
Abstract

The APL*PLUS@ System for the Macintosh:
An Overview

Edward R. Myers
APL Pmducu Marketing Manager

STSC, Inc.
2115 East Jefferson Street

Rockville, MD USA 20852
(301) 984-5110

The APL*PLUS System for the Macintoshm is a full-featured
APL interpreter that integrates the Macintosh user interface style
into a standard APL*PLUS System environment. An overview
of these Macintosh-specific features along with a comparison of
the capacity and performance of the APL*PLUS Mac System to
other APL systems suggests that APL applications that are highly
interactive, require large workspaces, and need advanced
graphics are best implemented on the Macintosh.

Background

The recently released APL*PLUS System for the Apple
Macintosh (December, 1986) expands the availability of APL on
desk-top machines. In addition, some of the features of this
system represent an evolution in the way APL interpreters interact
with the user. In particular, the design of the keyboard layout
and use of the mouse, menus and graphics all combine to make
APL easier to use and more interactive.

The APL*PLUS Mac System is based on PortaAPL~ for the
Macintosh. Richard Smith, author of PortaAPL, and STSC
jointly produced the APL*PLUS Mac System using PortaAPL
as the technical base. Many new features were added to the
PortaAPL system to make it compatible with STSc’s other
APL*PLUS Systems. In addition, many supplemental
workspaces and greatly expanded documentation were prepared
for the product.

Two primary audiences were considered when designing and
building the APL*PLUS Mac System:

l Application developers who had APL code on other
machines and had a need or desire to move those
applications in whole or in part to a Macintosh computer.

l Macintosh users who had a need for an analytical or
application development environment.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

Q 1987 ACM 0-89791-226~8/87/0005/0196 75c

As expected, many design choices were difftcult since these
two types of users have opposing needs. For example, the
aoolication develouers with APL code on IBM PCs want a
&mpatible graph& system on the Macintosh. Macintosh users,
however, want to use the powerful (yet incompatible with the
APL*PLUS PC System) graphics functions that were available
through the Macintosh operating environment.

APL*PLUS System features generally fall into the following
two categories:

l APL*PLUS System Standard:
Those features that behave virtually the same on all
implementations of the APL*PLUS System.

l System Dependent:
Those features that provide similar functionality on
each APL*PLUS System, but due to environmental
considerations are implement4 differently in different
environments. Occasionally these features are new or
unique to an APL*PLUS System and thus considered
experimental until proven successful in meeting
customer needs.

In the case of the APL*PLUS Mac System, a particular feature
was implemented one way (instead of another) because the
preferred implementation strongly supported one of the following
product objectives:

l To support the traditional standard APL*PLUS System
features.

l To maintain a high level of feature compatibility with
system dependant features of other APL systems.

l To integrate standard “user-friendly” Macintosh features
into the APL environment so Macintosh users would
find APL easy to use.

This paper will examine only the system-dependent features of
the APL*PLUS Mac System with these product goals in mind. In
addition, this paper will compare the performance,
characteristics, and system limits of the APL*PLUS Mac System
to other APL*PLUS System implementations. This comparison
will allow the APL user to choose the implementation best suited
for his particular application.

196

http://crossmark.crossref.org/dialog/?doi=10.1145%2F384282.28338&domain=pdf&date_stamp=1987-01-01

System Features

Because of hardware diffennces, features that perform similar
tasks are implemented differently in different APL*PLUS System
implementations. This section describes the implementation of
the following features in the APL*PLUS Mac System:

l Setting User Prefenmces
l Keyboard Input and Screen Ouput
l Full-Screen Editing
l Terminal Mode and Communications
l Graphics Generation
l Interface to the Operating System and Non-APL Programs

Setting User Preferences

Each APL system provides a way to set user preferences.
User preferences include such environmental settings as font size
or style; keyboard layout; and memory allocation for workspace,
printing, communications, or editing.

The APL*PLUS Mac System uses resources to store
parameters that might change due to user preference. A suite of
utility functions are provided that allow the user to modify these
parameters to suit his own tastes. Version 1 .O of the APL*PLUS
Mac System allows the user to modify:

Keyboard type (Unified or APL)
Font size and style (9, 10,12, l&20, or 24 point in either
Roman or Italic typeface)
Communications parameters (Baud rate, protocol, echo)
Maximum workspace size
Heap size

User prefennces cannot be modified under program control
because of the role resources play in the Macintosh environment.
The user must exit APL and restart in order for the new choices
to be in effect.

The APL*PLUS Mac System supports two distinct keyboard
layouts: APL and unified. The APL keyboard uses the
traditional APL terminal keyboard layout with the simple
extension that most ASCII characters (e.g., @, #, %, and &)
can be entered directly from the keyboard. Users accustomed to
using APL on other computers may prefer the APL keyboard.

The default, however, is the unified keyboard. Most users are
expected to prefer the unified keyboard layout since it conforms
closely to the use of alternate fonts with MacWrite? or other
non-APL software.

The unified keyboard merges the special APL characters into
the ASCII keyboard, so keystrokes for characters common to
APL and non-APL software will generally match. The keys
(pressed by themselves) produce lowercase letters and digits;
shifti keys produce uppercase letters and ASCII symbols (such
as @, #, and 8~). The Option key pressed in conjunction with
another key produces the APL symbol one would normally
expect. For example Option-I produces 1, and Option-R p. The
Shift-Option combination produces compound characters such as
t, 4, a, ‘P, 8, 0, and El. A diagram of the unified keyboard for
the Macintosh is provided below.

All APL chamcters are available as single keystroke
combinations, so over&king to form composite characters is not
needed or supported. STSC optionally provides a customization
pmgram that allows users to remap the character set to specific
keystrokes. This customization option is most useful to
international customers who may have unique keyboard

arrangements or want to substitute accented vowel characters for
unused APL symbols.

Unified Keyboard Layout

The APL*PLUS Systems for the PC and UNX use start-up
parameters to set user preferences rather than resources (although
the parameters that can be changed by the user are different for
each system.) In addition, on the PC only, the system function
II POKE can be used to change many parameters under program
control.

Keyboard Input and Screen Output

To build highly interactive applications requires that the APL
programmer know what events (input) the user or operating
system is supplying. For example, on the Macintosh the
following events can occur:

l A keyboard key is pressed.
l The mouse button is pressed with mouse at a certain location.
l A menu item is selected from the menu bar.
l The screen is overwritten by a desk accessory.

This list of events is considerably different from the
keyboard-only input for mainframe or Unix APL systems. To
support these events requires some extensions to existing input
functions and the addition of some new input facilities.

In the APL*PLUS Mac System, these events are collected and
passed on to the APL application through the system function
OGETKEY. This event facility combined with the PTINRECT
function (which determines whether a mouse location falls within
a specified rectangular region of the screen) allows one to easily
write highly interactive user dialogs. For example, the following
function uses OGETKEY and PTINRECT todetermine the
user’s response to the simple dialog pictured below,

10 10 SELECT '/Which Choice?Kme/Tvo'

197

The key part of the SELECT program (which is included in
unlocked form with the APL*PLUS Mac System) looks like this:

1141 Sel,Rect+2 4PlR 28 38 88 19 90 38 158

iii; until: Input+OQETKEY
+(~ntil,Char,Event)[Oio+pInput]

iii1 Char: n Handle Keystroke entry

iii 1 Event :
C24l+(Untll,House,Renu,ReLresh)[OIOtltInputl
It51 Mouse: locdlinput II Vhlch region?
C261 selecteddloc PTINRECT Sel-Rect)ll
1271 A Perform action based on region

e&l Henu: A Handle Uenu Choice

135 1 Refresh: A Refresh screen

The APL*PLUS Mac System provides a set of default menu
selections for interactively specifying system commands like
)LOADand)SAVE;ortoenterterminalmodeandsct

communications parameters like baud rate and flow control. The
menu facility also allows the APL application developer to define
his own menus on the system menubar. The menus, like
function keys on the PC or PF keys on a mainframe application,
allow the user to assign macros or other useful keystrokes to a
single key combination. In addition, the menubar, in conjunction
with the mouse, can become a help facility.

The menu below shows the default menus (File, Edit,
Communicate, Stop) and illustrates one of several optional
menus provided with the APL*PLUS Mac System. The menus
are created by specifying both the menu items and the keystrokes
to be simulated. For example, selecting “Tied APL files” on the
info menu simulates entering the following keystrokes:

{clear line) OFNAMES, ’ I1 1’ OFMT IIFNUMS (CT}

The dialog box itself was generated using the QuickDraw
graphics functions.

In addition to building custom dialog boxes, two standard
dialog boxes are supplied as system functions. IISFOPEN
provides an open dialog

OSFOPEN ’ ’

o Hard Disk

and OSFSAVE provides a save dialog

‘Pick File Name’ OSFSAVE It

Pick File Name

JUNK

[Saue]

(T

198

6 File Edit Communicate Stop 60

APl+PLU
All files
Tied IPt files
Tied native files
Workspaces
Actiue workspace
Functions
Execution stack
Uarfables
Workspace free
Ulorktpace used
Object sizes
Last error
Error handler

Other screen management functions for the APL*PLUS Mac
system arc very similar to those in the PC implementation.
OWGET, OWPUT, and OWI’NDOW, have the same syntax and
function in both implementations. The only difference is that
certain attributes (e.g., color and highlighting) arc not supported
on the Macintosh as they are on the PC. If future Macintosh
machines support a color screen, these system functions can
easily be extended to provide color support in a manner similar to
the PC.

Full-Screen Editing

All APL*PLUS Systems implementations generahy include a
full-screen editor for use in editing functions and character text.

The APL*PLUS Mac editor is invoked using IIED for a
character vector or matrix, or de1 (0) for a function. The
full-screen editor adopts many of the cut-and-paste features found
in most Macintosh applications. Below is a sample edit session.
Note the horizontal and vertical scrolling as well as the edit
commands.

Version 1 .O of the APL*PLUS Mac System editor does not
include a search and replace facility. However, utility functions
(WSSffOW and FNREPL) arc provided to perform syntactic
global “search and replace” operations on individual functions or
a whole workspace.

Terminal Mode and Communications

Terminal mode is suprisingly similar in all APL*PLUS
implementations (with the exception of the mainframe products,
which don’t have a terminal emulator.) Each implementation has
a single keystroke or menu choice to switch into terminal mode
from within an APL session. In addition, each implementation
has a facility to nzad and write character data to/from the
communications port. This gives the user the ability to write
special programs to upload and download APL programs and
data between computers. A standard upload/download program
(SERXFER) is available for aU APL*PLUS System
implementations to facilitate moving data and APL functions
between APL systems.

Graphics Generation

Since the Macintosh has such rich graphics functions built into
the machine, the APL*PLUS Mac System was &signed to
interface with these routines rather than competing with them.
The Macintosh graphics routines are accessed through APL cover
functions that call a hidden system function (OTOOLBOX). The
system function is not documented since it cannot easily validate
tbe arguments and if the user provides incorrect parameters often
the operating system will crash. The cover functions perform a
limited amount of error checking and provide more reliable
usage.

The QuickDraw cover routines provide information on current
global settings or allow the settings to bc changed:

l GETPEN
l GETPENMODE
l GETPENPAT
l GETPENSIZE
l GETPENVIS
l GETTEXTFACE
l GETTEXTFONT
l GETTEXTMODE
l GETTEXTSIZE
l TEXTFACE
l TEXTFONT
l TEXTSIZE
l TEXTWIDTH
l TEXTMODE

Returns the position of the pen.
Returns the pen mode.
Returns the pen pattern.
Returns the size of the pen.
Tells if the ptn is visible.
Returns the text style
Returns the ID of the text font.
Returns the mode for drawing text
Returns the size of the text in points.
Specifies the text style.
Specifies the text font.
Specifies the size of the text in points.
Returns width of a string in pixels.
Sets the text mode.

Line drawing functions allow users to move the pen and draw
Lines from specific or relative points, or to place text on the
screen:

l LINE Draws a line nlative to the current position.
l LINETO Draws a line to a specified point.
l MOVE Moves the pen along a relative path.
l MOVETO Moves the pen to a specific location.
* DRAWLINE Draws a line from one location to another.
l DRAWTEXT Draws text using the current attributes.

Several functions allow users to draw and manipulate various
shapes, including mtangles, rounded rectangles, ovals, arcs,
and polygons:

l Draw the outline of the specifed shape with FRAMERECT,
FRAMEROUNDRECT,FRAMEOVAL,FRAMEARC,and
FRAMEPOLY.

l Fill the inside of the specified shape with the current pen
pattern with PAINTRECT, PAINTROUNDRECT,
PAINTOVAL, PAINTARC, and PAINTPOLY.

l Invert (interchange black and white pixels) a portion of the
specified shape with INVERTRECT,
INVERTROUNDRECT,INVERTOVAL,INVERTARC,
and INVERTPOLY.

l Erase (fill with the background pattern) a portion of the
specified shape with ERASERECT,
ERASEROLINDRECT,ERASEOVAL,ERASERARC,
and ERASEPOLY.

l Fill the inside of the specified shape with the specifkd pattern
with FILLRECT, FILLROUNDRECT, FILLOVAL,
FILLARC, and FILLPOLY.

Several functions allow users to manipulate the graphics
cursor and pen:

* HIDECURSOR Makes the cursor invisible.
* SHOWCURSOR Makes the cursor visible.
. INITCURSOR Sets the cursor to the standard arrow.
l OBSCURECURSOR Hides the cursor until it is moved.
l SETCURSOR Changes mouse cursor appearance.
l PENMODE Sets the mode of the pen.
l PENNORMAL Resets the pen to its &fault settings.
l PENPAT Sets or changes the pattern of the pen.
l PENSIZE Varies the thickness of the pen stroke.

In addition, other specialized functions make dialogs or
animation easier and let users manipulate QuickDraw pictures,
background, and drawing setup:

. EMPTYRECT De&mines ifarectangle is empty.
l EQUALRECT Determines if two rectangles are the same.
l PTINRECT Dctcrmines if a point is in a rectangle.
l BACKPAT Sets the background pattern.
l GE TB AC K P AT Returns the background pattern.
l CLIPRECT Sets a boundary for drawing.
l CUTPICTURE Selects a picture from part of the window.
l PI CT F R AM E Returns the coordinates of the picture.
l SCROLLRECT Scrolls a rectangular area on the screen.

Interface to the Operating System and Non-APL
Programs

The native file facility dots much to allow dab m flow easily

between APL programs and other programs on a particular
machine. On the Macintosh, the clipboti is also available to
move text or pictures from one application to another. In addition
to copying highlighted portions qf text from the editor or APL

199

session log to the clipboard the utility function PUTCLIP cm
also be used to put an APL variable on the clipboard. A
GETCLIP function also exists to pull things off the clipboard,
perhaps stored there by another program.

The system documentation also describes the layout of the
APL workspace and objects within the workspace so that
Assembler functions can intafacc directly to APL objects. A
system function, OMLFX, makes it easy to create an APL-like
function out of an Assembler program. Although implemented
differently because of the nature of the machine architecture, this
function provides the same flexibility and power that 0 CALL
and IJXP 1 do on the APL*PLUS PC and UNX Systems.

Comparison to Other APL*PLUS System
Implementations

Experience with the various APL implementations suggests
that if one is given the luxury of choosing a machine as well as
the APL language for a particular application, that the choice will
depend on the answer to several key questions:

How interactive must the application be?
Both the PC and the Mac Systems have much easier to use
and faster facilities for interactive applications than the UNX
and Mainframe systems.

What ate the capacity limits of the APL system’?
‘Ibe PC system is the only system with a practical workspace
limit. Its 5OOK workspace is small in comparison to the
Macintosh and other APL*PLUS System implementations
which can all support workspaces up to 4 Megabytes or
more. More detail on capacity limits is provided below.

What graphics facilities are available?
Graphics functions are built-in for both the PC and
Macintosh implementations. Without a doubt, the
APL*PLUS Mac System has better graphics simply because
the speed and power of accessing the supplied graphics
routines in the Macintosh ROM (as is done in APL*PLUS
Mac) is superior to providing special APL graphics routines
(as is the case with PC).

What operating performance is expected?
The benchmark data provided in the next section indicates
that the actual performance depends on the hardware
Selected.

Using the answers to these questions and the data below,users
can more easily select the right combination of hardware and
APL*PLUS System implementation for their application.

Performance Benchmarks

The table below compares several computers for various
operations with different data types. The “Weighted Rating” row
was derived by applying the weights in the “Weight” column to
the individual machine timings. The “Weighted Rating” ~01umn
attempts to give an overall measure of the APL performance on
that machine.

Although these benchmarks are standard STSC benchmarks
that try to yield a statistical model of a typical application, they do
not show how well a given application will actually perform in a
given environment. A benchmark of the actual application is
needed for that information. However, we can safely say that
most Macintosh APL applications are expected to out-perform
similar applications on the lBM PC XT but not on the IBM PC
AT.

Macintosh computers modified to use the 68020 CPU (see the
Levco benchmark numbers below) will provide APL
performance that exceeds that of an IBM AT. It is also expected
that modifying the APL*PLUS Mac System to use the math
coprocessor directly (a8 is done for the PC implementation) rather
than through standard software calls would greatly improve the
floating point benchmark number and thus the overall
performance rating for the Levco computer.

Performance of Selected Machines
with the APL*PLUS System

Benchmark Weight XT Mac AT Levco Sun

Small Integer 10% 35.0 9.2 11.3 1.4 1.2
Large Integer
Floating Point ;: :;g 2K$ 2: 5::; ::;

Mixed Functions 20 14313 52:2 Scaler Op-ators 10
lf;.‘: ;;*;

ii;:: 9-2 2*9 3.0
Function Execution 35

67:5 59:O
21:2

1.6
12.2 4.0

Files* N/A 32.1 3.8 12.0

Weighted Rating 115.9 70.2 37.0 15.0 3.3

Notes:

XT

MiX.7

AT:

Levco:

Sun:

l

IBM PC XT with 8088 CPU at4.77 Mhz funning APL*PLUS PC
System Version 6.0
Apple Macintosh Plus with 68000 CPU at 8 Mhz and 2 flappy
drives running AF%*PLUS Mac System Version 1.0
IBM PC AT with 80286 CPU at 6 Mhz and 80287 coprocessor at 5
Mhz running AF’L+PLUS PC V&on 6.0
Apple Macintosh with Lcvco modification (68020 CPU at 12 Mhz,
68881 math copmcessar, and hard disk) running APL*PLUS Mac
System Version 1.0
Sun Workstation (Model 260) with 68020 CPU at 24 Mhz and
68881 coprucessor at 20 Mhz running APL*PLUS UNX System
Version 3.0
Not included in the weighted rating because of the variety of
environmental factors

System Characteristics and Limits

The following comparison of system characteristics and limits
helps portray the capacity of each APL system.

Size of Data Elements (bits)
l characters

l Booleans
l Integers
l Floating Point

8
1

z

8

i:
64

Nested Arrays No No

Maximum rank of an array
Maximum length of a symbol
Max-workspace size @I)
Execute length limit
Full print precision
Function line length limit
Maximum lines per function
Input line limit
Symbol limit

63

7:
1K

5:;
9999

80;

63
77

3iiT

3::
9999

511
2048

Floating point numbers
Interpreter Size (in K)

Mac PC UNXO MF

8 8
1 1

E 2

YeS Yes

127 63
loo 77

32: 32z

32K 2047
1024 255
32K 6000

200

0 Implemented on a variety of hardware architectures and hence has a few
unique hardware limitatia~.

It Varies from 1M to over 32M depending on operating system’s
maximum available memory.

+ Depends on font size.
t Symbol table is dynamically allocated and thus does not a have a

practical limit

Conclusion

Hardware, unfortunately, is often selected for reasons other
than the software that will run on it. If, however, an application
needs to be highly interactive, requires a large workspace, and
includes

it?
phics as an integral part of the application, the

APL*PL S Mac System is an ideal APL system. The integation
of the Macintosh style of editing, graphics, dialog boxes, and
menus into the APL*PLUS System provides an environment that
encourages building APL applications that am easy and fun to
use.

lf raw speed (particularly floating-point computation) is
desired from inexpensive desktop machines, then an LBM
AT-type machine running APL*PLUS PC is a better choice than
the Macintosh. However, future Macintosh machines with 68020
processors (now available through machine modifications from
companies like Levco and rumored to soon be available directly
from Apple) provide impmssive performance that rivals even
mainframe APL systems. Although machines like the Compaq
386 can provide equivalent or better APL speed performance
compared to a 68020 Macintosh, it cannot provide the large
workspaces that the Macintosh can--typically needed in bringing
mainframe applications to the desktop computer environment.

Over the past several years the Macintosh has grown into a
serious desktop computer. With the APL*PLUS System now
available for it, it is also a serious APL machine.

Acknowledgments

The benchmark programs were provided courtesy of James
G. Wheeler, Director of Core Technology, STSC, Inc. The
Levco benchmarks provided courtesy of William Dumouchel of
Belmont, MA.

APL*PLUS is a ngistercd trade and service mark of STSC, Inc.
Macintosh is a licensed trademark of Apple Computer Company
MacWrite is a trademark of Apple Computer Company

201

