skip to main content
research-article

Spatiotemporal Traffic Matrix Synthesis

Published:17 August 2015Publication History
Skip Abstract Section

Abstract

Traffic matrices describe the volume of traffic between a set of sources and destinations within a network. These matrices are used in a variety of tasks in network planning and traffic engineering, such as the design of network topologies. Traffic matrices naturally possess complex spatiotemporal characteristics, but their proprietary nature means that little data about them is available publicly, and this situation is unlikely to change.

Our goal is to develop techniques to synthesize traffic matrices for researchers who wish to test new network applications or protocols. The paucity of available data, and the desire to build a general framework for synthesis that could work in various settings requires a new look at this problem. We show how the principle of maximum entropy can be used to generate a wide variety of traffic matrices constrained by the needs of a particular task, and the available information, but otherwise avoiding hidden assumptions about the data. We demonstrate how the framework encompasses existing models and measurements, and we apply it in a simple case study to illustrate the value.

Skip Supplemental Material Section

Supplemental Material

p579-tune.webm

webm

151.9 MB

References

  1. T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the wild. In Proc. ACM SIGCOMM Internet Measurement Conference (IMC), pages 267--280, November 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine grained traffic engineering for data centers. In Proc. ACM SIGCOMM CoNEXT, pages 1--12, December 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. V. Bharti, P. Kankar, L. Setia, G. Gürsun, A. Lakhina, and M. Crovella. Inferring invisible traffic. In Proc. ACM SIGCOMM CoNEXT, pages 22:1--22:12, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Bowden. COLD: PoP-level topology generator. https://github.com/rhysbowden/COLD/, 2014.Google ScholarGoogle Scholar
  5. R. Bowden, M. Roughan, and N. Bean. COLD: PoP-level topology synthesis. In Proc. ACM SIGCOMM CoNEXT, pages 173--184, December 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. S. Cahn. Wide Area Network Design. Morgan Kaufmann, 1998.Google ScholarGoogle Scholar
  7. A. Calaprice. The Ultimate Quotable Einstein. Princeton University Press, 2010.Google ScholarGoogle Scholar
  8. E. Candes and B. Recht. Exact matrix completion via convex optimization. Found. of Comput. Math., 9:717--772, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright. Power awareness in network design and routing. In Proc. IEEE INFOCOM, April 2008.Google ScholarGoogle ScholarCross RefCross Ref
  10. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons, Inc., 2nd edition, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Cressie and C. K. Wikle. Statistics for Spatiotemporal Data. Wiley, 2011.Google ScholarGoogle Scholar
  12. L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  13. P. Erdös and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290--297, 1959.Google ScholarGoogle ScholarCross RefCross Ref
  14. V. Erramilli, M. Crovella, and N. Taft. An independent-connection model for traffic matrices. In Proc. ACM SIGCOMM Internet Measurement Conference (IMC), pages 251--256, October 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620--630, May 1957.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chalken. The nature of datacenter traffic: Measurements and analysis. In Proc. ACM SIGCOMM Internet Measurement Conference (IMC), pages 202--208, November 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The Internet Topology Zoo. IEEE J. Select. Areas Commun., 29(9):1765--1775, October 2011.Google ScholarGoogle ScholarCross RefCross Ref
  18. T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455--500, September 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. In Proc. ACM SIGCOMM, pages 219--230, September 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk, and N. Taft. Structural analysis of network traffic flows. SIGMETRICS Perform. Eval. Rev., 32(1):61--72, June 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach to understanding the Internet's router-level topology. In Proc. ACM SIGCOMM, pages 3--14, August 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Medina, N. Taft, K. Salmatian, S. Bhattacharyya, and C. Diot. Traffic matrix estimation: Existing techniques and new directions. In Proc. ACM SIGCOMM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. NLANR. Abilene Trace Data. http://pma.nlanr.net/Special/ipls3.html.Google ScholarGoogle Scholar
  24. A. Nucci, A. Sridharan, and N. Taft. The problem of synthetically generating IP traffic matrices: Initial recommendations. ACM Comput. Commun. Rev., 35:19--32, July 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. N. Oikonomou. Analytic forms for most likely matrices derived from incomplete information. Int. J. Systems Science, 43(3):443--458, September 2010.Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Pakman and L. Paninski. Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians. J. Comput. Graph. Stat., 23(2):518--542, April 2014.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. Y. Park and A. K. Bera. Maximum entropy autoregressive conditional heteroskedasticity model. J. Econometrics, 150:219--230, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. B. Potts and R. M. Oliver. Flows in Transportation Networks. Academic Press, 1972.Google ScholarGoogle Scholar
  29. N. M. Radford. MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors, Handbook of Markov Chain Monte Carlo, volume 31--32, pages 113--162. CRC Press, 2010.Google ScholarGoogle Scholar
  30. B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum--rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471--501, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Roughan. Simplifying the synthesis of Internet traffic matrices. ACM Comput. Commun. Rev., 35(5):93--96, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Roughan. Robust network planning. In C. R. Kalmanek, S. Misra, and R. Yang, editors, The Guide to Reliable Internet Services and Applications, chapter 5, pages 137--177. Springer, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and Y. Zhang. Experience in measuring backbone traffic variability: Models, metrics, measurements and meaning. In Proc. ACM SIGCOMM Internet Measurement Conference (IMC), 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. E. Shore and R. W. Johnson. Axiomatic derivation of the principle maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Info. Theory, 26(1):26--37, January 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salmatian, A. Nucci, M. Crovella, and C. Diot. Traffic matrix: Balancing measurements, inference and modeling. In Proc. ACM SIGMETRICS, pages 362--373, June 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. Soule, A. Nucci, R. Cruz, E. Leonardi, and N. Taft. How to identify and estimate the largest traffic matrix elements in a dynamic environment. SIGMETRICS Perform. Eval. Rev., 32(1):73--84, June 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. M. Stigler. The history of statistics: The measurement of uncertainty before 1900. Belknap Press of Harvard University Press, 1986.Google ScholarGoogle Scholar
  38. P. Tune and M. Roughan. Internet traffic matrices: A primer. In H. Haddadi and O. Bonaventure, editors, Recent Advances in Networking, Vol. 1. ACM SIGCOMM, August 2013.Google ScholarGoogle Scholar
  39. P. Tune and M. Roughan. Maximum entropy traffic matrix synthesis. In ACM SIGCOMM MAMA, June 2014. http://tinyurl.com/kk7757k.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. P. Tune and M. Roughan. Network design sensitivity analysis. In Proc. ACM SIGMETRICS, pages 449--461, June 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon. Providing public intradomain traffic matrices to the research community. ACM Comput. Commun. Rev., 36(1):83--86, January 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Y. Vardi. Network Tomography: Estimating source-destination traffic intensities from link data. J. Am. Statist. Assoc., 91:365--377, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  43. A. Zellner and R. A. Highfield. Calculation of maximum entropy distributions and approximation of marginal posterior distributions. J. Econom., 37:195--209, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  44. Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan. Network anomography. In Proc. ACM SIGCOMM Internet Measurement Conference (IMC), Berkeley, California, USA, October 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast accurate computation of large-scale IP traffic matrices from link loads. In Proc. ACM SIGMETRICS, pages 206--217, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An information-theoretic approach to traffic matrix estimation. In Proc. ACM SIGCOMM, pages 301--312, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Y. Zhang, M. Roughan, C. Lund, and D. Donoho. Estimating Point-to-Point and Point-to-Multipoint traffic matrices: An information-theoretic approach. IEEE/ACM Trans. Netw., 13(5):947--960, October 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Zhang, M. Roughan, W. Willinger, and L. Qiu. Spatio-Temporal compressive sensing and Internet traffic matrices. In Proc. ACM SIGCOMM, pages 267--278, August 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. Zhang-Shen and M. McKeown. Designing a predictable Internet backbone with Valiant load-balancing. In Proceedings of the 13th International Conference on Quality of Service (IWQoS), pages 178--192, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spatiotemporal Traffic Matrix Synthesis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM SIGCOMM Computer Communication Review
        ACM SIGCOMM Computer Communication Review  Volume 45, Issue 4
        SIGCOMM'15
        October 2015
        659 pages
        ISSN:0146-4833
        DOI:10.1145/2829988
        Issue’s Table of Contents
        • cover image ACM Conferences
          SIGCOMM '15: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication
          August 2015
          684 pages
          ISBN:9781450335423
          DOI:10.1145/2785956

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 August 2015

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader