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ABSTRACT 

Analysis of human movement is a growing research area within 

the field of sport monitoring which aims to enhance the 

performance of athletes, predicting injuries or optimizing training 

programs. Camera-based techniques are the most spread method 

to evaluate although frequently this method can be cumbersome 

and, furthermore, specific movements where performance is 

analyzed are not possible to distinguish. Wearable inertial systems 

however, are capable to ameliorate this matter.  

This paper presents a new wearable sensing system with the aim 

to record human movements in the field of sport. A new paradigm 

is presented with the purpose of monitoring basketball players 

with multiple inertial measurement units.  A data plan collection 

has been designed and experimental results show the potential 

ability of the system in basketball activity recognition. 

Categories and Subject Descriptors 

H.1.2 [User/Machine Systems]: User/Machine Systems – Human 

factors, Human information processing. 

General Terms 

Algorithms, Design, Experimentation, Human Factors. 

Keywords 

Wearable computing, Activity recognition, Sport. 

1. INTRODUCTION 
In recent years, human activity recognition has facilitated 

novel applications in various domains, including healthcare, life 

monitoring, entertainment, and sport [1]. Its main goal is to 

identify the activities of one person or a group of agents from 

observations acquired by sensing devices such as wearable 

sensors and ambient cameras. 

Traditionally, vision systems using external cameras have 

been deployed to collect information of human activities. 

Researchers in computer vision have reached a large number of 

achievements in human activity analysis [1]. They are widely 

applied in surveillance systems and human-computer interaction 

applications. However, the vision-based approach suffers from 

issues related to obtrusiveness and complexity of real-world 

settings. They may violate users' privacy and their coverage is 

restricted in specific spaces. Due to technical characteristics of 

cameras, their performance is effected by occlusion and cluttered 

scenes. 

Recently, advances in sensor technology allow deploying 

wearable devices in human activity analysis. They have enabled 

continuous long-term activity monitoring beyond instrumented 

areas. Moreover, the sensors embedded in these devices, such as 

accelerometers and gyroscopes, collect signals directly from body 

movements, in lieu of inferring from visual data. On the other 

hand, wearable systems have difficulty in gathering observations 

on interaction between multiple agents. Thus, there appears a new 

research trend that combines those two types of sensing in order 



to overcome the above limitations. It also raises challenging issues 

on synchronization, association, and fusion of multimodal data. 

Sport is a potential application domain for human activity 

analysis. Understanding athletic movements helps coaches and 

managers to evaluate player’s performance. It provides analytic 

information to predict injuries, optimize training programs, and 

support strategic decision making. To do that, a sport activity 

analysis system can identify actions and extract features of 

movements (e.g. motion intensity, speed…). The applications can 

be customized for each specific sport and exploit expert 

knowledge. 

The problem of sport activity analysis shares common issues 

with the general one [2]. They are:  

- Intra-class variability: The same activity may be 

performed in different ways, depending on internal 

status of the player. For example, a basketball player 

moves slowly at the end of the match due to fatigue. 

Furthermore, each individual player has his or her own 

styles of movements. 

- Inter-class similarity: Some activities are semantically 

different but produce similar characteristics in inertial 

sensing data. The combination of multiple modalities 

(e.g. cameras and wearable inertial sensors) can help to 

eliminate the ambiguity. 

- The NULL class problem: Not all inertial sensing data 

are necessary for sport activity analysis. The existence 

of irrelevant activities (so-called NULL class) makes 

confusion for activity classification algorithms. 

Modelling the NULL class is not possible because it 

represents the set of infinite arbitrary activities. 

In addition, sport activity analysis has its own challenges, 

including: 

- Definition of relevant activities: The system is only 

possible to model and analyze a limited set of activities, 

which should be proposed by sport experts. This 

requires collaboration between two groups of scientists 

whose mindset is different. Moreover, human activities 

contain spatial and temporal constraints, which should 

be considered when modelling. 

- Class imbalance: The players do not perform every 

activity in the same duration and number of repetitions. 

For instance, a soccer striker spends most of the time 

moving (e.g. walking and running) while he/ she only 

shoots few times in a match. 

- Data annotation: In order to train a supervised human 

activity analysis system, we need to collect a significant 

amount of data and annotate the datasets. The process is 

time-consuming and requires being extremely accurate. 

The difficulty increases in case of team sport, where 

multiple players interact with each other. 

- Sensing data characteristics: Movements in a 

competitive match are much faster than those in daily 

living activities. The variation of inertial systems data 

is, then, much higher. Thus, parameters for the 

algorithms should be modified relying on characteristics 

for each type of sport. Sensor design requirements 

should change according to this issue (e.g. acceleration 

in sport has larger range than in monitoring systems for 

daily living activities or patients with chronic diseases). 

In this paper, a new sensor design is introduced with the aim 

of recording and recognizing athletic movements in basketball. 

Basic basketball specific movements such as jumps, lateral 

displacements, forward/backward moves and body rotations 

(pivot) are evaluated. Sport dependent and meaningful actions 

(dribbling, shooting, etc) are also considered. The developed 

device is attached on each athlete's body and limbs establishing a 

multiple sensory system. Features are extracted from 

accelerometers and the SVM-based classification algorithm is 

used to recognize the activities.  

The rest of this paper is organized as follows. Section 2 

reviews related work of using wearable sensors in sport. The 

sensor system is introduced in Section 3. Then, the data collection 

session and activity recognition method are described in Section 4 

and Section 5, respectively. The experimental results and analysis 

are presented in Section 6. Finally, Section 7 concludes our paper. 

2. RELATED WORK 
In recent years, activity monitoring, performance evaluation 

and providing feedback in sport have been deployed with the use 

of wearable systems. Multiple types of sensors have been used: 

accelerometers, gyroscopes, pressure sensors, heart-rate monitor, 

etc. The users could wear one or more sensors on different 

locations of their bodies. Lara and Labrador  presented a 

comprehensive survey on human activity recognition systems 

using wearable devices [3]. The authors depicted the system 

pipeline and described principle techniques which included 

feature extraction, classification algorithms and qualitative 

evaluation. Open relevant problems were also introduced: 

standardized datasets, highly-complex activities, extraction of 

activity characteristics, participatory sensing and early prediction 

of human activities. Following, some relevant papers within the 

field of sports employing wearable systems are reported.   

Regarding specific activity recognition within the field of 

sports there are several works which analyze particular 

movements for different sports. For example, Kelly et al. studied 

techniques to automatically identify tackles and collisions in 

rugby [4]. Their experimental device, consisting of a GPS receiver 

and an accelerometer, was placed between the shoulder blades 

overlying the upper thoracic spine of each athlete. Support vector 

machine (SVM) and hidden conditional random field (HCRF) 

were applied to detect collision events. The classification results 

were then combined with AdaBoost. The recall and precision of 

their proposed system were 93.3% and 95.8%, respectively. On 

the other hand, Morris et al. used inertial sensors to monitor 

exercise activities [5]. The authors first discriminate exercise and 

non-exercise movements. Then, they recognize and count the 

repetition of activities. Their method achieved the accuracy of 

96% when recognizing 13 exercise actions. 

Bächlin et al. [6] presented a wearable assistant for 

swimmers, called SwimMaster. With its acceleration sensors and 

feedback devices, the system extracts swim parameters and 

performance assessment in real time. The authors organized 

different scenarios to evaluate body measurement (angle, rotation, 

and balance), performance parameters, and feedback 

effectiveness. 



Harle et al. [7] built an on-body sensing system to monitor 

the performance in sprinting training sessions. Force sensitive 

resistors are embedded in athletes' shoes to collect pressure data, 

which were then analyzed and presented to the coach. The 

accuracy of their proposed system reached millisecond level in 

estimating ground contact time. 

Aiming to replicate the role of expert evaluations in climbing 

sport, Ladha et al. [8] developed ClimbAX, which was a wearable 

acceleration sensing platform to record climber's movements. The 

captured data were analyzed to extract human movements and 

climbing sessions. After that, the assessment parameters were 

extracted, including: power, control, stability and speed. Their 

system was extensively experimented with 53 climbers under 

competition scenarios and could produce scores that strongly 

correlated with official expert results. 

Furthermore, there are some works which provide a feedback 

to the athlete with the aim of giving an stimulus and, then, 

ameliorate the performance. Bächlin et al. used LED lights to 

provide real-time feedback to the swimmers [6]. In contrast, the 

system of Velloso et al. has a feedback mechanism that helps 

users to manipulate their movements in weightlifting [9]. 

Another important work was from Ghasemzadeh and Jafari 

who collected physiological data from a body sensor network to 

provide corrective feedback for baseball players [10]. They 

interpreted complex movements to generate motion transcripts 

which were used for measuring coordination among limb 

segments and joints. 

3. SENSOR DESIGN FOR BASKETBALL 
A new sensor system, called BSK board has been developed at the 

Technical Research Centre for Dependency Care and Autonomous 

Living (CETpD) to record data of particular movements in 

basketball. The BSK board is an inertial measurement unit (IMU) 

with the aim of capturing inertial data that requires a long range of 

acceleration as well as experiments requiring barometric 

information. It has a size of 62x35x24 mm3 and weighs 38g, 62g 

with battery. The BSK hardware structure is similar to 9x2 IMU 

but with new devices aimed to reduce the energy consumption and 

increase computational capacity [11].  

This board is a development tool, which includes inertial sensors, 

a storage unit and a small interface in order to send and receive 

commands. The BSK board has 4 main parts, the power system, 

the µC and its interface, the analog system and the 

communications module. Figure 1 shows the main scheme of the 

circuit. The system is powered with two AAA standard batteries. 

The average consumption of the system (7 tests of five-minutes 

each) is 56.73±0.21mA, having an autonomy of more than 20 

hours in a 1200mAh battery at 3 Volts. With a standard alkaline 

battery (750mAh), autonomy could be about 13.2 hours. 

The power distribution is comprised with 4 regulators. The digital 

regulator, the analog regulator, the comm regulator and the 

backup regulator. The digital regulator provides power to the 

digital system (microcontroller, inertial sensors I/O, µSD Card, 

and USB interface).  The analog regulator supplies power to the 

inertial sensors, being separated and isolated from the rest of the 

circuit by means of an own ground plane. The comm regulator 

supplies voltage to the Bluetooth module. This device can 

consume more than 40mA alone, for this reason it should be 

isolated from the rest of the circuit in order to avoid peaks of 

currents that affects the voltage stability at the analog or digital 

system.  Finally, the backup regulator keeps a regulated voltage to 

the µC’s backup system and the real-time clock system. 

 

Figure 1. Main BSK board structure 

3.1 BSK Microcontroller 
The microcontroller (µC) that manages the internal processes 

from the BSK board is a STM32F415 from STMicroelectronics. 

This microcontroller is a Cortex™-M4 CPU with floating point 

unit, which lets computing advanced online algorithms. The 

maximum speed of this device is 168 Mhz and contains 1MB 

flash memory and 192KB of RAM, compared to the 128KB and 

16KB, respectively, from the 9x2’s µC. The BSK board contains 

two external clocks, one to run the internal oscillator circuit and a 

Real-Time Clock to count seconds with high accuracy. One of the 

main features of this µC is the Direct Memory Access (DMA), 

which is able to exchange data among the different peripherals 

and between the peripherals and the µC. Finally, the STM32F4 

includes up to 15 communication interfaces among which UART, 

SPI, I2C, SDIO and USB 2.0 full-speed On-The-Go controller are 

of main importance. The BSK µC is a 64 pin device with debug 

mode able to enter in different low-power modes, in order to 

increase the autonomy of the BSK board. With the peripherals 

configured to manage the BSK board. Figure 2 shows the 

expected consumption at different work modes. 

 

Figure 2.µC average consumption in different work modes 

3.2 Embedded Sensors 
The BSK board contains different MEMS sensors, one the one 

hand it includes the LSM9DS0, a System in Package (SiP) which 

contains an Accelerometer + Magnetometer system and a 

Gyroscope system (Figure 3). On the other hand the BSK board 

includes a pressure sensors as well in order to detect fallings or 

movements with a change of altitude (mainly postural 

transitions).. 

The LSM9DS0 MEMS provide different interruptions in order to 

first notify the µC when data is ready to be read with a configured 



output data rate and, second, provide interrupts when a configured 

threshold is surpassed with the aim of awaken the µC just in case 

enough movement is detected. This mode of work allows to save 

much power analyzing data of weak importance such a static 

movements (sit, stand or lying). 

The MEMS pressure sensor is a barometric sensor. The main 

feature is the RMS noise, which is 0.02mbar. It is considered that 

the traveled distance of the trunk in a Sit to Stand or Stand to Sit 

Posture Transition is 6.1Pa or 0.061mbar [12]. This means that 

according to LPS331AP’s RMS noise minimum value, a Posture 

Transition can be detected. Furthermore, fallings, going up/down 

stairs or elevators could be also detected. For this reason, the 

MEMS pressure sensor is an interesting tool to be added at any 

human activity recognition system. 

The LPS331AP offers an ODR up to 25Hz, although the 

minimum RMS noise can only be achieved with 12.5Hz. 

According to Zhou et al. this is a low frequency to catch all 

human movements [13], however, and having into account that 

Posture Transitions [14] and Walking Bands  are below this 

frequency [1], 12.5Hz is enough to identify all these activities. 

 

 

Figure 3. BSK board inertial MEMS (LSM9DS0) 

3.3 Communication Component 
The BSK board has been thought to download the obtained data 

without removing any piece of the device. In other words, this 

design has been performed with the aim of being able to 

download data through USB connection. 

Data is stored in a µSD card by means of the SDIO interface and 

with FAT32 system file format allowing to store much more data 

than the 2GB allowed by FAT16. The device contains a specific 

hinge socket where the µSD card is inserted. This socket does not 

allow the µSD card to move in aggressive execution tasks such as 

sprinting or jumping, avoiding then communication errors.  

The Full-Speed On-the-Go USB system has been incorporated to 

the BSK board including a USB buffer device, which filters the 

noise and allows to isolate electromagnetically the BSK USB 

circuitry from PC circuitry in order to ensure a robust 

communication between the two devices. When the BSK board is 

plugged to PC, a pop-up window appears in the screen notifying 

the user that a device has been connected and is ready to be read 

being able, then, to download all data to the desired destination 

folder. 

4. DATA COLLECTION 
The BSK board has been employed to perform the specific 

database. The sampling frequency is 200Hz and it collects data 

from accelerometer, gyroscope, magnetometer, temperature and 

barometric sensor. The five sensors are attached to body as shown 

Figure 5. 

The test protocol consist of 10 different activities executed 

continuously which includes a jump at the beginning and at the 

end of each activity and a standing between the different series. 

Regarding to basketball movements, these are the following 

activities: walking, running, jogging, pivot (rotation with one 

fixed foot), shoots from different locations, layups, sliding and 

sprinting. We also use one more label, undefined, to annotate 

irrelevant movements. 

The dataset activities are repeated different times in order to 

obtain more reliable and evaluable data and the test is video-

recorded in order to have a ground-truth for annotation. Since 

there may be points of view that camera cannot properly capture, 

an extra camera has been included in a side of the basketball court 

as shown in Figure 4. 

 

Figure 4. Layout of the cameras on the basketball court 

At the beginning and at the end of each user data collection, a 

visual event is performed in order to synchronize cameras and 

inertial systems. Then after data collection data integrity is 

checked, inertial signal is synchronized with video signal and, 

then, labeled according to recorded video. We propose two 

options: 

- Sensor falling: When the device falls down, the 

embedded accelerometer generates a peak and change of 

axes. However, this step must be performed before 

attaching the sensors to human body. Thus, there is a 

significant amount of unusable signals in the recorded 

data. 

- Jumping action: Similarly, when the subject jumps, a 

sudden change appears in acceleration signals. This can 

be used as a symbol to match the event on inertial 

signals with that on videos. The limitation is jumping is 

one of our activities-of-interest. Therefore, the annotator 

should be careful when finding the event. 

The data collection plan is required to contain the activities-of-

interest in a reasonable order so that it is feasible for the subjects 



to perform the activities (i.e. not feeling exhausted). Our data 

collection plan is designed with the consultation of sport experts 

and amateur basketball players. 

 
Figure 5. BSK board model and sensors set up 

5. BASKETBALL ACTIVITY 

RECOGNITION 
After collecting data on movements in basketball, we analyze the 

inertial signals to recognize the activities. In this paper, our 

objective is to classify basic actions in basketball, including: 

walking, jogging, running, sprinting, jumping, jumpshot, 

layupshot and pivot. In the experiments, we only use data 

recorded by two accelerometers on player’s feet to recognize these 

movements. 

Our activity recognition method has five steps: (i) preprocessing, 

(ii) segmentation, (iii) feature extraction, (iv) standing – moving 

separation, and (v) moving activity recognition (Figure 6). 

First, preprocessing techniques are performed on inertial signals, 

including downsampling and filtering. Because the original data is 

sampled at 200Hz, it may contain redundant information. Thus, 

we downsample both accelerometers to 40Hz. That sampling 

frequency is selected to balance between recognition accuracy and 

computational cost [13]. After that, those signals are passed 

through a low-pass filter with 15Hz as the cut-off frequency. 

Then, the inertial signals are divided into equal segments whose 

duration is called window length. With the aim of not losing 

inertial events between windows, the windows are overlapped at 

50%. Features are then extracted from each segment and the 

classification algorithm produces one label for each segment. 

At the third step, we use a simple feature to separate standing 

from moving sessions. All standing segments are removed and the 

remaining data is used to recognize moving activities (e.g. 

running, jumping, pivot, etc). 

Finally, features that can contain information in time domain, 

frequency domain, and correlation between the sensors, are 

extracted. They are fed to the activity recognition algorithm. 

 

Figure 6. Our proposed activity recognition algorithm 

5.1 Feature Extraction 
In each segment of inertial data, we extract different types of 

features. We employ two accelerometers on the feet, this is to say, 

three axes for each accelerometer. Then, the root mean square 

value for each accelerometer is calculated. Thus, in each sample 

of each accelerometer, four values (three raw values and one 

amplitude value) are obtained. From each of them, time and 

frequency domain features are extracted, including: range, sum, 

mean, standard variation, mean crossing rate, skewness, kurtosis, 

frequency bands, energy, and number of peaks above a threshold. 

Moreover, correlation between three axes of each sensor and each 

pair of axes on two sensors are also considered. To do so, 

correlation coefficients between each pair of axes on each sensor 

are computed. Then, the same computation on each pair of 

respective axes on two sensors is performed. 

5.2 Activity Recognition Algorithm 
Based on observations, standing and other activities can be 

discriminated based on the range values of acceleration on the Z-

axis. In each segment, the difference between maximum and 

minimum values of acceleration, which is called range, is 

calculated. If the value is higher than an optimized threshold, we 

classify the segment as moving; otherwise, it is a standing 

segment. We trained a linear SVM classifier on range values to 

estimate this threshold. Hence, it can be modified for different 

datasets. 

After removing all standing segments, features described in 

Section 5.1 employed to recognize moving activities of basketball 

players are extracted. Each segment of inertial signals becomes a 

feature vector or sample of the classifier. We feed them to the 

classification algorithm for training and testing in two cases, 

which are called same-person and cross-person. In the former, we 

randomly select samples for training and testing from the same 

player. In the later, we train the recognition algorithm on a group 

of players and test it on the other one. In both cases, training and 

testing datasets are different. However, the second one is more 

challenging because players with distinct physical characteristics 

generate different inertial data, even when they perform the same 

activities. 

6. EXPERIMENTAL RESULTS 
In our experiments, we set the window length to 128 raw samples 

and the overlapping percentage to 50%. That means the duration 

of each segment is 3.2 seconds. Then, we split the samples into 

training and testing datasets according to two cases defined in 



Section 5.2. Our dataset contains inertial signals of three subjects. 

Thus, in the cross-person setting, we use data from two players 

for training and one for testing. The final result is the average 

measures from all splitting configurations of subjects. This can be 

considered as leave-one-subject-out evaluation strategy. We use 

LibSVM library [16] to implement the multi-class SVM classifier. 

In Figure 7, the actual and predicted labels of standing and 

moving of one player are depicted. Most of confusion appears 

when the player performs the pivot action. In this action, one leg 

of the player is kept stable and the other can moves. Thus, it 

generates similar signals to standing in one foot. The threshold for 

separating standing and moving is 4 and the accuracy is 92%. 

 

Figure 7. Actual and predicted labels of standing and moving. 

The blue plot is the range value of Z-axis acceleration (best 

view in color). 

Then, the moving activities are divided into two sets, namely step 

and jump activities. The step-related activities include walking, 

jogging, running, and sprinting while the jump-related activities 

contain jumping, layupshot, and jumpshot. Figure 8 shows the 

confusion matrices in both evaluation cases. It is possible to 

clearly discriminate step-related activities on the same player. 

Nevertheless, due to distinction in physical characteristics, two 

players perform the same activities in different ways. Therefore, in 

the cross-person evaluation setting, confusion appears in both 

step-related jump-related activities and the precision decreases. In 

the case of jump-related activities, all of them include a jumping 

action. Consequently, they produce similar inertial data. 

 

Figure 8. Confusion matrices of activity recognition in two sets 

(step-related and jump-related) 

Figure 9 illustrates the performance of our activity recognition 

algorithm on all activities (walking, jogging, running, sprinting, 

jumping, jumpshot, layupshot and pivot) in cross-person setting. 

Similar confusion is revealed when we train and test the 

classification model on different players. Furthermore, when 

performing layupshot, the player dribbles then throws the ball to 

the basket. Dribbling (i.e. running with ball), generates 

acceleration signals which are similar to those in jogging or 

running. This motivates to integrate sensors in other body parts 

(e.g. on the wrists) to distinguish these activities. 

 

Figure 9. Confusion matrix produced by our recognition 

algorithm on basic basketball activities 

7. CONCLUSION 
In the paper, a new sensing system to record and recognize human 

movements in basketball has been presented. The new inertial 

measurement units are capable to record human movements at 

sport with high accelerometer ranges. The system has been 

employed to collect and analyze motion data in order to recognize 

basic activities in basketball. The proposed method is able to 

identify four moving types at different intensity (walking, jogging, 

running, and sprinting), as well as discriminate shooting 

executions. Moreover, the promising results prove the 

applicability of our proposed system within basketball activity 

monitoring.  

Results are significant but with the addition of new features from 

accelerometer and including the gyroscope information the 

performance in activity recognition can be enhanced. In addition, 

a new dataset with more participants and, thus, with more 

heterogeneity of physical characteristics has been planned to be 

acquired. 
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