
0

A Survey on Cache Management Mechanisms for Real-Time
Embedded Systems

GIOVANI GRACIOLI, Federal University of Santa Catarina
AHMED ALHAMMAD, University of Waterloo
RENATO MANCUSO, University of Illinois at Urbana-Champaign
ANTÔNIO AUGUSTO FRÖHLICH, Federal University of Santa Catarina
RODOLFO PELLIZZONI, University of Waterloo

Multicore processors are being extensively used by real-time systems, mainly because of their demand for
increased computing power. However, multicore processors have shared resources that affect the predictabil-
ity of real-time systems, which is the key to correctly estimate the worst-case execution time of tasks. One
of the main factors for unpredictability in a multicore processor is the cache memory hierarchy. Recently,
many research works have proposed different techniques to deal with caches in multicore processors in the
context of real-time systems. Nevertheless, a review and categorization of these techniques is still an open
topic and would be very useful for the real-time community. In this article, we present a survey of cache
management techniques for real-time embedded systems, from the first studies of the field in 1990 up to
the latest research published in 2014. We categorize the main research works and provide a detailed com-
parison in terms of similarities and differences. We also identify key challenges and discuss future research
directions.

Categories and Subject Descriptors: C.5.3 [Computer systems organization]: Real-time systems; E.1.2
[Software and its engineering]: Operating systems; E.2.4 [Software and its engineering]: Compilers

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Real-time systems, cache partitioning, cache locking, memory allocators,
compilers

1. INTRODUCTION
Real-time embedded systems are nowadays present in virtually any environment. Ar-
eas such as automotive, avionics, and telecommunications are examples where real-
time embedded systems can be vastly found. In a real-time system, the correctness of
the system depends not only on its logical behavior, but also on the time in which the
computation is performed [Liu and Layland 1973]. The main distinction is between
soft real-time (SRT) and hard real-time (HRT) systems. In both, applications are typi-
cally realized as a collection of real-time tasks associated with timing constraints and
scheduled according to a chosen scheduling algorithm. However, in an HRT, the loss
of a time constraints (i.e., a deadline) may cause uncountable or catastrophic damage,
such as human lives or a considerable amount of money. In a SRT, instead, missing
a deadline results in just a degradation of the qualify of service (QoS) provided by

Author’s addresses: G. Gracioli, Center for Mobility Engineering, Federal University of Santa Catarina,
Brazil; A. A. Fröhlich, Department of Computer Science, Federal University of Santa Catarina, Brazil; A.
Alhammad and R. Pellizzoni, Department of Electrical and Computer Engineering, University of Waterloo,
Canada; R. Mancuso, Department of Computer Science, University of Illinois at Urbana-Champaign, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0360-0300/2015/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:2 G. Gracioli et al.

the system. Hence, in order to provide a correct behavior and a good QoS, real-time
embedded applications must be designed to always meet their deadlines.

At the same time, the continuous evolution of processor technology, together with its
decreasing cost, has enabled multicore architectures (e.g., Symmetric Multiprocessing
- SMP) to be also used in the real-time embedded system domain. Besides, real-time
embedded applications are demanding more processing power due to the evolution
and integration of features that can only be satisfied, in a cost-effective way, by the
use of a multicore platform. In an automotive environment, for instance, new safety
functionalities like “automatic emergency breaking” and “night view assist” must read
and fuse data from sensors, process video streams, and rise warnings when an obsta-
cle is detected on the road under real-time constraints [Mohan et al. 2011]. This is a
typical scenario where an increasing demand for advanced features results in a pro-
portional demand for additional computational power. Moreover, an increase of system
functionalities determines additional costs in terms of power consumption, heat dissi-
pation, and space occupation (e.g., wiring) [Cullmann et al. 2010]. Thereby, multicore
processors represent a cost-effective solution to decrease the mentioned costs, since the
additional computational demand can be allocated on a single processing unit, instead
of several processing units spread over the vehicle.

In general, the capability of a real-time system to meet its deadline is verified
through a schedulability analysis [Davis and Burns 2011]. A basic assumption, which
is common to all such schedulability analysis techniques, is that an upper bound on the
Worst-Case Execution Time (WCET) of each task is known. However, deriving safe yet
tight bounds on task WCET is becoming increasingly difficult. This is especially true on
multicore architectures, because processors (or cores) share hardware resources, such
as cache memory hierarchy, buses, DRAM and I/O peripherals. Therefore, operations
performed by one processing unit can result in unregulated contention at the level of
any shared resource and thus unpredictably delay the execution of a task running on
a different core. One of the main factors for unpredictability, which is also the focus of
this survey, is the CPU cache memory hierarchy [Suhendra and Mitra 2008; Muralid-
hara et al. 2010; Zhuravlev et al. 2012]. CPU caches of a modern multicore typically
consist of two or three levels of cache memory placed between the core and the main
memory to bridge the gap on the high processor speed and low memory performance.
Usually, a smaller Level-1 (L1) cache is private to each core, while a larger Level-2 (L2)
and/or a Level-3 (L3) cache is shared among all the cores or a cluster of cores. The last
level of cache before the main memory, is usually referred as Last Level Cache (LLC).
In case of a cache miss, the requested instruction or data must be brought from the
higher levels of cache or from the main memory, occurring in larger execution times.

CPU caches are hardware components that are mostly transparent to the program-
mer and that rely on temporal and space locality of memory accesses to reduce the
average execution time of applications. Thereby, they employ a set of heuristics to
keep data that are more likely to be accessed in a near future and displace old, non-
referenced entries. At a high level, the heuristic behavior of a cache means that a
memory access in the same location throughout the execution of a task, may or may
not result in a cache hit, depending on the history of the system. In fact, as it will
be clear in Section 2.1, the execution pattern of the task itself, of different tasks on
the same core or even of a set of tasks on a different core can impact the cache hit
ratio of a given memory access pattern. This means that a complex function of the sys-
tem history can directly impact the time required by a task to retrieve data from the
memory hierarchy, explaining why cache memories are one of the main sources of un-
predictability. Also, the memory access behavior of a real-time application is driven by
its functionalities. For instance, simple HRT control loops do not demand a high mem-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:3

ory bandwidth, while video processing applications demand both memory bandwith
and latency.

In this work, our focus is on techniques that address conflicts in the allocation of
cache lines (spatial contention). However, as multiple cores perform contemporary ac-
cesses to the same cache level, contention on the temporal domain can also occur. Al-
though temporal contention can produce non-negligible effects, we only set our focus on
spatial contention for two main reasons. First, because the magnitude of time unpre-
dictability that arises from spatial contention is typically higher than what observable
due to temporal contention. This is generally true for embedded multicore systems
that are not classified as many-core systems (i.e., up to 16 or 32 cores that do not use
complex on-chip networks). Second, because the problem of managing temporal con-
tention at the cache level is not significantly different than DRAM bus management.
To cope with a space contention problem, CPU caches need to be directly or indirectly
managed according to an allocation scheme. Allocation schemes can exhibit different
properties, applicability, and can be more or less effective in protecting the timing be-
havior of real-time tasks (see Section 2).

1.1. Cache Interferences
The execution time of a real-time task in a multicore processor1 can be affected by
a number of different types of interference, depending on the behavior of the cache
hierarchy:

— Intra-task interference: intra-task interference occurs when tasks have their
working set sizes larger than a specific cache level, or, in general, when two mem-
ory entries in the working set are mapped in the same cache set. The consequence in
this case is that a task evicts its own cache lines. Intra-task interference also happens
in single-core systems.

— Intra-core interference: intra-core interference happens locally in a core2. Specif-
ically, when a preempting task evicts the preempted task’s cached data. As a result,
the preempted task will experience an increase in its data access time (and thus a
delay) as soon as it is rescheduled. The severity of the experienced delay depends on
the particular cache line replacement policy implemented by the cache, as well as
the length of the preemption and the data access pattern of the preempting task [?;
?; Reineke et al. 2007; Grund and Reineke 2010a; Kim et al. 2013].

— Inter-core interference: inter-core interference is present when tasks running on
different cores concurrently access a shared level of cache [Kim et al. 2013]. When
this happens, if two lines in the two addressing spaces of the running tasks map to
the same cache line, said tasks can repeatedly evict each other in cache, leading to
complex timing interactions and thus unpredictability.
Inter-core interference can also occur due to Simultaneous Multi-Threading (SMT),
when two or more hardware threads share the same private cache levels (L1 and/or
L2). Since this type of interference is suffered by tasks that can run in parallel, an ex-
act analysis requires analyzing all the possible interleaving of task executions. This
combinatorial problem is clearly intractable, thus, inter-core interference results ex-
tremely difficult to integrate into a static analysis framework [Guan et al. 2009].

Furthermore, memory accesses originating from a core can be classified as either de-
mand accesses, if required by instructions executed on the core, or prefetch accesses, if

1In the rest of the text, we will use the term ’processor’ referring to the physical chip and the term ’core’ to
refer to each single processing element in a multicore chip.
2Intra-core interference also happens in single-core processors and it is referred as cache-related preemption
delay.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:4 G. Gracioli et al.

speculatively issued by a hardware prefetcher unit. Although important for the aver-
age performance of the system, it is common practice (in real-time systems) to disable
hardware prefetchers to eliminate prefetch interference, thus making the processor
more predictable. Hence, in this survey, we assume that prefetchers are disabled and
do not cause additional interference. In Section 7, we discuss open issues and future
directions considering also the usage of prefetchers in real-time systems.

1.2. WCET Derivation
The main objective of cache management schemes for real-time systems is to deal
with the described problems, simplifying the estimation of the tasks’ WCET. WCET
estimation typically follows one of two main approaches: static analysis or empirical
measurement [Wilhelm et al. 2008]. In the former approach, a tool attempts to pro-
vide the WCET by analyzing the application binary code without executing it directly
on the hardware. Generally, WCET estimation tools are available only for simple pro-
cessors, due to sophisticated hardware features, such as caches, branch predictors and
pipelines, which make the static analysis extremely difficult or overly pessimistic [Wil-
helm et al. 2008]. In the latter approach, the application binary code is executed on
the hardware platform for multiple times, and an estimation of the WCET with an
adjustable confidence is extracted from these executions. Moreover, in measurement-
based approaches, the resulting value of WCET is typically inflated further with an
error margin (20% to 30% the observed value) in order to account for unobserved con-
ditions that can delay the execution. Consequently, measurement-based approaches
can also lead to overestimated WCET.

The use of caches makes both static and measurement-based WCET estimation more
complex, because the execution time of an instruction may vary depending on: (A) the
data/instruction location in the memory hierarchy; (B) if a memory access results in a
miss or a hit in any of the cache levels; (C) which cache coherence protocol is being used
in case of true or false sharing; and (D) which cache replacement policy is implemented
on the cache controller [Zhuravlev et al. 2012]. Note that while several real-time cache
analysis frameworks have been proposed for single-core systems [Wilhelm et al. 2008],
current static analysis methodologies provide pessimistic bounds on cache misses for
shared caches. Furthermore, to the best of our knowledge, no existing static analysis
technique is able to account for the coherence protocol effects.

Note that, even if WCET estimation is possible, the presence of inter-core interfer-
ence greatly complicates validation and certification of multicore real-time systems.
Allowing hardware components of commodity multicore platforms to operate in an
unrestricted manner makes it significantly harder to provide temporal and spatial
isolation for systems that demand such isolation (avionics for instance). In fact, if no
predictable arbitration mechanism for shared resources is in place, the pessimism on
task WCET can easily result to be unacceptable. This problem has been recognized by
the Certification Authorities Software Team (CAST), an international group of avionics
certification and regulatory representatives from North and South America, Europe,
and Asia [Certification Authorities Software Team (CAST) 2014].

1.3. Existing Solutions and Contributions
Several works have been proposed to cope with the described cache memory hierar-
chy problems in the context of real-time embedded systems and to tighten the WCET
estimation. In general, such works rely on enforcing timing isolation between sub-
components in the system: the execution time of one sub-component should not depend
on the behavior of other sub-components. Such isolation can be implemented (A) at the
level of a single task, where sub-components are functions or basic blocks in the task’s
code; (B) at the level of a core, where sub-components are tasks; or (C) at the multi-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:5

core system level, where sub-components are individual cores or software partitions
running on each core.

Two approaches are most commonly used to enforce a more deterministic behavior
on CPU caches. The first approach to timing isolation is cache partitioning, which
divides the cache in partitions and assigns specific partitions to tasks or cores [Liedtke
et al. 1997; Mancuso et al. 2013; Ward et al. 2013; Kim et al. 2013]. Based on the
structure of a set-associative cache, these approaches can be further categorized in:
(A) index-based cache partitioning, when partitions are formed as an aggregation of
associative sets in the cache (horizontal slicing); and (B) way-based cache partitioning,
when each available cache way is exclusively assigned to a single partition.

The second technique that has been investigated is cache locking. Cache locking
relies on hardware features present in many embedded platforms. Specifically, it is
possible to flag a given cache line or way as locked, thus preventing its content from
being evicted until a successive unlock operation is performed [Aparicio et al. 2011;
Sarkar et al. 2012; Mancuso et al. 2013].

Both cache partitioning and locking can be available to applications through the op-
erating system (OS) memory allocator. The problem of developing OS-level memory
allocators that can perform cache-aware allocations and feature a predictable execu-
tion time has been addressed in [Chilimbi et al. 2000; Afek et al. 2011; Herter et al.
2011]. The common denominator for all the aforementioned techniques is to improve
the predictability of real-time systems deployed on top of cache-based architectures,
in order to provide better isolation guarantees for real-time embedded applications.
Even though the focus of this survey is real-time systems, we also include some re-
lated work for general purpose systems. We note that the optimization techniques for
the latter systems are throughput oriented as opposed to worst-case oriented. In the
process of improving the overall throughput, the timing requirement of each task is
not guaranteed to be met. In contrast, real-time tasks care about meeting their timing
requirements, and there is no gain in improving above such requirement. Still, some
of these average-case optimization techniques can be adapted for SRT systems.

To the best of our knowledge, no complete classification of these works has been
attempted so far. Aiming at closing this gap, this article presents a survey of cache
management mechanisms for real-time embedded systems, from the first studies of
the field in 1990 up to the latest research published in 2015. The objective of the sur-
vey is to categorize each approach and to provide a detailed comparison in terms of
similarities and differences. In summary, our contributions are:

— We classify each related work into one of the following categories: index-based cache
partitioning, way-based cache partitioning, cache locking, or OS memory allocators.
We also mention which techniques exploits more than one mechanism to improve
predictability.

— For each category, we present an overview of the approach (index-based and way-
based cache partitioning, cache locking, and memory allocators) and discuss the main
characteristics of each work. In particular, we detail: (A) whether the approach is im-
plemented in hardware or software, and in the latter case, whether it requires com-
piler or OS support; (B) what type of isolation it provides, i.e., whether it addresses
intra-task, intra-core, or inter-core interference; (C) the level of isolation, i.e., how
effective the approach is at preventing the addressed source of interference; (D) any
further limitation or key assumptions in the work that might limit its applicability,
in particular in an industrial context.

— We provide a discussion on open issues and future directions in the field.

The remainder of this article is organized as follows: Section 2 provides background
on current processor and memory organizations. It describes the problems raised by

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:6 G. Gracioli et al.

these organizations. The following four sections present our categorization of related
works. Section 3 presents all related works categorized as index-based cache parti-
tioning. Section 4 categorizes the related work in way-based cache partitioning and
Section 5 as cache locking mechanisms. Section 6 presents operating systems memory
allocators that either use one of the three previous techniques or are designed to be
predictable. In the end of these four section, we present a table summarizing the main
characteristics of each work. Section 7 identifies open problems and future directions
in the field. Finally, Section 8 concludes the article.

2. PROBLEM DESCRIPTION AND BACKGROUND
In this section we briefly introduce background concepts needed to follow the rest of
the paper and present our categorization of cache management mechanisms real-time
embedded systems.

2.1. Cache Line Replacement Policies
Ideally, all data should be available on the caches, thus improving the overall program
execution time. As caches have a limited space, the problem is to keep in the cache
only the most important data for a given window of time. A cache line replacement
algorithm is responsible for choosing which cache line is replaced when a cache miss
occurs. The cache line replacement policy depends on the cache organization (i.e., cache
mapping). Currently, the most used cache organization is a set associative cache. In
a set-associative cache, a memory block has a fixed number of positions in which it can
be placed in the cache. An n-way set-associative cache has “n” locations for a memory
block. Also, the cache consists of a number of sets, each of which consists of “n” blocks.
A main memory block maps to a unique set in the cache and the block can be placed in
any element of that set.

Least Recently Used (LRU), First In First Out (FIFO), and Pseudo-LRU (PLRU)
are examples of cache replacement algorithms currently used by multicore processors.
For instance, the TRICORE 1798, several POWERPC variants (MPC603E, MPC755,
MPC7448) [Grund and Reineke 2010a], and Intel Pentium II-IV [Reineke et al. 2007]
use PLRU. Intel XScale, ARM9, and ARM11 use FIFO [Reineke et al. 2007]. Intel
Pentium I and MIPS 24K/34K use LRU [Reineke et al. 2007].

2.2. Virtual Memory
The key idea behind virtual memory is to divide the address space of a program in
blocks, called pages. Each page is a series of contiguous memory addresses. Pages are
mapped into physical memory locations, but do not need to be in the physical mem-
ory to execute a program. The Memory Management Unit (MMU) translates logical
addresses in a page to physical memory addresses dynamically as programs access
their own pages. This mechanism is called paging and it is available on the major-
ity of systems that support virtual memory. Paging is the key to perform some cache
partitioning mechanisms, as will be discussed in Section 3.

2.3. Cache Coherence Protocols
Each core has its own data and uses its private data cache for speeding up the pro-
cessing. However, when cores share data, each copy of the data is placed in the core’s
private cache and the cache coherence protocol is responsible for keeping the consis-
tency between each copy (usually through bus snooping3). Whenever a core writes into

3Although important directory-based protocols are not discussed in this paper, because they are usually
implemented in non-uniform memory access (NUMA) processors. Such processors are not preferable for
real-time embedded systems due to their unpredictability.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:7

a data that other cores have cached, an invalidation occurs, increasing tasks’ execution
time. This invalidation operation is performed automatically by the hardware and take
hundreds of cycles (about the same time as accessing the off-chip RAM), increasing the
application’s execution time [Boyd-Wickizer et al. 2010]. Two kinds of scaling problem
occur due to shared memory contention [Boyd-Wickizer et al. 2010]: access serializa-
tion to the same cache line done by the cache coherence protocol, which prevents paral-
lel speedup, and saturation into the inter-core interconnection, also preventing paral-
lel processing gains. MESI [Hennessy and Patterson 2006], MOESI [AMD 2013], and
MESIF [Intel 2010] are the most used cache coherence protocols by current multicore
processors. MESIF and MOESI protocols are usually used in ccNUMA architectures,
such as Intel Sandy Bridge and AMD Opteron respectively, while MESI is widely used
in UMA architectures, such as Intel dual-core and ARM Cortex-A9.

2.4. Categorization of Cache Management Mechanisms
We categorize the cache management mechanisms for real-time embedded systems in
cache partitioning and cache locking. In a cache partitioning mechanism, the central
idea is to assign a portion (i.e., a partition) of cache to a given task or core in the sys-
tem to reduce inter-core interference, to increase the predictability, and to ease WCET
estimation. There are two forms of cache partitioning: index-based or way-based par-
titioning. In the former, partitions are formed as an aggregation of associative sets
in the cache. In the latter, partitions are formed as an aggregation of individual cache
ways. Figure 1 shows an example of the two cache partitioning approaches in an n-way
set-associative cache. In Figure 1(a), each set is considered a different and isolated par-
tition (horizontal slicing). One or more sets are individually assigned to a task or core
and all memory allocations performed by this task or core is mapped to the assigned
set(s). In Figure 1(b), each way is considered an individual partition and one or more
ways can be assigned to a task or core (vertical slicing). Cache partitioning can be
further divided in hardware- or software-based approaches. Moreover, software-based
approaches may need a compiler or an OS support.

(a) (b)

Fig. 1. Classification of cache partitioning approaches: (a) overview of the index-based partitioning. (b)
overview of the way-based partitioning.

The second cache management mechanism for real-time embedded systems is cache
locking. The central idea behind cache locking is to lock a portion of the cache in order
to exclude the contained lines in this portion from being evicted by the cache replace-
ment policy and by intra-task, intra-core, or inter-core interferences. Cache locking is
a hardware-specific feature, which typically is done at a granularity of a single way or
line. Figure 2 presents two cache locking variations. Figure 2(a) shows the locking of
an entire way. The lock of a whole way means that the contents within that way across
all sets cannot be evicted. Locking a whole way has not been explored deeply, because
the number of ways is usually limited (in the range from 4 to 32) [Mancuso et al. 2013].
Figure 2(b) shows the locking of an individual way. The cache line locking strategies

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:8 G. Gracioli et al.

provided by most of the current commercial embedded platforms use a set of registers
to: a) mark portions of cache (typically entire ways) as locked; or b) to enable the lock-
ing of all the lines fetched after the change in the status a configuration register. These
mechanisms are considered non-atomic as opposed to the support in the CPU ISA for
atomic fetch-and-lock instructions. Non-atomic cache locking mechanisms make it dif-
ficult to predict what is cached and what is not. Moreover, multicore shared caches are
usually physically indexed and tagged. This means that in the worst case, physical
pages allocated to tasks can map to the same cache sets, and thus that no more than
n locked lines can be kept at the same time, where n is the cache associativity. This
problem can be overcome if explicit control is enforced on the physical addresses of the
locked entries (usually by the OS), as proposed in [Mancuso et al. 2013].

(a) (b)

Fig. 2. Examples of ache locking variations: (a) overview of the way locking. (b) overview of the cache line
locking.

Both cache locking and partitioning can be available to applications through the OS
memory allocator. An OS memory allocator is responsible for managing free blocks of
memory in a large pool of memory (heap), serving the application requests for memory
spaces. Two main concerns are common to OS memory allocators: performance and
fragmentation. Performance depends on the ability of the allocator to organize free
blocks of memory such that the search for a block is performed efficiently. Fragmen-
tation depends on the ability to avoid small gaps between allocated memory blocks.
Besides performance and fragmentation, a memory allocator for real-time embedded
systems must be predictable, i.e., the time to allocate a memory block, despite its size,
must be known. Furthermore, a memory allocator can also provide means for appli-
cations to use a cache partitioning or locking mechanism in a transparent and simple
way. In this survey, we provide an overview of OS memory allocators that are either
predictable or cache-aware.

2.5. Cache Analysis Methods
As we mentioned early, several well-developed cache analysis techniques have been
proposed for single-core processors. These techniques analyze the interference due to
intra-task and intra-core cache conflicts. The latter is known as cache related preemp-
tion delay (CRPD). The CPRD focuses on cache reload overhead due to preemptions
while the intra-task analysis focuses on the cache conflicts within the same task as-
suming non-preemptive execution. Since the focus of this paper is on techniques that
manage the cache (spatial isolation rather than joint analysis), a detailed description
of such analysis techniques is out of the paper’s scope.

Unfortunately, the single-core timing analysis techniques are not applicable for mul-
ticore processors with shared caches. In this case, inter-core interference is caused by
tasks that can run in parallel and this requires analyzing all system’s tasks. The anal-
ysis of non-shared caches has been already considered as a complex process and ex-
tending it to shared caches is even harder. In fact, the researchers in the community

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:9

of WCET analysis seems to agree that ”it will be extremely difficult, if not impossible,
to develop analysis methods that can accurately capture the contention between mul-
tiple cores in a shared cache” [Suhendra and Mitra 2008]. Despite this challenge, few
works have been proposed to address the problem of shared caches. However, these
techniques are only applicable for simple architectures and statically scheduled tasks.

The first work that studies the analysis of shared caches in multicore processors is
proposed in [Yan and Zhang 2008]. This work assumes a system with two tasks simul-
taneously running on two cores with direct-mapped shared instruction cache. Later,
a cache conflict graphs were used to capture the potential inter-core conflicts [Zhang
and Jun 2012]. The work in [Liang et al. 2012] improves upon [Yan and Zhang 2008]
by exploiting the lifetime information of tasks and bypassing the disjoint tasks (tasks
that cannot overlap at run-time) from the analysis. This work assumes a task model
where all tasks are synchronized. Clearly, for systems with dynamic scheduling, it will
be extremely difficult to identify the disjoint tasks. Other research [Hardy et al. 2009]
proposes to bypass the shared cache for single-usage cache lines to avoid inter-core con-
flicts and therefore improve the timing analysis. For systems where tasks are allowed
to migrate between cores, cache related migration delay (CRMD) has been studied
in [Hardy and Puaut 2009]. This work estimates the number of cache lines that can
be reused from the L2 shared cache when a task migrates from one core to another.
Due to the lack of analysis techniques for multicore platforms with a complex hierar-
chy of shared caches, an empirical study has been proposed in [Bastoni et al. 2010] to
evaluate the impact of cache-related preemption and migration delays (CPMD).

In contrast to timing analysis techniques where caches are used without restric-
tions, the approach of managed caches have the advantage to avoid complex analysis
methods for estimating the cache behavior. Indeed, the time predictable architecture
in [Paolieri et al. 2009] proposes a statically-partitioned L2 cache to avoid the inter-
core cache conflicts. In addition, manged caches can be used in situations where the
static analysis cannot be used, for example, the case where the cache replacement pol-
icy is not documented. On the other hand, while managing the cache space provides a
timing isolation between tasks, the reduced cache space may impact the task execution
time. We are not a ware of any work that compares the managed shared caches with
statically analyzed caches.

2.6. Scratchpad Memories
Finally, it must be noted that scratchpad memories have been proposed as a more
predictable alternative to caches, especially but not limited to real-time systems. The
scratchpad memory is a special static RAM memory placed close to the processor (on-
chip, similar to L1-cache). The address space of the scratchpad is mapped onto pre-
defined memory address of the processor. Unlike caches, the scratchpads have to be
explicitly managed. In other words, the memory blocks have to be moved in software
from main memory and copied into the scratchpad before being used. Thus, scratch-
pads are highly predictable in the sense that they have one access latency compared
to caches with two different latencies for cache hit and miss. However, the need for ex-
plicit program management means that legacy programs cannot be easily executed on
scratchpad-based systems; for this reason, support for scratchpad memory in available
commercial systems is limited. Since the focus of this survey is specifically on manage-
ment mechanisms for cache-based systems, we do not cover scratchpad-based systems
in details in the following sections; however, we provide a brief summary of work con-
cerning scratchpad allocation below to allow a comparison with cache systems.

In general, cache locking and scratchpad allocation have similar objectives: to con-
trol the set of memory blocks present in local memory at any time. However, as noted
in [Puaut and Pais 2007; Whitham and Audsley 2009], there are significant differences

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:10 G. Gracioli et al.

between caches and scratchpad. First of all, scratchpads do not suffer from intra-task
interference, since the allocation of memory blocks is entirely under the control of the
programmer/compiler; cache locking cannot prevent conflicts due to too many cache
lines being allocated to the same associative set. However, since scratchpads are not
transparent with respect to address translation, management schemes have to im-
pose significant constraints on analyzable code; in particular, memory aliases must be
statically resolved, since otherwise the management scheme risks loading the same
data into two different positions in the scratchpad. A second important difference is
related to the type of fragmentation. Cache-based systems suffer from internal frag-
mentation, since they cannot load data blocks smaller than the size of a cache line.
Scratchpad-based systems suffer from external fragmentation, since they are forced to
load memory blocks of varying size into contiguous memory locations in the scratch-
pad. As shown in [Puaut and Pais 2007], the relative performance of locked caches vs
scratchpads is thus dependent on the size of the considered memory blocks. Due to
the discussed differences, we argue that most techniques and results for cache-based
systems cannot be directly applied to scratchpad-based systems and vice-versa.

3. INDEX-BASED CACHE PARTITIONING METHODS
There are two index-based cache partitioning categories: hardware- [Kirk and Stros-
nider 1990; Liu et al. 2004; Iyer 2004; Rafique et al. 2006; Suhendra and Mitra 2008;
Srikantaiah et al. 2008] and software-based [Wolfe 1994; Liedtke et al. 1997; Chou-
sein and Mahapatra 2005; Guan et al. 2009; Lu et al. 2009; Muralidhara et al. 2010;
Kim et al. 2013] techniques. The former requires special hardware support, such as
specialized implementations, that are not available in most of the current commercial
processors. The latter has the advantage of being fully transparent to applications and
there is no need for special hardware support. Software-based partitioning is further
divided in those that require OS or compiler support.

3.1. Hardware index-based partitioning.
Several hardware index-based cache partitioning have been proposed to improve the
average-case performance of applications. However, some of these approaches could
also be applied to SRT. Below we discuss the main hardware index-based partitioning
approaches and classify each approach in either average-case or HRT.

Average-case performance. The Shared Processor-Based Split L2 cache organi-
zation assigns cache sets according to the CPU ID [Liu et al. 2004]. The L2 cache con-
troller (configurable by the OS) keeps a table that maps the CPU ID to its sets. Every
CPU memory access looks first at its available sets, but can subsequently look at other
CPU sets before going to the main memory. Upon a miss, the requested memory block
is allocated only into the available CPU sets. Set pinning is a similar approach, where
cache sets are associated with owner cores [Srikantaiah et al. 2008]. However, in set
pinning, memory accesses that would lead to inter-core interference are redirected to
a small core owned private (POP) cache. Each core has its POP cache, storing memory
blocks that would cause inter-core cache misses. The objective is to reduce these cache
misses and improve the average system performance.

CQoS classifies the applications memory accesses in priorities and then assigns more
set partitions to higher priority applications [Iyer 2004]. The CQoS framework also
implements a selective cache allocation in which it counts the number of lines occupied
in the cache at a given priority level and probabilistically allocates or rejects cache line
allocation requests.

Rafique et al. proposed a hardware implementation of a quota enforcement mecha-
nism [Rafique et al. 2006]. The quotas is enforced at a set-level for different tasks/ap-
plications that access the shared cache. The mechanism requires the maintenance of

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:11

an ownership information for each cache block, which is performed by adding a Tag-
owner-ID along with each tag in the cache address bits.

Hard real-time systems. Strategic Memory Allocation for Real-Time (SMART) was
the first hardware-based implementation of a cache mechanism designed to provide
predictability for uniprocessor real-time systems [Kirk and Strosnider 1990]. SMART
divides the cache into M segments. Then, these M segments are mapped into N tasks.
Shared data structures that require coherent cache accesses are placed in a specific
partition, named shared partition. This shared partition can be formed by a set of seg-
ments [Kirk and Strosnider 1990]. Performance critical tasks have private partitions.
Private partitions are protected and all tasks can access the shared partition. In order
to identify the number of segments assigned to a task, a cache location address has
also a cache ID field. Moreover, a hardware flag identifies whether a task accesses a
private or a shared partition. The cache ID, segment count field, and hardware flags
are part of each task’s context and are loaded on every context switch performed by
the OS. The authors presented a SMART designed for the MIPS R3000 processor.

Chousein and Mahpatra proposed a hardware-based cache partitioning for fully-
associative cache architectures [Chousein and Mahapatra 2005]. The cache partition-
ing mechanism should provide a mean to search and isolate a cache line efficiently.
Thus, a partition segment is created by aggregating multiple memory entries and
associating them with a single tag entry [Chousein and Mahapatra 2005]. Content
addressable memory (CAM) cells together with ternary content addressable memory
(TCAM) cells form each tag entry. The use of CAM and TCAM reduces miss ratio.

Suhendra and Mitra proposed a cache partitioning mechanism able to perform three
different partitioning strategies: “(1) no partition, where a cache block may be occupied
by any task, scheduled on any core; (2) task-based partitioning, where each task is as-
signed a portion of the cache; or (3) core-based partition, where each core is assigned
a portion of the cache, and each task scheduled on that core may occupy the whole
portion while it is executing” [Suhendra and Mitra 2008]. Cache partitioning is then
combined with a static cache locking mechanism (a cache line cannot be removed from
the cache) or a dynamic scheme (a cache line can be reloaded at run-time). The ex-
perimental evaluation performed in a dual-core processor (simulated) with 2-way set-
associative L1 and L2 caches resulted in a set of guiding design principles for real-time
systems: (1) the best cache partitioning method that should be used with a static cache
locking is core-based partition; (2) core-based partitioning is the best option indepen-
dent of locking strategy; and (3) when comparing dynamic and static cache locking, the
dynamic approach is better only when tasks have a considerable number of hot regions
and when the size of the shared cache is not big.

3.2. Software index-based partitioning
The most common software-based cache partitioning technique is page color-
ing [Liedtke et al. 1997; Tam et al. 2007; Guan et al. 2009]. Page coloring explores
the virtual to physical page address translations presented in virtual memory systems
at OS-level, when caches are physically-indexed. Page addresses are mapped to pre-
defined cache regions, avoiding the overlap of cache spaces. Figure 3 illustrates the
physical addresses from the cache and OS point-of-views for the PL-310 (a.k.a. L2C-
310) L2 cache controller adopted in ARM Cortex-A9 MPCore chips. By controlling the
colored bits of the set-associative cache number, the OS can change the mapping of
4 KB pages in the physical memory and the cache location. The PL-310 cache con-
troller can be synthesized with a 1 MB shared 16-way set-associative L2-cache with
32-bytes per line. There are 211 sets in the cache (1 MB/16ways × 1way/32 B). Thus,
the first 5 bits in the cache address access a byte in a cache line, the next 11 bits access
a set, and the remaining 16 bits define a line from one of the 16 ways (Tag in Figure 3).

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:12 G. Gracioli et al.

The idea of page coloring is to assign color 0 to page 0, color 1 to page 1, and so on,
starting again from color 0 after reaching the maximum color number. In the same
PL-310 chip, there are 128 cache lines in each 4 KB page. Each of these lines has a dif-
ferent cache set index. Since 4 bits are available to page coloring (cache size / number
of ways / page size), page 16 maps to the same color as page 0. It is possible to partition
the cache by assigning different colors to tasks/cores. Below, we classify works that use
software index-based partitioning in those proposed for improving the average-case
performance and those proposed for proving real-time guarantees. In the latter case,
we also classify the work regarding its implementation (OS or compiler-based) and
identify whether it targets SRT or HRT system.

Fig. 3. Physical address view from the cache (on top) and from the OS (bottom)

Average-case performance. The first implementation of a page coloring mecha-
nism targeting performance was carried out using the MIPS OS [Taylor et al. 1990;
Zhang et al. 2009]. Then, page coloring was used to reduce cache misses in single ap-
plications by assigning different colors to applications and consequently, distributing
the memory accesses through the entire cache [Kessler and Hill 1992; Romer et al.
1994; Sherwood et al. 1999]. More recently, several shared cache partitioning mecha-
nisms based on page coloring for general-purpose systems have been proposed [Tam
et al. 2007; Lin et al. 2008; Zhang et al. 2009; Guan et al. 2009].

Tam et al. used information collected by the hardware performance counters to esti-
mate the size of each shared L2 cache partition [Tam et al. 2007]. Experimental results
have shown that cache partitioning can recover up to 70% of degraded instruction per
cycles due to cache contention. Lin et al. implemented a page coloring mechanism in
the Linux kernel for x86 processors [Lin et al. 2008]. The authors changed the Linux
memory management to support multiple lists. Each list is filled up with pages that
have the same color. To search for a page when a process gets a page fault, the kernel
uses a round-robin method to scan the lists with allocated colors. Two cache partition-
ing policies were supported: static and dynamic. The static policy defines the memory
colors assigned to each process at the beginning of its execution. In the dynamic policy,
a page recoloring is enforced whenever a process desires to increase its cache resource.
Page recoloring is carried out by rebuilding the virtual to physical memory mapping.
Page recoloring involves data copy from an old page to a new page, which has a new
color. Although page recoloring achieved good QoS for general-purpose applications,
the process of copying pages in a real-time application may result in deadline misses.
Zhang et al. proposed a hot-page coloring approach [Zhang et al. 2009]. Hot pages are
identified by checking the page table entry access bit. Whenever a page is accessed,
its access bit is automatically changed by the MMU. The estimation of the frequency
of access to a page is done by checking and clearing the access bit periodically. This
approach also supports page recoloring for dynamic execution environments.

Bugnion et al. implemented page coloring support in the SUIF parallelizing com-
piler [Bugnion et al. 1996]. The objective was to improve performance of general-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:13

purpose multicore systems. The proposed technique, named compiler-directed page
coloring (CDPC), predicts access patterns of a compiler-parallelized application, such
as array access patterns. Information from the compiler is used to perform cache par-
titioning using a page coloring mechanism, tailored by each application. Basically, the
OS generates preferred color for each virtual page. Additionally to the compiler infor-
mation, the OS also receives machine-specific parameters, such as the number of cores,
cache configuration, and page size. Then, the OS tries to honor all received information
as much as possible. Although this work has not been proposed to directly deal with
real-time systems, it could be adapted to be used in SRT systems.

Real-time approaches. Several works proposed software-based cache partitioning
to increase predictability of real-time systems [Wolfe 1994; Mueller 1995; Liedtke
et al. 1997; Guan et al. 2009; Kim et al. 2013; Ward et al. 2013]. We classify these
works in two categories: those that are implemented at the OS-level and those that
are implemented at the compiler-level. We discuss both categories below.

Hard real-time OS index-based partitioning. OS-controlled cache partitioning
for real-time systems was first proposed by Wolfe [Wolfe 1994]. Wolfe proposed a mech-
anism similar to page coloring to provide predictable execution times for low-priority
tasks in a preemptive uniprocessor system [Mueller 1995]. In fact, his approach alters
the address decomposition into tag, index, and offset as in the page coloring partition-
ing [Mueller 1995]. The technique requires that the task set is static and that all pro-
grams are compiled by the same compiler prior to the system start. Liedtke et al. used
page coloring to provide predictability for uniprocessor real-time systems [Liedtke
et al. 1997]. Bui et al. considered the cache partitioning problem “as an optimization
problem whose objective is to minimize the worst-case system utilization under the
constraint that the sum of all cache partitions cannot exceed the total cache size” [Bui
et al. 2008]. The authors proposed a genetic algorithm to solve the optimization prob-
lem. The cache partitioning mechanism is based on page coloring. Experimental eval-
uation has shown an improvement on the schedulability of single-core systems.

Guan et al. proposed a cache-aware multicore real-time scheduling algorithm,
named FPCA, that divides the shared cache space into partitions [Guan et al. 2009].
The used cache partitioning mechanism is page coloring. Tasks are scheduled in a way
that at any time, any two running tasks’ cache spaces (e.g., a set of partitions) are non-
overlapped. A task can execute only if it gets an idle core and enough cache partitions.
The authors proposed two schedulability tests, one based on a linear problem (LP) and
another one as an over-approximation of the LP test. Tasks are not preemptive and
the algorithm is blocking, i.e., it does not schedule lower priority ready jobs to execute
in advance of higher priority even though there are enough available resources.

Kim et al. stated that cache partitioning based on page coloring suffers from two
problems (1) the memory co-partitioning and (2) the limited number of partitions [Kim
et al. 2013]. Then, the authors proposed a cache management scheme in which they as-
sign to each core a set of private partitions to avoid inter-core cache space interference.
However, tasks within each core can share cache partitions. Although this can result
in intra-core interference, it solves the aforementioned problems. In other words, each
task can now have a larger number of partitions which could improve its execution
performance. In addition, memory partitions can be utilized by all tasks. They bound
the penalties due to the sharing of cache partitions by accounting for them as cache-
related preemption delays when performing the schedulability analysis.

Hard/Soft real-time OS index-based partitioning. MC2 treats memory colors
as shared resources to which accesses must be arbitrated by either a real-time locking
protocol or a scheduling algorithm [Ward et al. 2013]. The OS associates a set of colors
to each task. With locking mechanism, a job must acquire a lock for each color it needs
before execution, and it releases these locks when it finishes execution. Thus, the job

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:14 G. Gracioli et al.

entire execution is treated as a critical section, which may create a long priority in-
version blocking. To mitigate this problem, the authors propose period splitting and
job splitting as two ways to reduce the detrimental effect of lengthy critical sections.
However, this may cause jobs to reload their working sets.

Unlike the locking mechanism described above, the cache colors can be treated as
preemptive resources in which the concurrent accesses can be mediated by schedul-
ing. Instead of dealing with a scheduling problem over two preemptive resources: the
processor and the cache, the authors reduce the problem into uniprocessor scheduling.
They define a logical cache processor to whom they assign tasks that share either cache
colors or processor. They then evaluated the schedulability of each cache processor as a
uniprocessor, and apply known schedulability tests. The authors compared both tech-
niques in terms of schedulability of the Partitioned Rate-Monotonic (P-RM) algorithm
and concluded that cache locking approach is better than the scheduling approach. The
target real-time system is composed of HRT and SRT tasks.

Gracioli and Fröhlich uses page coloring to create application and OS heaps com-
posed of only pages with the same colors [Gracioli and Fröhlich 2013]. User-level
memory requests are served by application heaps, while OS-level memory requests
are served by the OS heap. Thus, the work evaluated the cache interference caused by
the RTOS into the schedulability of real-time tasks (SRT or HRT). For a lightweight
RTOS, cache partitioning reduces cache interference in a level that applications are
not delayed. The authors also proposed a user-level memory allocation mechanism.

Hard real-time compiler index-based partitioning. Mueller was the first to
introduce compiler support for cache partitioning in the context of real-time sys-
tems [Mueller 1995]. The compiler receives as additional inputs the cache size and the
partition size of a task. The final object files are separated in code and data partitions
for each task, and are combined into an executable by the linker. To deal with code par-
titions larger than the partition size, the compiler inserts at the end of each code par-
tition an unconditional jump to the next code partition. According to Mueller [Mueller
1995]: “each partition is stored in a separate object file, which may be padded with
no-ops at the end to extend it to the exact size given by the cache partition size. Global
data is split into memory partitions of the data cache partition size. The compiler en-
sures that no data structure spans multiple partitions. If the size of a data structure
exceeds the cache partition size, it is split over multiple partitions and the compiler
needs to transform the access to the data structure”. Local data on the stack is split
into partitions by manipulating the stack pointer whenever necessary [Mueller 1995].
Dynamic allocation on the heap is supported as long as memory requests do not exceed
the cache partition size [Mueller 1995]. OS and libraries are also treated as separated
partitions. The used cache partition mechanism is based on page coloring and the ap-
proach targets uniprocessor real-time systems.

Vera et al. used compiler techniques together with cache partitioning and locking
to improve the predictability in preemptive multitasking uniprocessor systems in the
presence of data caches [Vera et al. 2003b]. The proposed predictable framework works
both with hardware or software cache partitioning schemes. The compiler technique
uses loop tiling and padding to reduce capacity and conflict misses, that is, it reduces
intra-task interference. Loop tiling reorders accesses, which shortens the reuse dis-
tance, while padding modifies the data layout of arrays and data structures. Cache
locking is used to lock cache lines that are accessed by more than one task. The au-
thors compared the proposed framework with static cache locking in which all tasks
share the whole cache in terms of worst-case performance of a multitasking system.
The results indicated that framework schedules tasks that need a high throughput.

Cache Replacement Policy Analysis. In general, most discussed index-based par-
titioning methods are mainly concerned with avoiding intra-core and/or inter-core in-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:15

terference, by assigning disjoint index sets to either different tasks on a given core or
to different cores. However, if locking is not used, a task can still suffer from intra-task
interference: loading a memory block of the task in an assigned associative set could
cause another memory block in the same associative set to be evicted.

To bound the number of such self-evictions that a task can suffer, a significant
amount of effort has been spent to analyze the effects of various cache replacement
policies in the context of static WCET analysis for HRT systems (for example, see
[Ferdinand 1997] for LRU, [Grund and Reineke 2010a; Guan et al. 2013] for FIFO,
and [Grund and Reineke 2010b] for PLRU). Based on the seminal work in [Ferdinand
1997], such techniques typically try to classify memory accesses in cache as either hits
or misses by constructing must and may sets of memory blocks: at any given point in
time, the must set represents the set of memory blocks that are known to be in cache,
while the may set represents the set of blocks that may be in cache. Then, accesses to
blocks in the must set can be safely categorized as hits, accesses in the complementary
of the may set are misses, and accesses that are in neither are unknown.

A related problem is to determine the maximum number of memory blocks that can
be utilized in cache without conflicts [Pellizzoni 2010]. For instance, a task can not
safely allocate more than one memory block per set with a random replacement policy,
since otherwise in the worst-case, fetching one block of the task could always evict
another block in the same associative set. On the other hand, for a n-way associative
cache both LRU and FIFO allow a task to safely allocate n blocks per set, that is, the
task can utilize the entire cache size.

3.3. Summary
Table I summarizes the discussed index-based cache partitioning works that rely on
hardware-specific implementations. The works proposed by [Liu et al. 2004], [Srikan-
taiah et al. 2008], [Iyer 2004], and [Rafique et al. 2006] although focused on multicore
systems, were not proposed for real-time systems and, consequently, predictability is
not the main concern. Instead, they aim at improving the QoS and the average exe-
cution time. However, they could be applied to SRT systems as well. SMART was the
first hardware-based implementation of a cache mechanism designed to provide pre-
dictability for uniprocessors [Kirk and Strosnider 1990]. The SMART approach con-
sists of dividing the cache into M segments and assigning these segments individually
to tasks. A cache location address is divided in a segment and cache ID fields that iden-
tify how many segments a task owns and which they are. Chousein and Mahpatra were
the first authors to propose a hardware-based implementation of a cache partitioning
mechanism to improve the predictability of multicore systems [Chousein and Mahap-
atra 2005]. Their approach focused on physical changes, using different technologies
(CAM and TCAM cells) to implement cache memories. Suhendra and Mitra were the
first authors to combine a cache partitioning mechanism, that can be implemented in
hardware or software, with cache locking [Suhendra and Mitra 2008]. In their work,
the cache partitioning mechanism performs task-based and core-based partitioning.

Table II summarizes the discussed index-based cache partitioning works that use a
software approach, either implemented in the OS or in the compiler. The first works
to use cache partitioning implemented in the OS did not focus on multicore real-time
systems [Taylor et al. 1990; Kessler and Hill 1992; Romer et al. 1994; Sherwood et al.
1999]. Instead, their objectives were to improve the average performance in uniproces-
sors. Also, several works improved the average performance in multicore systems [Tam
et al. 2007; Lin et al. 2008; Zhang et al. 2009]. Wolfe was the first author to use a
cache partitioning mechanism to improve the predictability in uniprocessors [Wolfe
1994]. The work proposed by Liedtke et al. was the first to use page coloring, also
in the context of uniprocessor real-time systems [Liedtke et al. 1997]. Bui et al. pro-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:16 G. Gracioli et al.

Table I. Comparative table of the reviewed state-of-the-art mechanisms of index-based cache partitioning with
hardware-specific implementations.

Cache
partitioning

Features
AVG, SRT,
or HRT

Inst.
or data
caches

Technique Use cache
locking

Multicore or
singlecore

[Liu et al. 2004] AVG both cache con-
troller table

no multicore

[Srikantaiah et al.
2008]

AVG both POP cache no multicore

CQoS [Iyer 2004] AVG both selective cache
alloc.

no multicore

[Rafique et al.
2006]

AVG both quota enforce-
ment

no multicore

SMART [Kirk and
Strosnider 1990]

HRT data M segments no singlecore

[Chousein and
Mahapatra 2005]

HRT data CAM and
TCAM cells

no multicore

[Suhendra and
Mitra 2008]

HRT data HW or SW par-
titioning

yes multicore

posed a genetic algorithm to optimize the worst-case system utilization by finding the
best cache partitioning assignment for a task set [Bui et al. 2008]. Guan et al. pro-
posed a cache-aware multicore scheduling algorithm that uses page coloring [Guan
et al. 2009]. Kim et al. used page coloring to propose a cache management scheme that
assigns to each core a set of partitions [Kim et al. 2013]. Kenna et al. proposed the
cache management strategy called MC2, which treats the management of cache lines
as scheduling and synchronization problems, targeting a real-time system formed by
HRT and SRT tasks [Ward et al. 2013]. All the discussed works so far used an OS im-
plementation of a cache partitioning mechanism based on page coloring. Other works
proposed changes in the compiler to support cache partitioning at the compile time.
Mueller was the first author to introduce a compiler support for cache partitioning in
the context of uniprocessor real-time systems [Mueller 1995]. Bugnion et al. imple-
mented page coloring support in the SUIF parallelizing compiler targeting multicore
processors [Bugnion et al. 1996]. Both Bugnion et al and Mueller’s approaches used
page coloring to partition the cache. Finally, Vera et al. used compiler techniques to-
gether with cache partitioning and locking to improve the predictability in preemptive
multitasking uniprocessor systems in the presence of data caches [Vera et al. 2003b].
The mechanism relies on a hardware/software cache partitioning and was the first
compiler-based mechanism to combine cache partitioning with cache locking.

4. WAY-BASED CACHE PARTITIONING METHODS
Way-based partitioning has two main advantages. First, the set-associative cache or-
ganization does not need to be changed, which does not have a dramatic impact on the
overall structure. Second, this partitioning scheme isolates the requests for the differ-
ent compartments from each other. Thus, no contention for the cache ways is suffered
at the cores. However, the main limitations of way-based cache partitioning methods
are the limited number of partition and granularity of allocations due to the associativ-
ity of the cache. Increasing the associativity of a cache is not always feasible or efficient
since a higher-order associativity determines an increase in the cache access time and
tag storage space. Below we classify works that use a way-based cache partitioning
method according to their objectives of either improving average-case performance or
providing real-time guarantees.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:17

Table II. Comparative table of the reviewed state-of-the-art mechanisms of index-based cache partitioning im-
plemented in software.

Cache par-
titioning

Features
AVG,
SRT, or
HRT

Inst.
or data
caches

OS or
compiler

Technique Use
cache
lock.

Multicore or
singlecore

[Taylor et al.
1990; Kessler
and Hill 1992;
Romer et al.
1994; Sherwood
et al. 1999]

AVG data OS page color-
ing

no singlecore

[Tam et al. 2007;
Lin et al. 2008;
Zhang et al.
2009]

AVG data OS page color-
ing

no multicore

[Bugnion et al.
1996]

AVG both compiler CDPG no multicore

[Wolfe 1994] HRT data OS similar
to page
coloring

no singlecore

[Liedtke et al.
1997]

HRT data OS page color-
ing

no singlecore

[Bui et al. 2008] HRT data OS genetic alg.
with page
col.

no singlecore

[Guan et al.
2009]

HRT data OS scheduling
and page
col.

no multicore

[Kim et al. 2013] HRT data OS page color-
ing

no multicore

[Ward et al.
2013]

SRT/HRT data OS page color-
ing

no multicore

[Mueller 1995] HRT both compiler compiler
with page
col.

no singlecore

[Vera et al.
2003b]

HRT data compiler HW or SW
cache par-
titioning

yes singlecore

4.1. Average-case performance
Ranganathan et al. proposed a cache architecture that allows dynamic reconfigura-
tion of partitions [Ranganathan et al. 2000]. Specifically, the traditional structure of
a set-associative cache is adapted to allow dynamic definition of partitions which can
be assigned to given address ranges. The dynamic reconfiguration can be performed at
runtime by software. In the proposed architecture, each cache partition can be the re-
sult of the aggregation of one or more cache ways, leading to a way-based partitioning
scheme. Additional cache logic is required to differentiate between address spaces/par-
titions; to multiplex the tag comparators; and to generate different miss/hit signals for
each addressed partition. However, the additional logic and wiring has been proven to
minimally affect the cache access time, with a variable overhead that is proportional
to the ratio # of partitions

cache size . Although the described scheme has not been designed for
real-time applications, a straightforward extension could be designed for multi-core
systems, allowing to bind the address space of a task running on a given core to a
given cache partition. This would eliminate the inter-core interference for all those
data that reside in an exclusively owned partition. However, intra-task interference
(self-evictions) could still be possible.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:18 G. Gracioli et al.

Chen et al. proposed a technique to partition each cache set into shared and private
ways [Chen et al. 2009]. The technique classifies all cache lines in shared or private.
Let A be the shared cache associativity and Q be a quota for shared cache lines, parti-
tioning is performed in such a way that the shared cache lines occupy Q way in each
set while private lines occupy A-Q [Chen et al. 2009]. By assigning different partitions
to shared and private data, they reduced the LLC miss rate and increased QoS.

Muralidhara et al. proposed a dynamic software-based partitioning technique that
partitions the shared cache among threads of an application [Muralidhara et al. 2010].
At the end of each 15 ms interval, the dynamic cache partitioning scheme uses hard-
ware performance counters information, such as the number of cache hits and misses,
the number of cycles, and retired instructions for each thread, to allocate different
cache spaces based on individual thread performance. The objective is to speed up the
critical path, that is, the thread that has the slowest performance and, consequently,
improve the overall performance of the application. To perform cache partitioning, the
authors use either a reconfigurable cache, which modifies the cache hardware struc-
ture during the execution, or modify the cache replacement algorithm, which partitions
the cache gradually. According to Muralidhara et al.: “when a thread suffers a cache
miss and the number of cache ways that belong to it is less than the thread’s assigned
cache partition ways, a cache line belonging to some other thread is chosen for replace-
ment. If the number of cache ways belonging to the thread is greater than or equal to
the assigned number of ways, a cache line belonging to the same thread is chosen for
replacement” [Muralidhara et al. 2010]. Consequently, the replacement policy gradu-
ally partitions the shared cache. Experimental results have shown a performance gain
of up to 23% over a statically partitioned cache [Muralidhara et al. 2010]. The work
does not provide real-time guarantees.

Similarly to [Chen et al. 2009], in [Sundararajan et al. 2013], Sundararajan et al.
propose RECAP: an architecture for a set-associative cache that can be partitioned
across cores at the granularity of a single cache way. Different cache ways are assigned
to shared and private data, based on the observation that the majority of memory ac-
cesses for parallel applications is performed in shared memory, while above 90% of
cache data belong to private memory regions. Moreover, RECAP performs an auto-
matic arrangement of the partitioned ways, so that private data assigned to specific
cores are allocated on ways that are positioned on the left side of the cache, while
shared data are allocated on ways starting from the right end of the cache. The en-
forced data-alignment allows to keep the unused ways in the center of the cache and
thus allowing dynamic power-saving by powering down unused ways. Partition ar-
rangement for each core is performed in order to maximize utilization of the cache
ways: a heuristic algorithm monitors the number of misses for each core and deter-
mines how many cache blocks need to be assigned in order to capture a given fraction
of cache misses. Finally, the computed ways-to-cores assignment is enforced on the
proposed cache architecture by programming a series of configuration registers. The
results show a 15% average performance increase for large applications, with a reduc-
tion of power consumption which is above 80%. However, even though this approach
is effective to limit inter-core interference, its scope is beyond predictability, making it
suitable for soft real-time rather than safety-critical applications. First because intra-
core/intra-task interference is not addressed; second due to the heuristic approach that
is being used to perform ways-to-cores assignment at run time.

Varadarajan et al. in [Varadarajan et al. 2006] propose the idea of “molecular
caches”: CPU caches that are organized as a series of molecules. In this architecture,
molecules are small in size (8-32KB) and reflect the structure of a direct-mapped cache.
Molecules are grouped into tiles that can be assigned statically or dynamically to cores.
Thus, by definition, per-core partitions are defined at the granularity of tiles, that in

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:19

turn represent an aggregation of cache ways. Moreover, in order to address intra-core
interference, individual regions can be defined internally to each tile and assigned to a
specific application. In order to do this, each molecule of the same region inside a given
partition exposes a configuration register which can be programmed with a unique
identifier of a running application. In this way, all the molecules of a given region will
be exclusively used by the matching application. The proposed scheme results effective
in isolating cache misses from different running applications on the same or different
cores, but the complexity of the resulting structure may not scale well with cache size.

Since molecules (and thus regions) can be dynamically assigned to applications (or
unassigned), a high degree of runtime reconfiguration is possible. As such, assignment
decision need to be made by a software module that runs periodically or in an adaptive
manner. The metric used in the assignment controller is keeping the experienced num-
ber of caches misses as close as possible to a threshold that is statically defined for each
application. Even though inter-task interference is not addressed by such a partition-
ing scheme, molecular cache represent an effective solution to prevent inter/intra-core
interference, while providing the cache with a fine-grained partitioning mechanism.
Moreover, the particular choice of associativity and size for the molecules leads to a
circuit design that enables a reduction in energy dissipation. However, due to its com-
plexity, a hardware implementation of molecular caches is not available to date. The
applicability of such an architecture to real-time applications would be broad, assum-
ing that the assignment controller employs a predictable allocation strategy.

In [Qureshi and Patt 2006], a utility-based approach is proposed to dynamically par-
tition the cache on a demand basis. The main insight is that differences in the working
set size as well as memory addressing patter of applications affect the way they benefit
from cache assignment. Specifically, applications that exhibit low spatial and tempo-
ral locality in their memory access pattern, combined with a large memory footprint
size, benefit less from cache resources than applications with opposite characteristics.
Thus, the former can be classified as low-utility applications, while the latter can be
considered as high-utility applications from the cache assignment point of view. To ac-
count for cache utility, Quereshi and Patt [Qureshi and Patt 2006] propose adding a
low-overhead circuit in the cache controller. The addition consists of a number of utility
monitors (one per each core accessing the shared cache) and a single circuit that runs
the partitioning algorithm relying on data collected at the utility monitors. The par-
titioning algorithm reads all the hit counters from the different utility monitors and
computes a cache partitioning at the granularity of a way that minimizes the overall
number of misses suffered by all the applications.

Evaluation results show that such partitioning approach is able to provide fairness
and performance speedup if compared to using LRU and static partitioning (e.g., an
even split of the cache in two halves for two cores). The hardware overhead is rel-
atively low when applied to LRU caches, but can significantly increase for different
cache replacement policies. However, the inherently heuristic approach employed in
the partitioning algorithm is not directly suitable for HRT purposes, since the amount
of assigned cache strictly depends on the workload on other cores. This problem could
be mitigated allowing a minimal assignment of cache per each core or application.

In [Suh et al. 2004] a dynamic cache partitioning scheme is presented. In this
scheme, cache space is explicitely allocated amongst simultaneously executing pro-
cesses with the goal of minimizing the overall cache misses. In order to attain this
goal, the cache controller is augmented with a set of online counters. Next, each pro-
cess’ gain or loss under different cache allocations is considered. By using the described
mechanism, the hardware dynamically adjusts the allocation to match process needs.
Allocation is performed at the granularity of single cache ways. This technique miti-
gates the effects of cache pollution due to inter-core interference in multicore systems.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:20 G. Gracioli et al.

However, the inherently heuristic nature of this work makes it not directly suitable for
real-time systems. In fact, the amount of cache dynamically allocated to a given task
depends on the behavior of all the other active tasks in the system.

4.2. Real-time approaches
The only work originally proposed to improve the predictability of both SRT and HRT
systems that uses a way-based cache partitioning was proposed by Chiou et al. [Chiou
et al. 2000]. The authors introduced column caching, a mechanism that allows software
to specify that certain data is restricted to be placed into specific way defined through
a bit-vector. Column caching requires a hardware modification to the replacement unit
of the cache in order to limit replacement to the column (way) specified by the bit-
vector stored in page table entries. Thus, the translated address will include the set
number as well as the way number. If combined with page-coloring as in index-based
methods, the whole cache (both sets and ways) can be controlled and utilized.

4.3. Summary
All the reviewed way-based cache partitioning mechanisms use a hardware-specific
implementation. They are summarized in Table III. Most of the way-based cache par-
titioning works were not originally proposed to improve the predictability of real-time
systems, although some of the proposed techniques could be adapted in the context of
SRT systems with minor modifications to the proposed techniques considering worst-
case task behavior.

Table III. Comparative table of the reviewed state-of-the-art way-based cache partitioning mechanisms.

Cache par-
titioning

Features
AVG,
SRT, or
HRT

Inst.
or
data
caches

HW-
only

HW-
SW

Technique Use
cache
lock.

Multicore or
singlecore

[Ranganathan
et al. 2000]

AVG both no yes dynamic
reconfigu-
ration

no singlecore

[Chiou et al.
2000]

SRT/HRT both no yes changing
the re-
placement
policy

no singlecore

[Chen et al.
2009]

AVG data yes no quota en-
forcement

no multicore

[Muralidhara
et al. 2010]

AVG data no yes dynamic
cache part.

no multicore

RECAP [Sun-
dararajan et al.
2013]

AVG data yes no specific
mem. arch.

no multicore

[Varadarajan
et al. 2006]

AVG data no yes molecular
cache

no multicore

[Qureshi and
Patt 2006]

AVG data yes no utility-
based
approach

no multicore

5. CACHE LOCKING METHODS
Cache locking prevents the eviction of cache lines by marking them as locked until
an unlock operation is performed. Cache locking is a hardware-specific feature that it
is not present in all of the modern multicore processors. There are two ways to lock
a cache content: (A) through an atomic instruction to fetch and lock a given cache

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:21

line into the cache, or (B) defining, for each single CPU in the system, the lock sta-
tus of every cache way. The last mechanism is called lockdown by master in multicore
systems [Mancuso et al. 2013]. Some embedded multicore platforms feature only an
atomic instruction, such as Freescale P4040 and P4080 platforms, while other plat-
forms, such as TI OMAP4460 and OMAP4430, Nvidia Tegra 2 and 3, Xilinx Zynq-7000,
and Samsung Exynos 4412, implement a lockdown by master mechanism.

To exemplify the utility of a cache locking mechanism, consider a dual-core platform
with a 2-way set-associative cache and a cache controller that implements a lockdown
by master mechanism. We could set up the hardware so that way 1 is unlocked for
CPU 1 and locked for CPU 2, while way 2 is locked for CPU 1 and unlocked for CPU
2. This means that a task running on CPU 1 would deterministically allocate blocks
on way 1 and blocks allocated on way 1 could never be evicted by a task running on
CPU 2. The same situation occurs on way 2 referring to CPU 2. This assignment can
be easily changed at run-time by manipulating a set of registers provided by the cache
controller interface. If the platform provides an atomic instruction to fetch and lock a
cache line, a software procedure that realizes a mechanism functionally equivalent to
the lockdown by master can be easily built [Mancuso et al. 2013]. Hence, cache locking
provides a more predictable and controllable access to shared caches, easing the WCET
estimation and improving the performance of real-time applications.

We classify the works that use cache locking as hardware-only, when a specific hard-
ware design is proposed, or hardware-software approaches, when the hardware avail-
able on current multicore processors is used by a software layer (RTOS, compiler, or
specific algorithms for instance). We further state if the work provides a cache locking
only for instruction caches, data caches, or both caches and if the work targets only
SRT systems, HRT systems, or both.

5.1. Hardware-only approaches
Asaduzzaman et al. proposed a miss table (MT) at the L2-cache level using cache lock-
ing [Asaduzzaman et al. 2010]. The cache memory addresses that cause the most num-
ber of misses if not locked are kept in the MT. The cache miss for each block address
is obtained by the Heptane simulation tool [Avila and Puaut 2009]. Then, the MT
sorts the block addresses in descending order of the cache miss numbers. The pro-
posed MT-based scheme was evaluated through the simulation of an 8-core processor
with 2 levels of cache using the MPEG4 and H.264 decoding and FFT algorithms. The
results have shown a predictability improvement in all algorithms. This technique can
be applied to either SRT or HRT systems.

Sarkar et al. proposed a predictable task migration scheme using cache locking for
the PFair scheduling algorithm, targeting HRT systems [Sarkar et al. 2011]. The au-
thors proposed several cache migration models in the presence of a cache locking mech-
anism to deterministically bound the migration delay of tasks. The work uses the push
model hardware feature, where every cache controller has a push logic block and each
cache line has an identifier. When a task migrates, the new core receives a push request
to start loading the cache lines for that task. Then, the modified hardware identifies
locked lines pertaining to the migrated task and uses the cache line identifier to cor-
rectly manage locked cache lines. Simulation results have shown a reduction of the
migration cost of up to 56%.

5.2. Hardware-software approaches
Campoy et al. were the first authors to use cache locking in the context of uniproces-
sor HRT systems [Campoy et al. 2001]. The authors proposed a genetic algorithm that
selects which instruction blocks are loaded and locked in the cache in a preemptive,
multitasking system. In such a system, the locking of a cache line from one task af-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:22 G. Gracioli et al.

fects the other tasks. The genetic algorithm estimates the WCET of each task with data
loaded and locked in the cache. The algorithm uses the estimated WCET to determine
the response time for each task. Experimental results indicated that the proposed algo-
rithm calculates the response time of tasks with negligible overestimation and without
performance loss, considering a preemptive scheduler [Campoy et al. 2001].

Puaut and Decotigny addressed intra-task and intra-core interferences using static
cache locking of instruction caches in uniprocessor multitasking HRT systems [Puaut
and Decotigny 2002]. The authors proposed two algorithm to select the instruction
cache blocks that should be locked. In contrast to [Campoy et al. 2001], the two algo-
rithms use memory access patterns of the instruction flow to determine which cache
lines must be locked. The first algorithm aims at minimizing the CPU utilization of
the task set, while the second aims at reducing the intra-core interference using a
fixed-priority scheduler. The authors compared the two algorithms with a static cache
analysis for large instruction caches and caches with a large degree of associativity.
Both algorithms have presented a better performance [Puaut and Decotigny 2002].

A dynamic locking strategy for instruction caches was proposed in [Arnaud and
Puaut 2006]. A control-flow graph is extracted from task binary. Next, basic blocks
are identified and regions of code that aggregate one or more basic blocks are created.
The authors propose an heuristic algorithm (Region Merging and Inlining) to perform
close-optimal aggregations of basic blocks to regions. Each region has a locked/un-
locked state that is set appropriately by the allocation algorithm considering the fol-
lowing parameters: a) mapping of region to cache lines; b) execution frequency; and c)
performance gain derived from locking the considered region with respect to its load-
ing/locking cost. The approach has been tested on an emulated MIPS R3000 platform.

Vera et al. combined compile-time cache analysis with data cache locking to improve
the WCET estimation of uniprocessor HRT systems [Vera et al. 2003a]. An algorithm
executed at compile-time identifies code regions where a static analysis does not pre-
cisely predict their behavior. The algorithm uses a reuse vector to perform cache lo-
cality analysis and to select data to be loaded and locked in the cache. Static analysis
is used in the other code regions. Also, the compile-time algorithm inserts beyond the
lock instructions, unlock and load instructions and compute the WCET for k-way set-
associative data caches. The authors implemented the algorithm in the SUIF2 com-
piler and obtained a more predictable cache behavior with minimal performance loss.

Falk et al. proposed a technique that also explore static locking of instruction caches
at compile-time to minimize the WCET in uniprocessor SRT/HRT systems [Falk et al.
2007]. Differently from the previous works, the technique uses the worst-case execu-
tion path in order to apply cache locking. An optimization algorithm receives a com-
piled and linked binary executable file as input. The target processor is ARM920T.
Then, the algorithm calls a static WCET analysis tool (aiT), which extracts data that
impact the WCET from the binary’s function. From this data, the optimization algo-
rithm selects the most relevant code (i.e., functions) that will be locked in the instruc-
tion cache. Experimental results reported a reduction between 54% and 73% in the
WCET of some benchmarks running on the ARM920T processor.

Exploiting information extracted at compile-time, Liu et al. propose and analyze
three algorithms to perform allocation of instruction cache area through locking [Liu
et al. 2009a]. The proposed algorithms consider both static locking and dynamic lock-
ing, with the goal of minimizing worst-case CPU utilization through cache allocation.
The results are for a set of tasks in a multi-task scenario, improving on what achieved
for single-task systems in [Liu et al. 2009b]. Based on the achieved results, practical
guidelines are provided to select the locking methodology that best fits specific work-
load characteristics. Experimental results show that close-optimal solutions for the

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:23

cache allocation problem can be found, improving the efficiency of the heuristic com-
pared to what presented in [Falk et al. 2007].

Aparicio et al. proposed a dynamic cache locking strategy to load and lock the best
cache lines into the instruction cache at each context switch [Aparicio et al. 2011].
The proposed approach deals with both intra-task and intra-core interferences. The
method is based on an integer Linear Programming (ILP) method, is named Lock-MS
(Maximize Schedulability), and targets uniprocessor HRT systems. The ILP-method
analyzes a single task and the interference among tasks to load and lock the most
relevant cache lines. At run-time, a dynamic cache locking method preloads the cache
contents at every context switch, minimizing the worst cost of a preemption. The au-
thors compared Lock-MU with a static locking mechanism [Puaut and Decotigny 2002]
and obtained better performance results.

Ding et al. acknowledge the limitations of region-based dynamic locking and propose
a more flexible locking strategy in [Ding et al. 2014]. Specifically, this work focuses on
instruction caches and aims at performing a partial locking of the cache so to exploit
the additional benefits of the unlocked cache lines. Moreover, instead of splitting the
instruction blocks in regions that are (un)loaded in cache in a mutually exclusive man-
ner, the paper introduces the notion of loop-driven locking. The key idea is the follow-
ing: given a series of nested loops, each line selected for locking at an inner loop can
also be locked/unlocked at the entry/exit point of any of the outer loops. The evalua-
tion performed on the Chronos WCET tool reveal benefits with respect to: a) the static
partial locking strategy proposed in a previous work by the same authors [Ding et al.
2012]; and b) region-based dynamic locking as proposed in [Arnaud and Puaut 2006].

Mancuso et al. proposes a memory framework that uses profiling techniques to ana-
lyze the memory access pattern of tasks and obtain the most frequently accessed mem-
ory pages [Mancuso et al. 2013]. Profiling is performed using memory observation tools
and it is execution-independent. Then, page coloring is used to rearrange task pages
into the physical memory address space so to optimize in-cache placement. Next, cache
locking is used to provide isolation among tasks on the same core and on different
cores, thus increasing predictability in HRT systems. The solution focuses on using ex-
isting hardware support on modern multi-core platforms and is implementable using
locking by-line, by-master and by-way. The framework was implemented and evalu-
ated in the Linux kernel. Evaluation was conducted using locking support in ARM
Cortex-A9, and a porting to Freescale P4080 was performed in a successive extension
of the work [Mancuso et al. 2015].

5.3. Summary
Table IV summarizes the discussed cache locking mechanisms. In [Asaduzzaman et al.
2010] and [Sarkar et al. 2011], two hardware-only cache locking mechanism are pro-
posed. The first targets both multicore and single systems, while the second is proposed
only for multicore systems. The rest of the works does not propose a hardware-specific
mechanism to lock the cache. Instead, they use the cache locking mechanisms available
on current processors. Campoy et al. were the first authors to study the effects of lock-
ing lines in instruction caches of uniprocessor real-time systems [Campoy et al. 2001].
The authors proposed a genetic algorithm to select the best lines to be locked. Following
the same research line, in [Puaut 2002] the authors proposed two algorithms to also
select best lines to be locked in an instruction cache. In [Vera et al. 2003a] and [Falk
et al. 2007], the authors proposed changes in the compiler to extract information re-
garding the data/instruction access pattern by tasks. Then, this information is used to
lock cache lines. Suhendra and Mitra (this work was discussed in Section 3) were the
first authors to evaluate the combination of cache partitioning and cache locking in
the context of multicore real-systems [Suhendra and Mitra 2008]. Specifically to cache

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:24 G. Gracioli et al.

Table IV. Comparative table of cache locking state-of-the-art mechanisms.

Cache locking Features
AVG,
SRT, or
HRT

Instr.
or
data
caches

HW-
only

HW-
SW

SW approach Multicore
or single-
core

Static
or
dynamic

[Asaduzzaman
et al. 2010]

SRT/HRT both Yes No - both dynamic

[Sarkar et al.
2011]

HRT both Yes No - Multicore dynamic

[Campoy et al.
2001]

HRT instr. No Yes Genetic algorithm Singlecore static

[Puaut and De-
cotigny 2002]

HRT instr. No Yes Two alg. to select
locked cache lines

Singlecore static

[Vera et al.
2003a]

HRT data No Yes Compile-time alg. Singlecore static

[Arnaud and
Puaut 2006]

HRT instr. No Yes Profiling, CFG
analysis, heuristic

Singlecore dynamic

[Falk et al. 2007] SRT/HRT instr. No Yes Compile-time alg. Singlecore static
[Liu et al. 2009a] HRT instr. No Yes Compile-time data,

CFG analysis,
heuristic

Singlecore both

[Aparicio et al.
2011]

HRT instr. No Yes ILP method Singlecore dynamic

[Ding et al. 2014] HRT instr. No Yes ILP-based WCET,
loop-level block se-
lection

Singlecore dynamic

[Suhendra and
Mitra 2008]

HRT both No Yes Cache partitioning
and locking

Multicore both

[Mancuso et al.
2013]

HRT both No Yes Profiling, cache
partitioning and
locking

Multicore both

locking, the authors used the algorithms proposed in [Puaut 2002] to select the cache
lines to be locked. Unlike this work, Mancuso et al. were the first authors to evaluate
the combination of cache partitioning and locking using a real hardware and OS in the
context of multicore real-time systems.

6. OPERATING SYSTEM MEMORY ALLOCATORS
Developers usually allocate data with little or any concern for cache memory hierar-
chy. Hence, the resulting data allocation in the cache memory hierarchy may interact
poorly with the program’s data access pattern [Chilimbi et al. 2000], occurring in intra-
task, intra-core, and inter-core interferences. In a multicore real-time system, this bad
memory allocation may cause the loss of deadlines and it is not tolerable. Thus, OS
memory allocators for real-time systems must be predictable (despite the memory size
being allocated) and cache-conscious in order to allocate memory efficiently. Basically,
we can divide OS memory allocators for real-time systems in three categories: (i) those
that are cache-aware, i.e., provide a cache partitioning or cache locking mechanism to
ensure predictability; (ii) those that are predictable, i.e., the time to allocate memory
blocks is bounded; (iii) those that are predictable and cache-aware. In this section we
review OS memory allocators that are designed to be predictable and/or cache-aware.

6.1. Cache-aware allocators
Chilimbi et al. proposed a memory allocator (named ccmaloc – cache-conscious malloc)
that receives the requested bytes and a pointer to an existing data object that the pro-
gram is likely to access contemporaneously with the element to be allocated [Chilimbi
et al. 2000]. The allocator attempts to allocate the requested data in the same cache

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:25

block as the existing item, thus improving data locality, cache hit rates, and the av-
erage execution time. The authors also integrated the memory allocator with a data
structure reorganizer. The reorganizer basically transforms a pointer structure layout
into a linear memory layout and maps structure elements to reduce cache conflicts us-
ing page coloring. The main drawback of this approach is the need for copying data to
a new linear memory region and the absence of a predictable memory allocation time.

Cache-Index Friendly (CIF) also tries to improve the average execution time, instead
of improving the predictability, by explicitly controlling the cache-index position of al-
located memory blocks [Afek et al. 2011]. The central idea in CIF is to insert small
spacer regions into the array of blocks within the allocator to better distribute block
indices and disrupting the regular ordering of block addresses, returned by the alloca-
tor. The authors performed a set of experiments to show that CIF reduces intra-task
and inter-core interferences. CIF, however, is not designed for real-time systems.

Gracioli and Fröhlich overloaded the C++ new operator to enable colored memory
allocation/deallocation in an RTOS [Gracioli and Fröhlich 2013]. The overload of the
new operator is part of the ISO C++ standard and is supported by any standard C++
compiler. The OS keeps a set of heaps, where each heap only contains pages with the
same color. The user passes the color as parameter to the new operator, identifying
from which heap the memory should be allocated (for instance, data = new (COLOR 0)
(sizeof(int *)), allocates memory from the heap with pages colored as 0). The developer
can also choose an OS-centric allocation scheme, in which the OS uses the thread ID
to automatically choose from which heap data should be allocated (ID % maximum
number of colors). The RTOS has its own colored heap, not causing interference with
the application’s colors. The approach does not have a predictable timing analysis.

The PALLOC allocator is primarily designed to assign disjoint sets of DRAM banks
(private banks) to applications running on different cores [Yun et al. 2014]. This way,
tasks running in parallel do not collide on DRAM banks and do not suffer inter-core
conflicts at this level, as long as there is a sufficient number of banks to accommodate
them. However, its implementation also allows enforcing a last-level cache partition-
ing based on the assignment of colored pages to tasks. PALLOC modifies the Linux
buddy allocator so that specific page colors can be selected when allocating new mem-
ory pages. System designers can create multiple partitions and specify desired sets for
each partition through the CGROUP interface. When a process in a CGROUP requires
physical memory, PALLOC allocates only pages from the specified partition.

6.2. Time-predictable allocators
The Half-fit algorithm was the first dynamic memory allocator to perform alloca-
tion/deallocation in a constant and predictable time [Ogasawara 1995]. In Half-fit, free
blocks of size in the range [2i, 2i+1) are grouped into a free list indexed by i. When a
block is deallocated, it is immediately merged with neighboring free blocks. After merg-
ing, the index of the new free block of size r in a free list bit vector can be found using
i = blog2 rc. This logarithm operation in a bit vector can be executed in one cycle in
several 32-bit CPUs. Half-fit eliminates the search on free lists for allocation by calcu-
lating the index i and taking a free block of memory from the list i. If the list i is empty,
the allocation algorithm takes a block from the subsequent non-empty list whose index
is closest to i. If allocated blocks are larger than request sizes, the allocated block is
split in two parts: one is returned to the requester and another one is relinked on the
free list. The allocation/deallocation time complexity is O(1) [Ogasawara 1995].

Two-Level Segregated Fit memory allocator (TLSF) uses a segregated fit mechanism
and implements a good-fit policy [Masmano et al. 2004]. TLSF limits the size of mem-
ory to be allocated in 16 bytes. It also uses the space of free blocks to store management
information, such as pointers to next blocks. TLSF uses an array of free lists, which

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:26 G. Gracioli et al.

each list (accessed by a specific array position) holds free blocks within a size class.
The array of lists is organized in two-levels to speed up the access to free blocks and
to reduce fragmentation. The first-level divides free blocks in classes that are power
of two (16, 32, 64, 128, etc) and the second-level sub-divides each first-level class lin-
early, where the number of divisions is a user configurable parameter. As in Half-fit,
a bitmap is used to identify empty lists and lists with free blocks. The boundary tag,
used by TLSF, adds a pointer to the beginning of the same block to each free or used
block. Thus, this pointer is used to locate the previous physical memory block and free
or merge it when a block is released [Masmano et al. 2004]. Hence, each free block is
linked in the segregated list and in a list ordered by physical address. Both allocation
and deallocation have time complexity of O(1) [Masmano et al. 2004].

Sun et al. proposed the TLSF-I, an improved version of the TLSF algorithm [Sun
et al. 2007]. TLSF-I aims at improving the efficiency in allocating small blocks and re-
duce fragmentation of the original TLSF algorithm. The authors used different strate-
gies to allocate blocks of memory depending on their sizes. When the size of a block is
small, TLSF-I uses exact-fit policy, instead of good-fit. To maintain an exact fit table,
TLSF-I uses a two-level occupancy bitmap. When a memory block to be allocated has
a small size, the algorithm uses the bitmap to to verify if that block fits in a free list. If
it does not, the algorithm searches in the bitmap tree to find an available block. Com-
parative results have shown that TLSF-I has a better performance than TLSF and
presented lower fragmentation [Sun et al. 2007].

Compact-FIT (CF) is a predictable memory allocation/deallocation system [Craciu-
nas et al. 2008]. CF has a constant memory fragmentation rate and a linear response
time, considering the size of a memory allocation request. Available memory in CF is
partitioned in 16 KB pages. Then, pages are further partitioned into same-sized page-
blocks class. When an allocation request arrives, the algorithm searches the page of the
smallest-size class that is able to serve the request. The allocation of data larger than
16 KB is not supported. CF aims at compacting the memory size-class whenever possi-
ble, allowing at most one page of each size-class to be not-full at a given moment. When
data is released, it is moved to keep the consistency in the size-class [Craciunas et al.
2008]. There are two implementation of CF: “in the moving CF implementation, page-
blocks are mapped directly to physically contiguous pieces of memory, which requires
moving data memory for compaction. In this implementation, allocation takes con-
stant time and deallocation takes linear time if compaction occurs. In the non-moving
implementation, a block table is used to map page-blocks into physical block-frames
that can be located anywhere in memory. Compaction in this case is performed by re-
programming the block table rather than moving data” [Craciunas et al. 2008]. Both
allocation and deallocation in the non-moving implementation take liner time. The au-
thors compared CF with TLSF in terms of fragmentation. CF has presented a more
controlled and predictable fragmentation than TLSF. In terms of allocation/dealloca-
tion time, Half-fit and TSLF are faster than CF due to compaction activities.

A completely different approach for time analysis of dynamic memory allocation is
proposed by Herter and Reineke [Herter and Reineke 2009]. The authors propose algo-
rithms that transform dynamic memory allocations into static memory, aiming at mini-
mizing the WCET in a subsequent WCET analyses [Herter and Reineke 2009]. In order
to allow the transformation from dynamic to static allocation, assumptions are made.
For instance, loop bounds and requested block sizes must be statically known [Herter
et al. 2011]. Good performance is only achieved when dynamic allocations are stati-
cally derived, which may not be true for every application or may be limited by the
hardware platform (i.e., when it has limited memory).

Puaut presented a performance analysis of several general purpose memory alloca-
tors (first-fit, best-fit, btree-best-fit, fast-fit, quick-fit, buddy-bin, and buddy-fibo) with

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:27

respect to real-time requirements [Puaut 2002]. By comparing the worst-case perfor-
mance of allocation and deallocation of memory blocks in two scenarios (analyically
and running real and synthetic workloads), the author has concluded that “for ap-
plications with low allocation rates, the analytically worst-case times do not have an
excessive impact on the application execution times for the most predictable allocators
(buddy systems and quick-fit)” [Puaut 2002].

More recently, Masmano et al. compared the first-fit, best-fit, binary-buddy [Knuth
1997], DLmalloc [Lea, D. 1996], Half-fit, and TLSF memory allocators for real-time
applications [Masmano et al. 2006]. Results have indicated that TLSF and Half-fit
can be used by real-time applications due to stable and bounded response times. In
contrast, algorithms designed to optimize AVG execution times, such as DLmalloc and
binary-buddy, are not suitable for real-time applications. Half-fit achieves bounded
response times wasting more memory than TLSF [Masmano et al. 2006].

6.3. Cache-aware and time-predictable allocators
Cache-Aware Memory Allocator (CAMA) is the first memory allocator that combines
constant time (predictability) with cache-awareness [Herter et al. 2011]. Constant
search times are obtained by managing free blocks in segregated free lists. Conse-
quently, CAMA provides constant response times, which is the key for predictability.
A multi-layered segregated-list reduces the internal fragmentation. This segregatted
list is similar to that proposed by TLSF [Herter et al. 2011]. Cache-awareness is ob-
tained by adding an additional parameter to allocation requests: the first parameter
is the original requested block size and the second and new parameter is the cache
set in which the allocated memory block should be mapped to. Memory blocks within
same size are kept in a single segregated list. Moreover, memory addresses that map
to the same cache set are also grouped to ease cache-aware allocation. A bit vector for
each cache set is responsible for signalizing that a block is empty or not. CAMA uses
descriptor blocks to be aware of cache sets that are accessed during its execution. The
idea is to insert these descriptor blocks in the segregated lists, indicating free mem-
ory blocks. Then, each memory block that is effectively allocated stores a pointer to its
descriptor block [Herter et al. 2011].

6.4. Summary
Table V summarizes the OS memory allocators that are time-predictable or/and cache-
aware. ccmalloc and CIF do not focus on real-time systems, although support page
coloring and index-based cache management techniques, respectively. The dynamic
to static allocation translation has the disadvantage of requiring additional assump-
tions about the program’s allocation behavior, such as the size of memory allocation
requests and loop bounds. The proposed C++ new operator overload technique does
not provide a worst-case timing behavior analysis, but is the first work to provide page
coloring allocation for internal OS memory pages. PALLOC modifies the Linux cgroup
interface to provide colored memory allocation. Half-fit, TLSF, and TLSF-I provide a
bounded time for allocation and deallocation activities. TLSF has lower fragmentation
than Half-fit. TLSF-I improves the TLSF allocation for small memory blocks and re-
duces its fragmentation. CF was designed to have a low fragmentation rate due to an
implemented compaction mechanism. Thus, CF has lower fragmentation than TLSF
and Half-fit. However, CF is slower than TLSF and Half-fit for allocation/deallocation
tasks. Finally, CAMA is the only memory allocator that provides a cache memory tech-
nique together with bounded allocation/deallocation time behavior.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:28 G. Gracioli et al.

Table V. Comparative table of OS memory allocators.

Memory Allocator Time-predictable Cache-aware Cache management tech-
nique

ccmaloc [Chilimbi et al.
2000]

no yes clustering and page coloring

CIF [Afek et al. 2011] no yes index-based
Dynamic translation
[Herter and Reineke 2009]

yes no -

C++ new overload [Graci-
oli and Fröhlich 2013]

no yes page coloring

PALLOC [Yun et al. 2014] no yes page coloring
Half-fit [Ogasawara 1995] yes no -
TLSF [Masmano et al.
2004]

yes no -

TLSF-I [Sun et al. 2007] yes no -
CF [Craciunas et al. 2008] yes no -
CAMA [Herter et al. 2011] yes yes index-based

7. FUTURE DIRECTIONS
None of the reviewed works support the three cache management mechanisms (cache
locking or partitioning, and memory allocator). Some of them, such as [Suhendra and
Mitra 2008] and [Mancuso et al. 2013], provide support for cache partitioning and lock-
ing, but are not integrated in a cache-aware real-time memory allocator. Other works,
such as [Gracioli and Fröhlich 2013] and [Herter et al. 2011], have a cache-aware mem-
ory allocator, but do not support cache locking. Finally, the work in [Mancuso et al.
2015] integrates cache management using coloring and locking with a DRAM-aware
memory allocator. The allocator, however, is not fully time-predictable. In general, the
integration of the presented techniques is feasible and would result in a good approach
to improve the predictability at the shared cache level.

Nevertheless, there are several processor architectural aspects that impact the pre-
dictability of real-time applications and are still open problems. Below, we provide a
discussion of future research directions considering some aspects of current multicore
processors, such as hardware prefetchers, I/O devices, cache coherence protocols, pro-
cessor architecture, and random caches.

— Hardware prefetchers: By fetching instructions and/or data from memory to cache
before the processor needs it, hardware prefetching reduces the latency of accesses
to main memory. However, hardware prefetchers can be quite unpredictable. For in-
stance, stride prefetchers use the distance (i.e., stride of the load) between the current
memory and last memory addresses referenced by a load instruction to fetch an ad-
dress formed by the last address plus the stride distance. For a complete review on
hardware prefetchers, please refer to [Lee et al. 2012].
Usually, real-time application designers disable hardware prefetchers to improve pre-
dictability. If page coloring could also be supported by hardware prefetchers, a real-
time tasks would not interfere with another one. Moreover, rearranging data struc-
tures to be contiguously allocated in memory and re-using memory locations that
have been released help to improve the hardware prefetcher performance.

— Input and Output: I/O devices can also interfere with real-time tasks at the shared
cache level, either directly by DMA or through the cache coherence protocol (snoop-
ing). This behavior is the same as a regular core. Thus, cache locking and partitioning
could also include I/O devices to avoid this interference. We believe that I/O is a hot
future topic for real-time research.

— Cache Coherence: To the best of our knowledge no existing static WCET analy-
sis technique is able to account for the effects of the coherence protocol. When tasks

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:29

share data or colors (in page coloring), they access the same cache lines, incurring in
extra overhead. If frequent shared memory accesses occur, the WCET can be largely
affected [Gracioli and Fröhlich 2013]. Depending on the application, shared data is
intrinsic and cannot be avoided. In these cases, an alternative to decrease the con-
tention caused by the cache coherence protocol is to combine page coloring, cache
locking, scheduling, and hardware performance counters (HPCs). For instance, HPCs
would feed the RTOS scheduler with run-time information about cache coherence
activities, indicating when tasks are interfering with each other. Then, the sched-
uler can take an action, as to prevent the execution of interfering tasks. Another
alternative is to disable caching for shared pages. Thus, invalidations caused by the
coherence protocols are avoided.

— Processor architecture: Several features could be added to current multicore ar-
chitectures to improve their predictability at the cache levels. For instance, to deal
with the limited number of colors in page coloring, it would be possible to implement
a mechanism of page recoloring. Without any additional hardware support, page re-
coloring requires the copy of complete pages, which may take a long time and lead
to deadline misses. Frequent recoloring of a large number of tasks negates the ben-
efit of page coloring [Zhang et al. 2009]. An approach is to provide a mechanism of
re-tagging in the page address layout to enable page recoloring without page copies.
Moreover, to provide HRT guarantees, cache locking is essential and must be sup-
ported by all embedded multicore processors. We suggest that hardware designers
should add cache locking capabilities in future multicore processors. As cache lock-
ing is implemented in hardware, the run-time overhead is almost negligible.
Table VI provides a non-exhaustive list of COTS processors and platforms that fea-
ture hardware support for cache managements schemes (locking and partitioning).
ARM9 single-core processors are among the first to introduce support for cache lock-
down features in hardware. Dedicated registers are provided for controlling which
cache ways are made unavailable for allocation to the standard replacement policy.
However, ARM9 implementations often feature one level of virtually indexed, virtu-
ally tagged cache where locked data is flushed upon page-table switching.

Table VI. COTS CPUs and platforms supporting cache management features.

Locking Partition
CPU Family by Line by Way by Way Example Platforms
ARM9 X Freescale i.MX233, Samsung

S3C2440/S3C2510A
ARM Cortex-A9 X X X TI OMAP 4430/4460, NVIDIA

Tegra 2/3/4i, Samsung Exynos
4210/4212/4412, Freescale
i.MX 6 Solo-Quad,
PandaBoard, ZedBoard

Freescale e500/e500mc X (X) Freescale P40xx-series,
Freescale MPC85xx

Freescale e600/e600mc X (X) Freescale MPC86xx
Freescale e5500/e5500mc X X Freescale P5020/P5010
Freescale e6500/e6500mc X X Freescale T4xxx-series
Intel Xeon E5 v3 X Intel Xeon E5-16xx v3, Intel

Xeon E5-26xx v3

ARM Cortex-A9 CPUs introduce a second level of cache which is shared in multi-
core implementations and managed by the L2C-310 (PL-213) cache controller. L2
sizes can range from 512 KB to 2 MB in these chips and cache blocks are physically
indexed and tagged. Although cache locking features can be configured at synthesis
time by manufacturers, it is often the case that L2 controllers in Cortex-A9 chips are

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:30 G. Gracioli et al.

configured to support cache management features. A non-atomic lockdown by-line
scheme is provided, together with the more flexible lockdown by-master. In the latter
scheme, each core is associated a register to configure the state of each cache way
with respect to operations performed by the considered core. For instance, the same
cache way can be configured to accept allocations for lines fetched by core A, while
not allowing any allocation for requests originated from core B. As such, lockdown
by-master can be used to enforce traditional by-way locking or by-way partitioning.
Freescale PowerPC platforms have historically provided more attention to safety-
critical applications, often adding advanced support for performance monitoring and
tuning. As a part of the extended hardware support offered in these platforms, cache
management schemes are often provided at the ISA level or at the cache controller
level. Freescale e500 and e600 processors feature 2 levels of private cache. In both
single-core and multi-core configurations (e500mc and e600mc), they provide atomic
instructions to perform by-line prefetch and lock of cache content. These instructions
can be used to manage the content of both the private levels of cache. Multi-core con-
figurations introduce a third level of cache, called platform cache, which can be man-
aged using the same instructions and feature additional by-way/by-master cache par-
titioning capabilities. The newer Freescale e5500 and e6500 CPUs, not only maintain
the support for atomic cache management instructions, but also introduce by-thread
cache partitioning capabilities at the second level of private cache (L2).
Finally, Intel has recently introduced support for cache management and monitor-
ing on server-grade CPUs: the Xeon E5 v3 family. Although these processors are not
meant for the embedded market, soft real-time applications can be optimized at an
OS level to use the large caches (20 MB to 45 MB) of these processors through the
newly introduced features. The Intel Cache Allocation Technology (CAT) allows the
definition of classes of service (COS). Each thread can be associated to a COS and
for each COS the hardware provides a cache allocation bitmap. If bit n is set in the
bitmap associated to COS A, all the threads defined in this class of service will be
allowed to allocate cache lines in the n − th cache partition. Bitmaps for different
COS’s can be configured independently, allowing de-facto overlapped and private as-
signment of cache blocks to threads.

— Random Caches: Recently, PTA (Probabilistic Timing Analysis) has been proposed
as an alternative to conventional timing analysis that can be highly pessimistic for
the worst-case [Cazorla et al. 2013]. PTA provides pWCET estimates (Probabilistic
WCET) that can be exceeded with a given probability. That is, a pWCET with an as-
sociated low probability, say 10−15, means that the probability for the execution time
to exceed this pWCET is 10−15. However, PTA techniques require the execution times
of programs to have a probability of occurrence that is independent and identically
distributed. These two features are essential to allow using random variables and ap-
ply statistical methods for analyzing the system. At the cache level, caches with LRU
replacement policy cannot be used because the result of each memory access is de-
pendent on the previous accesses. A fully-associate cache with random replacement
is one example that can be used for PTA. Along this line of research, PTA has been
applied to a single level cache [Kosmidis et al. 2013a], multi-level caches [Kosmidis
et al. 2013b] and for CRPD [Davis et al. 2013]. Recently, PTA was used for shared
caches to estimate the inter-core cache conflicts [Slijepcevic et al. 2014].

— Translation Lookaside Buffer (TLB): The paging mechanism relies on a table to
perform address translation at run-time. Since the table is too large to fit in processor
registers, instead a subset of the table is stored in a hardware structure known as
TLB. The TLB functions as a specialized data cache for page table entries, and there-
fore suffers from predictability problems common to other caches, including intra-
task, intra-core and inter-core interference [Panchamukhi and Mueller 2015]. Due

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:31

to its similarity to data caches, both locking and partitioning solutions appear to be
feasible, but there is very little published work focusing on TLB management for
real-time systems: [Ishikawa et al. 2013] discusses TLB locking based on the support
provided by some ARM platforms, while [Panchamukhi and Mueller 2015] supports
index-based partitioning in the TLB using page coloring.

— Profiling Techniques: The majority of challenges in designing cache management
techniques lay in the establishment of a good trade-off between the determinism im-
posed on the hardware circuitry and the resulting performance. However, Without a
full knowledge of the application behavior in terms of memory access pattern, this
trade-off is decided empirically for all the applications. Consequently, only specific
classes of applications can benefit from a specific cache management technique. The
ability to profile and analyze the key aspects of applications’ memory access patterns
is a turning point in the optimization of cache management techniques. A body of
works exists that use abstract interpretation [Cousot 2001; Cullmann 2013], sym-
bolic execution [King 1976], hardware and software memory tracing [Sun and Tian
2011; Xiaofeng et al. 2005; Cesati et al. 2015] to gather information about memory
access patterns. These techniques have been mostly used to perform static analysis.
Nonetheless, similar approaches could be used to evolve cache management mecha-
nism into memory-pattern-aware techniques.

8. CONCLUSION
The migration to multicore architectures is posing incredible challenges to the devel-
opment of hard real-time systems. This is because the presence of shared hardware re-
sources, such as memories, interconnects, I/O, etc., creates undue interferences among
cores. In turn, this interference makes it incredibly hard to derive safe and accurate
worst-case bounds on tasks’ execution times, which is required to guarantee timing
constraints (deadline). As part of this survey paper, we have specifically focused on
analysis of CPU cache hierarchy. We have introduced and classified the various types
of cache interference, and argued that mitigation strategies ought to be implemented
to provide isolation among tasks and cores. We have classified available cache manage-
ment mechanisms into either index-based cache partitioning, way-based cache parti-
tioning, cache locking, and OS memory allocators, and described techniques proposed
in the real-time literature for each category. Different techniques have been compared
based on required hardware support and provided isolation guarantees.

A main take-away of our survey is that a certain level of hardware support is neces-
sary to provide strong isolation guarantees to concurrently executing tasks in a mul-
ticore real-time system. Even when software-only implementation is possible, such so-
lutions are typically more cumbersome, more difficult to certify and/or add more over-
head compared to hardware solutions. For example, index-based partitioning can be
achieved through compiler-based techniques, but modifying and re-certifying the com-
piler can be a daunting task. Furthermore, while the present work focuses on cache
memories, modern multicore processors include other shared resources which exhibit
similar behavior to caches, that is, they are highly stateful components where past in-
teractions by other cores can greatly influence the latency of future accesses. Hence, we
suggest that architectural design for hard real-time systems should focus on providing
isolation properties at the hardware level.

References
Y. Afek, D. Dice, and A. Morrison. 2011. Cache index-aware memory allocation. In Proc. of the ISMM. ACM,

USA, 55–64.
AMD. 2013. AMD64 Architecture Programmers Manual Volume 2: System Programming. Section 7.3: Mem-

ory Coherency and Protocol. (May 2013.). Publication # 24593. Revision: 3.23.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:32 G. Gracioli et al.

L. C. Aparicio, J. Segarra, C. Rodrı́guez, and V. Viñals. 2011. Improving the WCET computation in the pres-
ence of a lockable instruction cache in multitasking real-time systems. Journal of Systems Architecture
57, 7 (2011), 695–706.

Alexis Arnaud and Isabelle Puaut. 2006. Dynamic instruction cache locking in hard real-time systems. In
Proc. of the 14th RTNS.

Abu Asaduzzaman, Fadi N. Sibai, and Manira Rani. 2010. Improving cache locking performance of modern
embedded systems via the addition of a miss table at the {L2} cache level. Journal of Systems Architec-
ture 56, 4-6 (2010), 151–162.

Mathieu Avila and Isabelle Puaut. 2009. Heptane - A Tree-based WCET Analysis Tool. (2009). http://ralyx.
inria.fr/2004/Raweb/aces/uid43.html

Andrea Bastoni, Björn Brandenburg, and James Anderson. 2010. Cache-related preemption and migration
delays: Empirical approximation and impact on schedulability. In Proc. of OSPERT. 33–44.

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. 2010. An analysis of Linux scalability to many cores. In Proc. of the 9th
OSDI. USENIX Association, Berkeley, CA, USA, 1–8.

Edouard Bugnion, Jennifer M. Anderson, Todd C. Mowry, Mendel Rosenblum, and Monica S. Lam. 1996.
Compiler-directed Page Coloring for Multiprocessors. In Proc. of the 7th ASPLOS. ACM, USA, 244–255.

B.D. Bui, M. Caccamo, Lui Sha, and J. Martinez. 2008. Impact of Cache Partitioning on Multi-tasking Real
Time Embedded Systems. In Proc. of the 14th RTCSA. 101–110.

Marti Campoy, A. Perles Ivars, and J. V. Busquets Mataix. 2001. Static Use of Locking Caches in Multitask
Preemptive Real-Time Systems. In Proc. of IEEE Real-Time Embedded Systems Workshop. London, UK.

Francisco J Cazorla, Eduardo Quinones, Tullio Vardanega, Liliana Cucu, Benoit Triquet, Guillem Bernat,
Emery Berger, Jaume Abella, Franck Wartel, Michael Houston, and others. 2013. Proartis: Probabilis-
tically analyzable real-time systems. ACM TECS 12, 2s (2013), 94.

Certification Authorities Software Team (CAST). 2014. Position Paper on Multi-core Processors - CAST-32.
(May 2014). https://www.faa.gov/aircraft/air cert/design approvals/air software/cast/cast papers/media/
cast-32.pdf

M. Cesati, R. Mancuso, E. Betti, and M. Caccamo. 2015. A Memory Access Detection Methodology for Accu-
rate Workload Characterization. In Proc. of the 21th IEEE RTCSA. IEEE.

Yu Chen, Wenlong Li, Changkyu Kim, and Zhizhong Tang. 2009. Efficient shared cache management
through sharing-aware replacement and streaming-aware insertion policy. In Proc. of the 24th IEEE
IPDPS 09. 1–11.

T. M. Chilimbi, M. D. Hill, and J. R. Larus. 2000. Making Pointer-Based Data Structures Cache Conscious.
Computer 33, 12 (Dec. 2000), 67–74.

Derek Chiou, Prabhat Jain, Srinivas Devadas, and Larry Rudolph. 2000. Dynamic cache partitioning via
columnization. In Proc. of DAC. ACM.

Ali Chousein and Rabi N. Mahapatra. 2005. Fully associative cache partitioning with don’t care bits for
real-time applications. SIGBED Rev. 2, 2 (April 2005), 35–38.

P. Cousot. 2001. Abstract Interpretation Based Formal Methods and Future Challenges. In Informatics - 10
Years Back. 10 Years Ahead. Springer-Verlag, London, UK, UK, 138–156.

Silviu S. Craciunas, Christoph M. Kirsch, Hannes Payer, Ana Sokolova, Horst Stadler, and Robert
Staudinger. 2008. A Compacting Real-time Memory Management System. In Proc. of USENIX ATC.
USENIX, USA, 349–362.

C. Cullmann. 2013. Cache Persistence Analysis: Theory and Practice. ACM Trans. Embed. Comput. Syst. 12,
1s, Article 40 (March 2013), 25 pages.

C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke, B. Triquet, S. Wegener, and R. Wil-
helm. 2010. Predictability Considerations in the Design of Multi-Core Embedded Systems. Ingénieurs
de l’Automobile 807 (September 2010), 36–42.

Robert I. Davis and Alan Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems.
Comput. Surveys 43, 4, Article 35 (Oct 2011), 44 pages.

R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean. 2013. Analysis of probabilistic cache
related pre-emption delays. In Proc. of the 25th ECRTS. IEEE, 168–179.

Huping Ding, Yun Liang, and T. Mitra. 2012. WCET-centric partial instruction cache locking. In Proc. of the
49th ACM/IEEE DAC. 412–420.

Huping Ding, Yun Liang, and T. Mitra. 2014. WCET-Centric dynamic instruction cache locking. In Proc. of
DATE. 1–6.

Heiko Falk, Sascha Plazar, and Henrik Theiling. 2007. Compile-time Decided Instruction Cache Locking
Using Worst-case Execution Paths. In Proc. of the 5th IEEE/ACM CODES+ISSS. ACM, USA, 143–148.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:33

C. Ferdinand. 1997. Cache Behavior Prediction for Real-Time Systems. Ph.D. Dissertation. Saarland Univer-
sity.

G Gracioli and A. A. Fröhlich. 2013. An Experimental Evaluation of the Cache Partitioning Impact on Mul-
ticore Real-Time Schedulers. In Proc. of the 19th IEEE RTCAS. IEEE, 10.

Daniel Grund and Jan Reineke. 2010a. Precise and Efficient FIFO-Replacement Analysis Based on Static
Phase Detection. In Proc. of the 22nd ECRTS. 155–164.

Daniel Grund and Jan Reineke. 2010b. Toward Precise PLRU Cache Analysis. In Proc. of 10th Workshop on
WCET Analysis. 28–39.

Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2009. Cache-aware scheduling and analysis for multicores.
In Proc. of the EMSOFT’09. ACM, 245–254.

Nan Guan, Xinping Yang, Mingsong Lv, and Wang Yi. 2013. FIFO cache analysis for WCET estimation: a
quantitative approach. In Proc. of DATE. USA, 296–301.

Damien Hardy, Thomas Piquet, and Isabelle Puaut. 2009. Using bypass to tighten WCET estimates for
multi-core processors with shared instruction caches. In Proc. of the 30th RTSS. IEEE, 68–77.

Damien Hardy and Isabelle Puaut. 2009. Estimation of cache related migration delays for multi-core pro-
cessors with shared instruction caches. In Proc. of the 17th RTNS. 45–54.

John L. Hennessy and David A. Patterson. 2006. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, Fourth Edition.

J. Herter, P. Backes, F. Haupenthal, and J. Reineke. 2011. CAMA: A Predictable Cache-Aware Memory
Allocator. In Proc. of the 2011 ECRTS. 23 –32.

J. Herter and J. Reineke. 2009. Making dynamic memory allocation static to support WCET analyses. In
Proc. of 9th International Workshop on WCET Analysis.

Intel. 2010. An introduction to the Intel QuickPath Interconnect. (January 2010).
T Ishikawa, T Kato, S Honda, and H Takada. 2013. Investigation and improvement on the impact of TLB

misses in real-time systems. In Proc. of OSPERT.
Ravi Iyer. 2004. CQoS: A Framework for Enabling QoS in Shared Caches of CMP Platforms. In Proc. of the

18th ICS. ACM, USA, 257–266.
R. E. Kessler and Mark D. Hill. 1992. Page Placement Algorithms for Large Real-indexed Caches. ACM

Trans. on Computer Systems 10, 4 (Nov 1992), 338–359.
Hyoseung Kim, Arvind Kandhalu, and Ragunathan Rajkumar. 2013. A Coordinated Approach for Practical

OS-Level Cache Management in Multi-core Real-Time Systems. In Proc. of the 25th ECRTS. 80–89.
J. C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (July 1976), 385–394.
D.B. Kirk and J.K. Strosnider. 1990. SMART (strategic memory allocation for real-time) cache design using

the MIPS R3000. In Proc. of the 11th RTSS. 322–330.
Donald E. Knuth. 1997. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms.

Addison Wesley Longman Publishing Co., Inc., USA.
Leonidas Kosmidis, Jaume Abella, Eduardo Quinones, and Francisco J Cazorla. 2013a. A cache design for

probabilistically analysable real-time systems. In Proc. of the DATE. 513–518.
L. Kosmidis, J. Abella, R. Quinones, and F. J. Cazorla. 2013b. Multi-level unified caches for probabilistically

time analysable real-time systems. In Proc. of the 34th RTSS. IEEE, 360–371.
Lea, D. 1996. A Memory Allocator. (1996). Unix/Mail, 6/96.
Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When Prefetching Works, When It Doesn&Rsquo;T,

and Why. ACM Trans. Archit. Code Optim. 9, 1, Article 2 (March 2012), 29 pages.
Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and Vivy Suhendra. 2012. Timing

analysis of concurrent programs running on shared cache multi-cores. Real-Time Systems 48, 6 (2012),
638–680.

Jochen Liedtke, Hermann Haertig, and Michael Hohmuth. 1997. OS-Controlled Cache Predictability for
Real-Time Systems. In Proc. of the 3rd IEEE RTAS. IEEE, USA, 213–224.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayappan. 2008. Gaining
Insights into Multicore Cache Partitioning: Bridging the Gap between Simulation and Real Systems. In
Proc. of the HPCA. IEEE, 367–378.

Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. 2004. Organizing the Last Line of Defense
before Hitting the Memory Wall for CMPs. In Proc. of the 10th HPCA. IEEE, USA, 176–.

C. L. Liu and J. W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time En-
vironment. J. ACM 20, 1 (Jan. 1973), 46–61.

Tiantian Liu, Minming Li, and C.J. Xue. 2009a. Instruction Cache Locking for Real-Time Embedded Systems
with Multi-tasks. In Proc. of the 15th IEEE RTCSA. 494–499.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

0:34 G. Gracioli et al.

Tiantian Liu, Minming Li, and C.J. Xue. 2009b. Minimizing WCET for Real-Time Embedded Systems via
Static Instruction Cache Locking. In Proc. of the 15th IEEE RTAS. 35–44.

Qingda Lu, Jiang Lin, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayappan. 2009. Soft-OLP: Im-
proving Hardware Cache Performance through Software-Controlled Object-Level Partitioning. In Proc.
of the 18th PACT. 246–257.

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. 2013. Real-time cache manage-
ment framework for multi-core architectures. In Proc. of the 19th IEEE RTAS. USA, 45–54.

Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun. 2015. WCET(m) Estima-
tion in Multi-Core Systems using Single Core Equivalence. In Proc. of the 27th ECRTS.

Miguel Masmano, Ismael Ripoll, and Alfons Crespo. 2006. A Comparison of Memory Allocators for Real-time
Applications. In Proc. of the 4th JTRES. ACM, USA, 68–76.

M. Masmano, I. Ripoll, A. Crespo, and J. Real. 2004. TLSF: a new dynamic memory allocator for real-time
systems. In Proc. of the 16th ECRTS. 79–88.

S. Mohan, M. Caccamo, L. Sha, R. Pellizzoni, G. Arundale, R. Kegley, and D. de Niz. 2011. Using Multicore
Architectures in Cyber-Physical Systems. In Workshop on Developing Dependable and Secure Automo-
tive Cyber-Physical Systems from Components. Michigan, USA.

Frank Mueller. 1995. Compiler Support for Software-based Cache Partitioning. In Proc. of the ACM SIG-
PLAN LCTES. ACM, USA, 125–133.

S.P. Muralidhara, M. Kandemir, and P. Raghavan. 2010. Intra-application cache partitioning. In Proc. of the
25th IEEE IPDPS. 1–12.

T. Ogasawara. 1995. An Algorithm with Constant Execution Time for Dynamic Storage Allocation. In Proc.
of the 2Nd RTCSA. IEEE, USA, 21–.

S Panchamukhi and F Mueller. 2015. Providing Task Isolation Via TLB Coloring. In Proc. of the 21th RTAS.
Marco Paolieri, Eduardo Quiñones, Francisco J Cazorla, Guillem Bernat, and Mateo Valero. 2009. Hard-

ware support for WCET analysis of hard real-time multicore systems. In ACM SIGARCH Computer
Architecture News, Vol. 37. ACM, 57–68.

R. Pellizzoni. 2010. Predictable and Monitored Execution for COTS-based Real-Time Embedded Systems.
Ph.D. Dissertation. University of Illinois at Urbana-Champaign.

I. Puaut. 2002. Real-time performance of dynamic memory allocation algorithms. In Proc. of the 14th
ECRTS. 41–49.

I. Puaut and D. Decotigny. 2002. Low-complexity algorithms for static cache locking in multitasking hard
real-time systems. In Proc. of the 23rd IEEE RTSS. 114–123.

I Puaut and C Pais. 2007. Scratchpad memories vs locked caches in hard real-time systems: a quantitative
comparison. In Proc. of DATE. 1–6.

Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches. In Proc. of MICRO 39. IEEE, 423–432.

Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. 2006. Architectural Support for Operating
System-driven CMP Cache Management. In Proc. of the 15th PACT. ACM, USA, 2–12.

Parthasarathy Ranganathan, Sarita Adve, and Norman P. Jouppi. 2000. Reconfigurable Caches and Their
Application to Media Processing. In Proc. of the 27th ISCA. ACM, USA, 214–224.

Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. 2007. Timing Predictability of Cache
Replacement Policies. Real-Time Systems 37, 2 (November 2007), 99–122.

Theodore Romer, Dennis Lee, Brian N. Bershad, and J. Bradley Chen. 1994. Dynamic Page Mapping Policies
for Cache Conflict Resolution on Standard Hardware. In Proc. of the 1st OSDI. 255–266.

Abhik Sarkar, Frank Mueller, and Harini Ramaprasad. 2011. Predictable task migration for locked caches
in multi-core systems. In Proc. of the LCTES’11. ACM, New York, 131–140.

Abhik Sarkar, Frank Mueller, and Harini Ramaprasad. 2012. Static task partitioning for locked caches in
multi-core real-time systems. In Proc. of the CASES ’12. ACM, NY, USA, 161–170.

Timothy Sherwood, Brad Calder, and Joel Emer. 1999. Reducing Cache Misses Using Hardware and Soft-
ware Page Placement. In Proc. of the 13th ICS. ACM, USA, 155–164.

Mladen Slijepcevic, Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J Cazorla. 2014.
Time-analysable non-partitioned shared caches for real-time multicore systems. In Proc. of the 51st
ACM/IEEE DAC. IEEE, 1–6.

S. Srikantaiah, M. Kandemir, and M. J. Irwin. 2008. Adaptive set pinning: managing shared caches in chip
multiprocessors. In Proc. of the 13th ASPLOS. ACM, 135–144.

G. E. Suh, L. Rudolph, and S. Devadas. 2004. Dynamic Partitioning of Shared Cache Memory. The Journal
of Supercomputing 28, 1 (Apr 2004), 7–26.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

A Survey on Cache Management Mechanisms for Real-Time Embedded Systems 0:35

Vivy Suhendra and Tulika Mitra. 2008. Exploring locking & partitioning for predictable shared caches on
multi-cores. In Proc. of the 45thDAC. ACM, USA, 300–303.

Q. Sun and H. Tian. 2011. A flexible automatic source-level instrumentation framework for dynamic pro-
gram analysis. In Proc. of the 2nd IEEE ICSESS. 401 –404.

Xiao Hui Sun, JinLin Wang, and Xiao Chen. 2007. An Improvement of TLSF Algorithm. In Proc. of the 15th
IEEE-NPSS. 1–5.

K.T. Sundararajan, T.M. Jones, and N.P. Topham. 2013. RECAP: Region-Aware Cache Partitioning. In Proc.
of the 31st IEEE ICCD. 294–301.

D. Tam, R. Azimi, L. Soares, and M. Stumm. 2007. Managing shared L2 caches on multicore systems in
software. In Proc. of the WIOSCA.

George Taylor, Peter Davies, and Michael Farmwald. 1990. The TLB Slice - a Low-cost High-speed Address
Translation Mechanism. In Proc. of the 17th ISCA. ACM, New York, NY, USA, 355–363.

K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj, R. Iyer, S. Makineni, and D. Newell. 2006. Molecular
Caches: A caching structure for dynamic creation of application-specific Heterogeneous cache regions.
In Proc. of the 39th MICRO. 433–442.

Xavier Vera, Björn Lisper, and Jingling Xue. 2003a. Data Cache Locking for Higher Program Predictability.
In Proc. of ACM SIGMETRICS. ACM, New York, NY, USA, 272–282.

Xavier Vera, Björn Lisper, and Jingling Xue. 2003b. Data Caches in Multitasking Hard Real-Time Systems.
In Proc. of the RTSS’03. IEEE, 154–.

B.C. Ward, J.L. Herman, C.J. Kenna, and J.H. Anderson. 2013. Making Shared Caches More Predictable on
Multicore Platforms. In Proc. of the 25th ECRTS. 157–167.

J Whitham and N Audsley. 2009. Implementing time-predictable load and store operations. In Proc. EM-
SOFT. 265–274.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley,
Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. 2008. The Worst-case Execution-time Prob-
lem – Overview of Methods and Survey of Tools. ACM TECS 7, 3, Article 36 (May 2008), 53 pages.

Andrew Wolfe. 1994. Software-based Cache Partitioning for Real-time Applications. Journal of Computing
Software Engineering 2, 3 (March 1994), 315–327.

G. Xiaofeng, M. Laurenzano, B. Simon, and A. Snavely. 2005. Reducing overheads for acquiring dynamic
memory traces. In Proc. of the IEEE IISWC. 46–55.

Jun Yan and Wei Zhang. 2008. WCET Analysis for Multi-Core Processors with Shared L2 Instruction
Caches. In Proc. of the 14th IEEE RTAS. 80–89.

H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. 2014. PALLOC: DRAM Bank-Aware Memory Allocator for
Performance Isolation on Multicore Platforms. Proc. of the 20th IEEE RTAS (April 2014).

Wei Zhang and Yan Jun. 2012. Static timing analysis of shared caches for multicore processors. Journal of
Computing Science and Engineering 6, 4 (2012), 267–278.

Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards practical page coloring-based multicore
cache management. In Proc. of the 4th ACM EuroSys. ACM, USA, 89–102.

Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova, and Manuel Prieto. 2012.
Survey of Scheduling Techniques for Addressing Shared Resources in Multicore Processors. Comput.
Surveys 45, 1, Article 4 (Dec 2012), 28 pages.

Received X 2015; revised Y 2015; accepted Z 2015

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2015.

