fact selects 
between more than two pixels at each step, but does so by considering the pixels 
a pair at a time. 

The plotting of a straight line on a raster display is depicted in Figure la and 
b. The small circles represent pixels on the screen of a raster display, and the 
filled circles are those pixels of the display that are turned on to represent the 
line. Owing to the discrete nature of the raster display, the representation can 
only be an approximation to the true line. Both Figure la and b represent the 
same line but have been drawn by two different line-drawing algorithms that 
have selected slightly different sets of pixels to represent the line. Assume that 
each line in Figure 1 is plotted beginning at the lower left corner of the figure. 
At each step of the plotting process, the line-drawing algorithm must decide 

’ In a previous paper [ll], one of the authors incorrectly reported that the accuracy of the algorithms 
of Pitteway [8] and Horn [5] had not been demonstrated for the general case. In fact, the error of the 
algorithm in both instances is bounded at l/2 the distance between adjacent pixels on the display 
grid. The author regrets the inaccuracy, and is indebted to M.L.V. Pitteway for bringing the problem 
to his attention. 
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(a) (b) 

Fig. 1. Two ways of representing a line on a raster display. 

(b) 
Fig. 2. Comparison of (a) R-way and (b) 4-way stepping. 

where the next pixel is to be plotted. For the example in Figure la, the next pixel 
is located either directly to the right of the current position, or upward and to 
the right. In Figure lb, the next pixel is located directly to the right or directly 
above the current position. 

Two categories of curve-drawing algorithms are treated in this paper; B-way 
stepping (BWS) and 4-way stepping (4WS). Figure 2 demonstrates how 8WS and 
4WS algorithms differ. As indicated in Figure 2b, 4WS algorithms are constrained 
to step in one of four directions: vertically, up or down; or horizontally, left or 
right. As indicated in Figure 2a, 8WS algorithms can step in any of 8 directions, 
that is, diagonally, as well as horizontally or vertically. The line in Figure la is 
drawn by an 8WS algorithm, and the line in Figure lb by a 4WS algorithm. 

Figure 3a represents the decision that must be made at each step of the 8WS 
line-drawing algorithm that generates the line approximation shown in Figure 
la. Pixel A was drawn during the previous step, and a decision must be made 
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Fig. 3. Comparison of decision processes for (a) 8WS and (b) 4WS algorithms. 

whether to draw pixel B or C next. Accuracy is maintained to the extent that the 
algorithm is capable of selecting the pixel, B or C, that lies closer to the line (or 
in the general case, the curve) being approximated. The corresponding decision 
process for the 4WS line-drawing algorithm used to draw the line in Figure lb is 
shown in Figure 3b. 

Bresenham’s circle-drawing algorithm [2 ] draws an SWS approximation using 
an error-control technique that is referred to here as the two-point method. Using 
the example of Figure 3a for reference, the two-point method for selecting between 
two pixels B and C at each step is expressed in general terms as follows: The 
equation for the curve being approximated, f(x, y) = 0, is evaluated at both B 
and C, where B and C are located at coordinates (xB, yB) and (XC, yC), 
respectively. The values f(&, yB) and f(xC, yC) will both be nonzero unless (at 
least) one of them is fortunate enough to lie directly on the curve f(x, y) = 0. The 
magnitudes of f(xB, yB) and f(xC, yC) can be taken as an indication of how far 
pixels B and C are from the curve; that is, the greater the magnitude, the more 
distant the pixel. If 1 f(xB, yB) 1 < 1 f(xC, yC) 1, then pixel B is assumed to be 
closer. Since f(xE?, yB) and f(xC, yC) are nonlinear indicators of distance for 
curves other than straight lines, the accuracy of this assumption is not immedi- 
ately apparent. However, Bresenham proves that his 8WS circle-drawing algo- 
rithm, by minimizing this nonlinear error term, minimizes the resulting linear 
error as well. (This proof does not hold for certain noninteger radii [2, 71.) 
Whether a similar proof can be constructed for any curve other than an 8WS 
circle seems to remain an open question. In general, although the two-point 
method can be extended to curves other than lines and circles, the fact that error 
terms f(xB, yZ3) and f(xC, yC) are nonlinear makes them unreliable indicators of 
linear error. 

An alternate technique, called the midpoint method, is used in this paper as a 
means of controlling the linear error at each step of the curve-drawing algorithm. 
Again using the example of Figure 3a as a reference, the approach is to evaluate 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985 
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the equation for the curve, f(x, y) = 0, at the point M located midway between 
pixels B and C. The coordinates of midpoint M are 

(xM,yM)= 
xB + XC yB + yC 

2 , 2 . 

Should the curve f(r, y) = 0 pass directly through midpoint M, then f(rM, yM) 
= 0. The intersection of the curve with an imaginary line drawn from pixel B to 
pixel C occurs at a point equally distant from B and C and represents the worst- 
case error that can be generated by the algorithm. In the more likely event that 
the curve passes to one side or the other of M, f(xM, yM) will be nonzero and 
its sign will indicate to which side of M it passes. If the sign of f(xM, yM) 
indicates that the curve passes to the side of M that is closer to B, then B is 
selected by the algorithm; otherwise, C is selected. In the following discussion, 
f(xM, yM) will be called the decision variable of the algorithm. 

Given that the midpoint method is capable of determining to which side of 
midpoint M the curve passes, the maximum linear error at each step, E,,,, must 
be bounded at one-half the distance between pixels B and C. The convention 
used in this paper is that the horizontal distance between horizontally or vertically 
adjacent pixels on the display grid is unity. For 8WS algorithms, this means that 
I E,,, ] P l/2, and for 4WS algorithms, ] E,,, ] I A/2. In contrast to Bresen- 
ham’s approach, these bounds are valid for curves other than lines and circles. 
Given the improved control over E,,, afforded by the midpoint method, it is the 
method used exclusively in this paper. 

From the discussion above, an 8WS curve-drawing algorithm can typically be 
expected to produce a more accurate approximation to a given curve than its 
4WS counterpart. In practice, curves drawn by 4WS algorithms tend to appear 
more jagged than those drawn by 8WS algorithms. One potential advantage of 
4WS algorithms is that they tend to be simpler, that is, require fewer computa- 
tions per step, than their 8WS counterparts. (Comparison of the two ellipse- 
drawing algorithms presented later in this paper illustrates this tendency.) This 
advantage may be outweighed by the fact that a 4WS algorithm will, in general, 
plot more pixels than an 8WS algorithm drawing the same curve. 

In the following sections, several examples of 8WS and 4WS algorithms are 
derived to illustrate the method. Some of these have appeared in only slightly 
different form elsewhere (see references) but are described here in a uniform 
manner for the sake of illustration. The emphasis is on 8WS algorithms because 
of their superior accuracy. The curves used as examples are all conic sections 
that are symmetric about the x axis or the y axis, or both. The general case 
introduces additional considerations which are discussed briefly. 

8WS LINE-DRAWING ALGORITHM 

The first example is the derivation of an 8WS algorithm for drawing a straight 
line similar to that of Figure 1. The resulting algorithm will not differ from 
Bresenham’s [l], but it will serve as a simple illustration of our method. Some 
simplifying assumptions will be helpful. Assume that the line is drawn from the 
origin to endpoint (a, b), where a >_ b > 0, and a and b are integers. The equation 
for the line can be expressed as f(x, y) = br - ay = 0. These assumptions will not 
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Fig. 4. Decision process for 8WS line in octant x 2 y 
2 0. 

detract from the generality of the resulting algorithm, since symmetry can be 
used to draw lines in octants other than the one for which x 2 y 2 0, and a 
simple coordinate transformation will permit the line to begin at points other 
than the origin. 

The decision process at each step of the line-drawing algorithm is represented 
in Figure 3a and is shown in more detail in Figure 4. In Figure 4, the displacement 
e of the line f(x, y) = 0 from midpoint M is indicated for the case in which the 
line passes above the midpoint. Pixel A, representing the current position during 
the ith step of the algorithm (where i = 0, 1, . . .), is assigned coordinates (xi, yi). 
This places pixel B at (xi + 1, yi + l), pixel C at (xi + 1, yi), and midpoint M at 
(xi + 1, yi + $). The point at which line f(x, y) = 0 crosses the line between B and 
C is therefore (xi + 1, yi + $ + e), and the value of f(x, y) at this point must be 
zero: 

f(Xi + 1, yi + a + e) = b(Xi + 1) - e(yi + $ + e) 

= b(Xi + 1) - U(yi + i) - ae 

= f(Xi + 1, yi + f) - ae 

= 0. 

The term f(xi + 1, yi + i) is designated the decision variable, di, of the algorithm. 
Rearranging the last equation above yields the relationship 

di = f(Xi + 1, yi + f) 

= ae. 

The sign of di is the same as the sign of e and determines to which side of 
midpoint M the line f(x, y) = 0 falls. If the line passes above M, then e > 0, di > 
0 and pixel B is selected as lying closer to the line. If the line passes below M, 
then e < 0, di < 0 and pixel C is selected. If the line passes directly through M, 
then e = di = 0, and pixel B is arbitrarily selected. 

A relatively inefficient form of line-drawing algorithm, based on the decision 
variable described above, is presented in Figure 5. The algorithm is written in 
the Pascal programming language. The function setpixel(x, y) turns on the pixel 
located at device coordinates (3c, y). The drawback with this particular form of 
the algorithm is that at each step the calculation of the value of decision variable 
d requires two multiply operations. 

A more efficient approach is to calculate d incrementally, such that its value 
at each step is calculated in terms of its value at the previous step. The initial 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985 



Curve-Drawing Algorithms for Raster Displays l 153 

x := 0; 
y := 0; 
for i := 0 to a do 

begin 
setpixel(x, y); 
d := b * (x + 1) - a * (y + l/2); 
ifd<Othen (* step to pixel C *) 

x:=x+ 1 
else (* step to pixel B *) 

begin 
x:=x+ 1; 
y:=y+ 1 

end 
end 

Fig. 5. Inefficient form of 8WS 
algorithm. 

line-drawing 

value of decision variable d is a function of the initial x and y values, x0 = 0 and 
yo = 0: 

do=f(xo+Lyo+;) 

= b(xo + 1) - a(yo + $) 

The value of d at each subsequent step depends on which of the two pixels B and 
C is selected at that step. For example, if pixel B is selected during the ith 
iteration, then xi+1 = Xi + 1, and y’ 1+1 = yi + 1, and di+l are calculated in terms of 
di as follows: 

d+l = f(xi+l + 1, Yi+l + $ 

= b(-%+l + 1) - U(Yi+l + t) 

= b((Xi + 1) + 1) - U((yi + 1) + $) 

= f(Xi + 1, yi + 1) - U + b 

= di - u + b. 

Similarly, if pixel C is selected instead, then xi+l = xi + 1, yi+l = yi, and di+l is 
calculated in terms of di as follows: 

di+l = f(xi+l + 1, Yi+l + f) 

= b(xi+l + 1) - a(yi+l + f) 

= b((xi + 1) + 1) - a( yi + i) 

= di + b. 

The above expressions are used to form the more efficient line-drawing algo- 
rithm shown in Figure 6, which requires no multiplies. Assuming that a and b 
are both integers, only integer add and subtract operations are required. The 
division of a by 2 can be eliminated by substituting d ’ = 2d for d. The signs of d 
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Fig. 6. Efficient form of 8WS line-drawing algo- 
rithm. 

x := 0; 
y := 0; 
d := b - a/2; 
for i := 0 to a do 

begin 
setpixel(x, y); 
ifd<Othen (* step to pixel C *) 

begin 
x:=x+ 1; 
d:=d+b 

end 
else (* step to pixel B *) 

begin 
x:=x+1; 
y:=y+ 1; 
d:=d-a+-b 

end 
end 

and d’ are the same, and the line drawn by the algorithm is unaffected by the 
substitution. Multiplies by 2 are converted to simple shift operations. To reduce 
the number of computations per step, the statement “d := d - a + b” within the 
loop can be replaced with “d := d + t” where t is a variable assigned the value b 
- a. The other curve-drawing algorithms presented in this paper have similar 
properties, and the obvious optimizations are omitted for the sake of brevity. 

8WS CIRCLE-DRAWING ALGORITHM 

The methodology developed in the derivation of the line-drawing algorithm can 
be applied to the derivation of algorithms for other types of curves that can be 
represented by polynomial equations. The next example is the circle represented 
by the equation f(x, y) = x2 + y2 - r2 = 0 where r is the radius. For simplicity, 
the center lies at the origin, and only the arc contained in the octant x 2 y 2 0 
is drawn. As before, the resulting algorithm can be extended to the general case 
using symmetry and coordinate transformation. 

Figure 7 shows an arc of a circle of radius r = 10 drawn on a raster display. 
The starting point of the algorithm is the pixel located at (10, 0). With each 
subsequent step, the algorithm selects either the pixel located directly above or 
the pixel above and to the left of the current pixel. 

The decision process at each step is indicated in Figure 8. The current position 
is pixel A, located at (xi, yi). The next will be either pixel B, located at (Xi - 1, yi 
+ l), or pixel C, located at (xi, yi + 1). Midpoint M, which bisects the line from 
B to C, is located at (xi - i, yi + 1). Circle f(r, y) = 0 intersects the line between 
B and C at a distance e from M. The equation for the circle at that point is 

f(Xi - i + e, yi + 1) = (Xi - g + e)2 + (yi + 1)2 - F2 

= (Xi - i)” + (yi + 1)2 - r2 + 2(Xi - $)e + e2 

= f(Xi - f, yi + 1) + 2(Xi - $)e + e2 

= 0. 
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Fig. 7. Circular arc drawn on raster display. 

Fig. 8. Decision process for 8WS circle in octant x 2 y 2 0. 

The term f(xi - & yi + 1) is designated the decision variable, di, of the algorithm. 
Rearranging the last equation above yields the relationship 

di = f(Xi - f, yi + 1) 

= -2(Xi - $Je - e2. 

As in the previous example, the sign of di indicates to which side of midpoint M 
the circle f(x, y) = 0 passes, and determines whether pixel B or pixel C lies closer 
to the circle. If the circle passes to the left of M, then e < 0, di > 0 and pixel B 
will be drawn next. If the circle passes to the right of M, then e > 0, di < 0 and 
pixel C will be drawn next. If e = di = 0, then pixel B is selected arbitrarily. 

Rather than calculate the value of decision variable d explicitly at each step, 
we calculate it incrementally in terms of its value at the previous step. The initial 
value of d is determined from the initial values Q = r and yo = 0 as follows: 

do = fbo - ;, Yo + 1) 

= (r - $2 + (0 + 1)2 - r2 

= i - r. 
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x := trunc(r + l/2); 
y := 0; 
d := 514 - r; 
repeat 

setpixel(x, y); 
ifd<Othen (* step to pixel C *) 

begin 
y:=y+ 1; 
d:=d+2*y+l 

Fig. 9. An 8WS circle-drawing algorithm. end 
else (* step to pixel B *) 

begin 
x:=x-l; 
y:=y+ 1; 
d:=d-2*r+2*y+l 

end 
until x < y 

Assuming that pixel B is selected during the ith iteration, then xi+1 = xi - 1, yi+l 
= yi + 1, and the value cEi+l is calculated in terms of di as follows: 

di+l = f(%+l - & Yi+l + 1) 

= (Xi+, - &)” + (yi+l + 1)’ - r2 

= ((Xi - 1) - i)’ + ((yi + 1) + 1)’ - r2 

= (Xi - t)” + (yi + 1)2 - r2 - 2(Xi - $) + 2(yi + 1) + 2 

= f(Xi - $, yi + 1) - 2(Xi - 1) + 2(yi + 1) + 1 

= di - 2Xi+l + 2yi+l + 1. 

Similarly, if pixel C is chosen instead, then xi+1 = xi, yi+l = yi + 1, and di+l = di 
+ 2yi+l + 1. 

The expressions above are utilized to form the 8WS circle-drawing algorithm 
shown in Figure 9. While x and y are constrained to be integers, the value of r 
may be real, although the programmer may wish to constrain r also to integer 
values for the sake of faster computation. When r is an integer, the initial value 
of d can be truncated to 1 - r without affecting the circle drawn by the algorithm. 
This observation has been made by Horn [5]. In fact, when r is an integer, d can 
be assigned an initial value in the range 1 - r s d < 2 - r without altering the 
circle drawn by the algorithm. For instance, a circle-drawing algorithm similar 
to that in Figure 9, but derived using the two-point method, assigns d the initial 
value i - r. This means that the algorithm described by Bresenham [2], which is 
based on the two-point method, draws the same circle as the algorithm in Figure 
9 when r is an integer. 

8WS ELLIPSE-DRAWING ALGORITHM 

In addition to lines and circles, another useful curve in graphics applications is 
the ellipse. On certain raster displays, for instance, the distances between adjacent 
pixels differ in the horizontal and vertical directions. The figure drawn on such 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985 
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Fig. 10. Ellipse partitioned into two regions. 

a display by the circle-drawing algorithm of Figure 9 will appear to the viewer as 
an ellipse rather than a circle. To compensate for the distortion, an ellipse must 
be drawn in the display device’s coordinate space such that the resulting figure 
will appear circular to the viewer. In the next example, an algorithm is developed 
to draw an ellipse whose major and minor axes are parallel to the x and y axes. 

For simplicity, the ellipse is centered at the origin, and only the portion of the 
ellipse in the quadrant x 2 0, y 2 0 is drawn. As in the previous examples, the 
resulting algorithm can be made more general using symmetry and translation. 
The equation for the ellipse is 

f(x, y) = b2x2 + u2y2 - a2b2 

= 0, 

where 2a is the diameter of the ellipse along the x axis, and 2b is the diameter 
along the y axis. Assuming that a and b are integer values, the first pixel drawn 
by the algorithm is located at (a, 0). Subsequently, the algorithm continues 
stepping in a counterclockwise direction until it reaches the pixel at (0, b). 

The algorithm partitions the arc of the ellipse within the quadrant x > 0, y 2 
0 into two regions, with the boundary between regions being the point at which 
the tangent to the ellipse has the value -1. This is indicated in Figure 10. To the 
right of this point, identified as region 1, the tangent is less than -1. 

In drawing the portion of the curve contained within region 1 of Figure 10, a 
decision must be made at each step to chose one of two pixels, indicated as C and 
D in Figure lla. Pixel A is darkened to indicate that it has been selected by the 
algorithm in the previous step. 

Over the region of the ellipse for which the tangent is greater than -1, identified 
as region 2 in Figure 10, the algorithm selects one of the two pixels identified as 
B and C in Figure llb. 

Using the convention that pixel A is located at (xi, yi) again, the device 
coordinates for pixels B, C, and D are (xi - 1, yi), (Xi - 1, yi + l), and (Xi, yi + l), 
respectively. Two decision variables, dl and d2, will be maintained by the 
algorithm to make the two decisions represented in Figure lla and b. 

While traversing region 1 of the ellipse, the decision variable used to decide 
between pixels C and D in Figure lla is dl. At the point where the ellipse f(x, y) 
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Fig. 11. Decision processes in (a) region 1 and (b) 
region 2 of 8WS ellipse. 
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= 0 intersects the line connecting C and D, 

f(Xi - f + el, yi + 1) = b’(Xi - $ + el)’ + U’(yi + 1)2 - a2b2 

= f(xi - $, yi + 1) + 2b2(xi - $)el + b2e12 

= 0, 

where el represents the displacement of the point of intersection from the 
midpoint of pixels C and D, located at (xi - & yi + 1). Decision variable dli is 
defined as 2f(xi - $, yi + 1). (The factor of 2 does not affect the sign of dl, and is 
included for the sake of consistency with the form of the algorithm presented in 
[ 111.) From the equation above, dli is related to el as follows: 

dli = 2f(Xi - $3 yi + 1) 

= -2(2b2(xi - f)el + b2e12). 

As in previous examples, the sign of clli indicates to which side of the midpoint 
the intersection with f(x, y) = 0 occurs. If the intersection lies to the right of the 
midpoint, then el > 0, dli < 0, and pixel D is selected. Otherwise, either pixel B 
or C is selected. 

The decision variable used to select between pixels B and C in Figure llb is 
d2. The equation for the ellipse at the point of intersection with the line 
connecting B and C is 

f(Xi - 1, yi + $ + e2) = b2(Xi - 1)2 + c2(yi + fr + e2)2 - a2b2 

= f(Xi - 1, yi + f) + 2U2(yi + f)e2 + a2e22 

= 0, 
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where e2 represents the displacement of the point of intersection from the 
midpoint of pixels B and C, located at (xi - 1, yi + $). Decision variable d2i is 
defined as 2f(Xi - 1, yi f k), and from the last equation above, d2 is related to e2 
as follows: 

d2i = 2f(Xi - 1, yi + i) 

= -2(2U2(yi + f)e2 + a2e22). 

If the intersection occurs at or below the midpoint, then e2 5 0, d2 L 0, and pixel 
B is selected. Otherwise pixel C is selected. 

Decision variables dl and d2 can be calculated incrementally to reduce the 
amount of computation per step. The initial value of d 1 is calculated in terms of 
x0 = a and y. = 0 as follows: 

dlo = 2ff(xo - f, yo + 1) 

= 2a2 - 2ab2 + z . 

If pixel D is selected during the ith iteration, then xi+1 = Xi and yi+l = yi + 1. The 
value of di+l is calculated in terms of di as follows: 

dli+l = 2f(Xi+l - $9 yi+l + 1) 

= 2b2(Xi+l - i)” + 2a2(yi+, + 1) - 2a2b2 

= 2b2(xi - f)” + 2a2((yi + 1) + 1)2 - 2a2b2 

= 2f(Zi - 4, yi + 1) + 4U2(yi + 1) + 2U2 

= d li + 4c2yi+r + 2~~. 

Similarly, if pixel C is selected, then Xi+1 = Xi - 1, yi+l = yi + 1, and 

dli+l = d li - 4b2xi+l + 4a2yi+l + 2a2. 

After pixel B has been selected once by the algorithm, updates to dl are no 
longer necessary-this occurs when region 2 of the ellipse (Figure 10) is entered. 

Updates to decision variable d2 are calculated in similar fashion. The initial 
value of d2 is calculated as 

d2,,=2f(xo- l,yo+;) 

a2 =-- 
2 

4ab2 + 2b2. 

If pixel D is selected during the ith iteration, d2 is updated as follows: 
d2i+l = d2i + 4a2yi+l. 

If pixel C is selected, d2 is updated as follows: 

d2i+l = d2i - 4b2Xi+l + 4a2yi+l + 2b2. 
If pixel B is selected, d2 is updated as follows: 

d2i+l = d2i - 4b2Xi+l + 2b2. 
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x := trunc(a + l/2); y := 0; 
dl := 2 * a * a - 2 * a * b * b + b * b/2; 
dZ:=a*a/Z-4*a*b*b+2*b*b; 
while d2 < 0 do (* region 1 of ellipse *) 

begin 
setpixel(x, y); (* turn on pixel at (x, y) :) 
ifdl<Othen (* step to pixel D *) 

begin 
y:=y+ 1; 
dl:=dl+4*a:a*y+2*a*a; 
d2:=d2+4*a*a:y 

end 
else (* step to pixel C *) 

begin 
X:=X-l. 
y:=y+ 1; 
dl:=dl-4*b*b*x+4:a*a*y+2*a*a; 

Fig. 12. Inefficient form of 8WS d2:=d2-4*b*b*n-k2*b*b 
ellipse-drawing algorithm. +I*a*a*y 

end 
end; 

repeat (* region 2 of ellipse *) 
setpixehz, y); (* turn on pixel at (x, y) *) 
if d2 < 0 then (* step to pixel C *) 

begin 
x:=x- 1. 
y:=y+ 1; 
d2:=d2-4*b*be.x+2*b*b 

+4*a*a*y 
end 

else (* step to pixel B *) 
begin 

x:=x-l; 
d2:=d2-4ab*b*x+2ab*b 

end 
until x < 0 

While traversing region 1, the value of d2 is maintained for the sole purpose of 
detecting the transition into region 2. 

A relatively inefficient ellipse-drawing algorithm based on the above expres- 
sions for decision variables dl and d2 appears in Figure 12. The algorithm can 
be made more efficient, however, by replacing most of the multiplies with 
incremental calculations. The strategy is to replace a sequence such as 

x:=x+ 1; 

d := d + q*x 

occurring within the main loop of the algorithm with the equivalent sequence 

x := x + 1; 

t := t + q; 

d := d + t 
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z := trunc(a + l/2); y := 0; 
tl:= a * a; t2 := 2 * t1; t3 := 2 * t2; 
t4 := b * b; t5 := 2 * t4; t6 := 2 * t5; 
t7:= a * t5; t8 := 2 * t7; t9:= 0; 
dl := t2 + t7 + t4/2; d2 := t1/2 + t8 + t5; 
while d2 < 0 do (* region 1 of ellipse *) 

begin 
setpixel(x, y); (* turn on pixel at (x, y) *) 
y:=y+ 1; (: increment y regardless *) 
t9 := t9 + t3; 
ifdl<Othen (: step to pixel D *) 

begin 
dl := dl + t9 + t2; 
d2 := d2 + t9 

end 
else (* step to pixel C *) 

begin 
x:=x- 1; 
t8 := t8 - t6; 
dl := dl - t8 + t9 + t2; 
d2 := d2 - t8 + t5 + t9 

end 
end; 

repeat (* region 2 of ellipse :) 
setpixel(n, y); (* turn on pixel at (x, y) *) 
r:=n-1; (* decrement x regardless *) 
t8 := t8 - t6; 
if d2 < 0 then (* step to pixel C *) 

Fig. 13. Efficient form of 8WS ellipse- 
drawing algorithm. 

y:=y+ 1; 
t9 := t9 + t3; 
d2 := d2 - t8 + t5 + t9 

end 
else (* step to pixel B *) 

d2 := d2 - t8 + t5 
until n < 0 

where the temporary variable t is introduced to store the incrementally calculated 
product of q and x from one loop to the next. 

The improved ellipse-drawing algorithm is shown in Figure 13. Temporary 
variables tl through t9 have been introduced to eliminate the need for multiply 
operations within the main loop of the routine, where 

t1 = 2, 

t4 = b2, 

t7 = 2ab2, 

t2 = 2a2, 

t5 = 2b2, 

t8 = 4b2x, 

t3 = 4a2, 

t6 = 4b2, 

t9 = 4a’y. 

Although the ellipse-drawing algorithm is more complex than the circle-drawing 
algorithm developed previously, no multiplies are required within the two loops. 
The width and height of the ellipse are controlled by selecting the appropriate 
values for a and b, respectively. Although x and y are constrained to be integers, 
a and b can be allowed to be real numbers without exceeding the linear error 

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985 



162 l Jerry Van Aken and Mark Novak 

Fig. 14. Decision process for 4WS circle. 

0 C 
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T true 
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B A 

bound of i. The programmer may choose to constrain a and b to be integers for 
the sake of faster computation. 

An iteration of the first loop in Figure 13 updates both d 1 and d2, and performs 
more computation than the second loop, which updates only d2. This form of 
the algorithm is efficient when the number of pixels to be drawn in region 2 is 
greater than the number in region 1, as is the case in the example of Figure 10. 
When this is not the case, a second form of the algorithm that begins at (0, b) 
and draws in a counterclockwise direction is more efficient. Symmetry is used to 
construct this form of the algorithm from that shown in Figure 13. 

The derivation of the algorithm in Figure 13 is also presented in [ll], along 
with a demonstration of the advantages of the midpoint method over the two- 
point method in controlling linear error. 

SOME 4WS CURVE-DRAWING ALGORITHMS 

The three examples presented thus far have all been 8WS curve-drawing algo- 
rithms. In this section three 4WS algorithms are presented for comparison with 
their 8WS counterparts. The first of these is a 4WS circle-drawing algorithm. 
For simplicity, the circle is centered about the origin, and only the arc lying in 
the quadrant x 2 0, y 2 0 is drawn. The equation for a circle of radius r centered 
about the origin is f(x, y) = x2 + y2 - r2 = 0. Assuming that r is an integer, the 
circle-drawing algorithm begins by plotting the pixel located at (r, 0), and proceeds 
in a counterclockwise direction until it reaches the pixel at (0, r). 

The decision process at each step of the 4WS circle-drawing algorithm is 
represented in Figure 14. Pixels A, B, and C are located at coordinates (xi, yi), (xi 
- 1, yJ, and (xi, yi + l), respectively. The pixel last drawn is A, and the next to 
be drawn is B or C, whichever lies closer to the circle, as measured at the 
intersection with the line connecting B and C. Point A4 lies midway along the 
line connecting B and C and has coordinates (xi - f, yi + 1). Circle f(z, y) = 0 
intersects the line connecting B and C at coordinates (xi - $ + e, yi + $ + e), 
located at a distance efi from M. The equation for the circle at the point of 
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intersection is 

f(Xi - f + e, yi + i + e) = (Xi - f + e)’ + (yi + t + e)’ - 3 

= (Xi - i)” + (yi + i)” - r2 

+ 2(Xi - +Je + 2(yi + $e + 2e2 

= f(Xi - f, yi + f) 

+ 2(Xi + YJf? + 2e2 

= 0. 

The term f(xi - f, yi + f) is designated the decision variable, di, of the algorithm. 
Rearranging the last equation above yields the relationship 

cli = f(xi - $3 Yi + f) 

= -2(Xi + yi)e - 2e2. 

The sign of di is opposite to the sign of displacement e and can be used to 
determine whether the intersection occurs closer to B or to C. If di < 0 then 
e > 0 and pixel C is selected; otherwise, pixel B is selected. 

During the ith iteration, the value of cli+i is calculated in terms of di, as in the 
previous examples. The initial value of dl is calculated from initial values 1~0 = r 
and y. = 0 as follows: 

do = fbo - i, Yo + 3 

= (r - f)” + (0 + 4)” - r2 

=2 . ‘-r 

If pixel B is selected, then xi+1 = xi - 1, yi+i = yi, and di+i is calculated in terms 
Of di as fOllOWS: 

&+I = f(&+l - f7 Yi+l + $1 

= ((Xi - 1) - f)” + (yi + $)” - r2 

If pixel C is selected, then xi+1 = xi, yi+i = yi + 1, and 

di+l = di + 2yi+l. 

The above expressions are combined to form the 4WS circle-drawing algorithm 
in Figure 15. 

To permit comparison with their 8WS counterparts, 4WS line- and ellipse- 
drawing algorithms are presented in Figures 16 and 17. Their derivations are 
similar to that of the 4WS circle-drawing algorithm of Figure 15, but are not 
presented here for the sake of brevity. 

The line-drawing algorithm of Figure 16 draws a line from the origin to 
endpoint (a, b), where a z 0 and b L 0. This form of the algorithm assumes that 
a and b are integers. 
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x := r’ 
y:=o; 
d := 112 - r; 
for i := 0 to 2 * r do 

begin 
setpixel(x, y); 
ifd<Otben 

begin 
(* step to pixel C *) 

Fig. 15. A 4WS circle-drawing algorithm. y:=y+l; 
d:=d+2*y 

end 
else 

begin 
(* step to pixel B *) 

x:=x-l. 
d := d - 2’s x 

end 
end 

I: := 0; 
y := 0; 
d := b - a; 
for i := 0 to a + b do 

begin 
setpixel(r, y) ; 
ifd<Othen (* step to pixel C *) 

begin 
x:=x+1; Fig. 16. A 4WS line-drawing algorithm. 

d:=d+2ab 
end 

else (* step to pixel B *) 
begin 

y:=y+l; 
d:=d-2*a 

end 
end 

The ellipse-drawing algorithm of Figure 17 draws an ellipse centered at the 
origin, whose diameter along the x axis is 2a and whose diameter along they axis 
is 2b. This form of the algorithm assumes that a and b are integers. Only the arc 
of the ellipse lying in the quadrant x I 0, y > 0 is drawn by the algorithm. 
Temporary variables tl-t7 represent the following quantities: 

tl = a2, t2 = 2a2, t3 = b2, t4 = 2b2, 

t5 = ab2, t6 = 2b2x, t7 = 2a’y. 

These temporary variables are introduced for reasons similar to those described 
in the derivation of the 8WS ellipse-drawing algorithm in the preceding section. 

BEST-FIT VERSUS BOUNDED ERROR 

The tracking error of curve-drawing algorithms based on the midpoint method 
is known to be bounded at half the distance between two adjacent pixels. This is 
not to say that the midpoint method results in the best-tit approximation in all 
cases. (The term best fit is used here to mean that the linear error is minimized.) 
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x := a; y := 0; 
t1 := a * a; t2 := 2 * t1; 
t3 := b * b; t4 := 2 * t3; 
t5 := a * t3; t6 := 2 * t5; 
t7 := 0; d := (tl + t3)/4 - t5; 
for i := 0 to a + b do 

begin 
setpixel(x, y); 
ifd<Othen (* step to pixel C *) 

begin 
y:=y+l; 
t7 := t7 + t2; 
d := d + t7 

end 
else (* step to pixel B *) 

begin 

Fig. 17. A 4WS ellipse-drawing algorithm. 

x:=x- 1; 
t6 := t6 - t4; 
d := d - t6 

end 
end 

Fig. 18. The linear error at pixels A and B. 

curve 
‘f(x,y)=O 

In some instances the algorithm may fail to select the pixel that lies closer to the 
curve. 

Consider the situation shown in Figure 18. The curve f(x, y) = 0 intersects the 
line between pixels A and B at point C, just below midpoint M. The closest point 
on the curve to pixel A is D, and the closest point on the curve to pixel B is E. 
In the special case in which the curve is a straight line, BC < AC always implies 
that BE < AD. In other words, the midpoint method always results in the best- 
fit approximation to a straight line. However, when the curve is not a straight 
line, the curvature of the function f (x, y) = 0 may be such that BC < AC and BE 
> AD occur simultaneously. This is unlikely, but possible. In such a case, the 
error of the midpoint method remains bounded as before but is not best fit. 

This does not seem to be a very serious drawback, however. First, consider 
that the midpoint line-drawing algorithm always draws the best-tit straight line- 
the algorithm is in fact identical to Bresenham’s [l], which is known to be best- 
fit. Second, given a section of a curve with a large radius of curvature, a 
microscopic view of the portion of the curve passing through a region the size of 
a pixel appears to be a straight line. This means, for example, that, as the radius 
of the circle being drawn is allowed to grow large, the midpoint circle-drawing 
algorithm rapidly converges toward being best fit. (Assume that noninteger radii 
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Fig. 19. Curve intersects line from I3 to C in two places. 

are allowed.) Consequently, an algorithm (including Bresenham’s circle drawer 
121) that assigns to its control parameters values that differ from those of the 
midpoint algorithm will not necessarily draw a best-fit circle under all circum- 
stances. In fact, Bresenham’s circle drawer is less accurate than the midpoint 
algorithm for certain noninteger radii. 

EXTENDING THE METHOD TO OTHER CURVES 

The midpoint method has been used to derive algorithms for drawing lines, 
circles, and ellipses. This method can be extended to the construction of algo- 
rithms for the broader class of curves that includes conic sections in general, as 
well as equations of higher order. The construction of such algorithms has been 
described by Pitteway and others [6,8]. These have been based on curve-tracking 
methods other than those presented in this paper, but the general approach is 
the same. The advantage offered by the midpoint method over these methods is 
in the improved control over the linear error at each step. 

In attempting to treat the broader class of curves, however, a drawing algorithm 
based on the midpoint method is subject to the same failure mode as these other 
curve-tracking methods. This failure mode, indicated in Figure 19, must be 
comprehended in the algorithm to be avoided. In Figure 19, the curve f(x, y) = 0 
intersects the line from pixel B to pixel C in two places below midpoint M. The 
two edges of the curve could represent, for example, the two sides of a very thin 
ellipse or the two lobes of a hyperbola. 

Assume that f(z, y) < 0 in the region between the upper and lower edges of the 
curve, and that f(x, y) > 0 above and below the two edges. Also assume that a 
curve-drawing algorithm has been tracking the bottom edge of the curve, and 
that pixel A has been selected by the algorithm during the previous step. The 
algorithm will now attempt to determine whether pixel B or pixel C lies closer to 
the edge (or rather, to its intersection at point P) on the basis of the sign-of- 
decision variable di = f (Xi + 1, yi + f), which is the function evaluated at midpoint 
M. As in the previous examples in this paper the algorithm operates on the 
assumption that the condition di > 0 implies that B lies closer to the edge than 
C. Pixel C is, in fact, the better choice, but the algorithm mistakenly selects pixel 
B because f (z, y) unexpectedly changes sign twice in the interval between M and 
B. 
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This farlure mode can often be avoided by building into the algorithm the 
ability to detect situations such as that shown in Figure 19. Consider, for instance, 
the family of curves described by the general equation for a conic section: 

f(x, y) = AX’ -t By2 + Cxy + Dx + Ey + F 

= 0. 

The decision process at a particular step might be similar to that shown in Figure 
4. At the point where the curve intersects the line from B to C, the equation of 
the curve is 

f(xi + 1, yi + f + e) = A(xi + 1)’ + B(y; + i + e)’ 

+ C(Xi + l)(yi + f + e) 

+ D(xi + 1) + E(yi + $ + e) + F 

= f(Xi + 1, yi + i) 

-I- 2B(yi + i)e + C(Xi + 1)e + Ee + Be2 

= 0, 

where e is the displacement of the intersection from M. The sign of e determines 
whether B or C lies closer to the curve. The decision variable di is defined as the 
value of the function evaluated at midpoint M. The equation above is used to 
relate di to e: 

di = f(Xi + 1, yi + f) 

= -(BB(yi + i) + C(X~ + 1) + E + Be)e 

= -kit?, 

where the definition 

ki = 2B(yi + f) + C(Xi + 1) + E + Be 

has been used. The sign of e is easily determined when the signs of di and hi are 
known. Also define hi = ki - Be. Although the evaluation of ki may involve 
complex calculations, hi is of interest because (1) its value is relatively easy to 
calculate, and (2) the sign of hi is in most circumstances the same as the sign of 
ki, allowing hi to be used in place of ki in determining the sign of e. 

The sign of ki is the same as the sign of hi as long as the condition 1 hi 1 > 1 Be 1 
is satisfied. When the signs of ki and hi differ, this indicates that a critical region 
of the curve, such as that indicated in Figure 19, has been entered. This can be 
explained as follows. Assume that the signs of ki and hi differ. Allow point M in 
Figure 19 to move downward from its midpoint position toward P. At some point 
before reaching P, the function f(x, y) at point M changes sign because the sign 
of ki becomes the same as the sign of hi. This must be so because at an arbitrarily 
small distance e above P the term Be in ki can be neglected, and ki = hi. 

The algorithm should be designed to detect situations in which the signs of ki 
and hi differ. Given that the curve-drawing algorithm is able to keep the linear 
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error 1 Emax 1 bounded at & this means that 1 e 1 is at least bounded at 1. Rather 
than evaluate e at each step, which may involve time-consuming calculations, we 
may use the upper bound of 1 in its place. Hence, the condition 1 hi) > 1 B 1, 
which is relatively easy to evaluate, is sufficient to verify that the signs of $ and 
hi are the same and that the situation shown in Figure 19 has not occurred. When 
the algorithm enters a region of the curve for which the condition 1 hiI > ) B ( is 
no longer satisfied, the signs of lzi and hi are no longer guaranteed to be the same, 
and the algorithm must proceed cautiously to avoid selecting the wrong pixel. 

When the algorithm detects that it may have entered a region such as that 
shown in Figure 19, it can respond by cutting its step size temporarily in half. 
Instead of stepping directly from pixel A to pixel B or C, it first selects as an 
intermediate point either (Xi + & yi) or (xi + $, yi + i). If the algorithm still 
cannot ensure that f(x, y) does not change sign more than once in the interval 
between these two points, the step size can be halved again, and so on. 

This approach may not be successful, however, in a region in which two edges 
of a curve actually meet or cross each other. 

CONCLUSIONS 

The midpoint method has been described for deriving curve-drawing algorithms 
for generating such curves as lines, circles, and ellipses on raster display devices. 
The approach is general and can be extended to other curves (e.g., parabolas and 
hyperbolas) described by nonparametric equations. The algorithms derived using 
this method require only a modest amount of computation per step. Although 
the ellipse-drawing algorithm contains two multiplications that cannot be con- 
verted to simple shift operations, the two main loops require only integer 
additions and subtractions. Additionally, the algorithms are derived in a manner 
that ensures accuracy within known bounds. Using the convention that the 
distance between adjacent pixels on the display grid is unity, the maximum 
absolute error is bounded at l/2 for 8WS curve-drawing algorithms, and at 
h/2 for 4WS algorithms, 
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