Check for
Updates

RECAPTURING THE HIGH GROUND
USE OF APL [N DECISION TREE MODELLING

Dick Bowman
Central Electricity Generating Board
BY Park Street
London SEI

INTRODUCTION

In the heyday of APL timesharing APL was
frequently used as the implementation vehicle for
many types of computational modellingy there were
4 few bona-fide financial modelling packages but
for true flexibility people developed their nodels
using programming languages and APL was in there
as good a claim as any (if not better).

But the world moved onj users became able to
purchase microcomputers fairly readily, software
packages like the spreadsheets gave them sone
ability to develop their own models (debatedly
this was an ability they'd always had - it was
just that the spreadsheet industry marketed the
users own abilities). And, what with improvements
in the sainframe modelling packages we have an
area of the computing market which has drifted
away from APL - certainiy the APL share hasn't
grown at anything like the pace of the whaole pie.

What this paper does is to examine a recent
application of APL to a specific type of
modelling, laying emphasis on use of neglected
facilities of APL, the useability of some of the
more recant APL extensions, evolution of a system
from open prototype to final delivered system, the
inherent richness of a mainframe timesharing
environment and user interfaces which involve
graphics.

The theme of the paper is that if we can exploit
the power of APL to the full we can develop APL
systems which are more attractive to the ultimate
users than some of the alternatives, we can define
and fill niches which lie outside the scope of the
sinple package solution, and do all of this
without incurring the sort of development overhead
consequent in employing more ‘conventional’
computing solutions. The paper expands on this
theme by outlining the evolutionary path taken in

England

one specific development,

DECISION TREES

Decision Trees are an established analytical tool
for examining the decision-making process; they
impose a quantification and a structure onto the
process and if variation of certain parameters is
possible we are able to assess the robustness of
choices at particular stages in the process.
Here's part of & tree...

bt Developaant Plan
Permission to Build

Ne Peracssion

*o - 5.5%

Permission fo huid

5.53
Rapid Grawth

Mo Permission

Slow Srowth -
QTE "3*
Srouth Static or Declining ' "o
p:0.5 3.9

Note that this is an extract from the structure of
a real-world example, but that all values and text
are totally fictitious.

The tree contains four types of node:

a) End nodes - Each end node represents an
ultimate scenario (the complete set of end
nodes aay or may not encompass all possible
final states of the decision universe). We
have a number of attributes by which we can
assess this node, and by a combined weighting
of these attribute scores we can generate a
‘utility’ for the end node.

b} Probability nodes - We may not have control
ot our environment, being able only to assign
probabilities to specific branches, The
utility at a probability node is the weighted
sum of those of its branches.

Permission to copy without fee all or part of this malterial is granted c) Decision nodes - These are the places where
provided that the copies are not made or distributed for direct we can make a choice, the rationale is that
commercial advantage, the ACM copyright notice and the titie of we will always elect to choose the branch
the publication and its date appear, and notice is given that copying with highest utility, so this is the utility
is by permission of the Association for Computing Machinery. To of a decision node.

copy otherwise, or to republish, requires a fee and/or speciic d) Join nodes - Joining nodes are a convenience
permission. mechanism enabling trees to be split i1nteo

© 1987 ACM 0-89791-226-8/87/0005/0427 75¢

427

http://crossmark.crossref.org/dialog/?doi=10.1145%2F384282.28369&domain=pdf&date_stamp=1987-01-01

sub-trees for display purposes only; they are
not a distinct type for computation purposes.

Typically, but not compulsorily, the top node of a
tree is a decision nodej but there can be
additional decision nodes further down the tree.

ALTERNATIVE APPROACHES

When we first began looking at this technique we
found that established practitioners were using
equipment like the IBM PC, there were one or two
caonrercial packages we could adopt and that
researchers in the area were working with
languages like FORTRAN and BASIC., Our criteria
were a little wider than "purchase a package, plug
it in, ot you go". We were examining the whole
field of ‘decision analysis’ (which really isn‘t
the same thing as ‘decision support’ - even before
the marketeers turned it into an advertising
slogan) - we wanted to establish it as a decision-
guidance technique which wa had faith in and which
we could promulqate widely around the
organisation. So, what we were after comprised:

a) Insight -~ In many ways this was the most
important attribute, we wanted to know
exactly how the tools we were using worked.

b) Accessibility - Although 'buy a PC’ is a
popular saying, we have a large in-house
timesharing network and many more of our
potential users already have IBM 3270-type
terminals than PCs,

c) Uniformity - We wanted to build a set of
decision analysis tools (this is just one of
thes) which shared commonality of -user
interface and which could intercommunicate.

The environmsent chosen for initial developnent was
our inhouse APLZ service which runs under TSSOy
APLZ had been running for approximately six months
and was replacing a longstanding VSAPL/VSPC
service,

DIRECT DEFINITION

Direct definition had been in use within the
organisation for some time as a method of teaching
APL - the fundamental setup (and implementation
algarithm) is as per Iverson [1], with some
extensions along the lines suggested by Metzger
[2). Some domesticity has been draped around the
basic framework with experience showing that:

a) Direct definition of functions is
non-restrictive 1n the sense that it can be
used to implement non-trivial systenms

b) It imposes a ‘goodness of structure’
implicitiy {because you have to work harder
to be untidy than to be tidy)

¢) There are no real performance problens

d) New users take to it quite well and produce
good results using it, but don't really
believe that thevy re using 'praoper APL’

e) Experienced APLers can be guite violently
opposed, even to 1ts use as a teaching tool.

428

As it happens, decision trees can be defined quite
simply in direct definition terms:

gt Simple Yraw

Taxt...]

Let’'s work an the tree above, with endnodes scored
on three attributes. We need a weighting of the
attributess

WEIGHTS:.2% .25 .9

Each end node has a score:

SCORE D:2 | 8

Leading to an end node utility:

NODE _D:WEIGHTS+,xSCORE_D

At probability nodes we have a set of branch
probabilities:

PROB B:.75 .25

Which in turn allows us to define a utility for
the probability nodes:

NODE_B1PROB _B+.xNODE_D NODE_E

And at the decision nodes the utility is the
greatest of the incoming:

NOBE A« /NQDE_B NODE_C

For exploration/display purposes it’'s useful to be
able to attach some descriptive text to each node
- easy enough at end nodes:

SHOW D: "Text... NODE_D

Higher in the tree we need to display the
structure of the tree a little nore clearly:

SHOW_B: 'Text,.,’' NODE_B (VERY SHOW_D SHOW E)
VERT is the relatively trivials
VERT: , (v 01w

and that, essentially, is that; given that we
approach the task methadically we can build up any
decision tree we like, plug in numbers as we want
and look at what happens. Adding in the DISPLAY
function trom supplied workspace | DISPLAY (3]
gives the user an explicit view of how the tree i
made up.

fleviewing wherw we’'ve qut to so far:

a) We've done about two hours work

b} Biven time and patience we can build trees of

arbitrary complexity and size (¢c.f, limits on

branching and depth found in commercial PC

solutions)

Everything seems to work without the fanfares

about "folding back the tree’ which I never

understood when | saw them

d) Qur user interface isn't exactly jovial and

unforgiving - but it can be learnt by rote

The system makes no claims to being

computationally optimised, but we're looking

at problems where wrong decisiuns cost

millions - the cost of modelling exercises is

trivial in comparisan

f) We have no real analytical tools to help in
exploring decision robustness,

<)

e)

As an aside, we quickly found that ’'high good, low
bad’' scoring systems didn't necessarily correspond
to the users’ natural perception of the world -
much more acceptable way to score is on a ‘low,
high, optisum’ scheme where compliance with the
optimum is an ideal. We need 'high-low’ utility,
and hence a mapping algorithm between the two
schemas. This proved a situation where we gained
insight which would not have been achievable if we
had merely purchased an off-the-shelf solution; we
had exlensive discussion of the various
score-mapping alternatives, all of which have
shurtcomings which we might feel unhappy about at
one time or another. The final outcome is that we
offer a selection - our favourite (and default)
being the somewhat obvious:

QI0e! A Throughout...
ISCORE: 0N 1L -1 al3)-w)#(al3)-ali))Ta(2])~a(3]

0 10 8 ISCORE 7
875

USE OF APL2 NOTATION

Strange as it may sound, things were thrust in the
direction of our end user at this stage;. they had
had no previous encounter with AFL but were
proficient users of aother computing tools and
capable of programming in languages like FORTRAN.
Essentially what they were told is 'this is how
vou detine a tree’ in terms of the functions
needed for each type of node, that it was sensible
to slart at the bottom &nd work up, and if they
did 1t that way then they could test what they’'d
done «s they wenl along,

Building block functions like VERT and ISCORE were
introduced as ‘black hoxes’'; the users were
encuuraged to take a4 ‘look and try’' approach to
using these and the functions they defined
themselves to gain confidence in what they were
burlding (as a convention, functions intended to
Le visible/available to the user have been give
uppercase names - system internals use
underlined/lowercase naming).

There was a samilar approach taken to [/ and +.x
34 dafined functionst they could have been hiddaen
but were left out in the open.

The unfussiness 0f vector notation was exploited,

429

allowing the user to construct objects with qu%te
deep nesting without becoming involved in knowing
what they were up to in APL teras,

This was quite frankly an experiment, not just to
see what 1 could qet dway with - but to what
extent we could rely on being able to use raw APL
when things became more developed. It worked out
pretty well, the type of user we have for this
sort of system wants it to work, they appreciated
seeing under the bonnet, it demonstrated that APL
could do useful work for them on a short
timescale, and generated the expected request to
do something about the tiresomeness of entering
the model.

EVOLUTION INTO A CLOSED SYSTEM

At this juncture there are two objectives:

a) Make the system so that it won't fall over if
you blow on it

b) Extend the capabilities so that insightful
analysis of the decision proctess is
facilitated.

Taking the first first, there's no shortage of
documentation for APL systems with the historic
question-answer dialogue protocol either printed
[4] or in one of the many ASK workspaces. We seen
to be rather less well-stocked with specific (1.e.
copyable/stealable) examples of full-screen
utilities: mavybe it's because there's so much
diversity, or maybe it’'s a gap that the APL
community ought to fill.

Anyhow, my instinct was to ignore the dire
warnings of [3] and plunge in with the well-tried
routines of 2 FSC126; they'd served well in the
past and 1f perhaps a little unexciting, using
them had proven a deal wmare satisfactory in
conversion from VSAFL to APL2 than the ‘real quick
optimised’ workspaces that shared variables
directly with AP124 (some people only learn by
their mistakes). Their use is enhanced bv a
hermetic laver of user-proufing and an exanmple of
how this is eased by recent APL extensions is the
SGETNUM function:

OCR "SGETNUM®
I+N SGETNUM FLDS
Z¢«DEC," ’~,SGET FLDS r Hope to get lucky

(1L D) VERR
+(N#p,+07)tERR

1¢t01

A0

ERR: (+FLDS) SCUR 1 1
SALE

1«SREA

21

A Real thumbs job
R Wrong number

Remember that APL2 has no OFI/OVI functions - one
is sceptical about the performance implications of
the "try 1t and hope’ approach which seems to be
encouraged by this hardware vendor, but it is at
least pragmatic.

Inplementing tree rnput via the consequent
fullscreen interface makes
stre that:

a) All the right questions get asked
b) They get asked in the right order
c) The answers are syntactically acceptable

At its core the system is unchanged, we still
define all the same functions and use them to
carry out the calculations - but we've hidden it
all from the user,

Now we can concentrate on anaiytinq the tree in
depth...

The types of analysis we can apply include:

Dominance - One end node dominates another 1f it
has a higher score on every attribute than the
othery in a rational world dominated end nodes
will never be chosen (but that's another
stary...)

Sensitivity Analysis - For example we can examine
the utilities of branches coming aut of a
decision node as a parameter such as attribute
weighting is varied. With Direct Definition

still underpinning the system we have parameters

such as node scores defined as functions and
user modification may be by straightforward
editing of the function in this form., Having
kept major tree definitions in this form we can
"lose’ and restore them quite simply in
tunctions like GVARYING:

OCR "GVARYING®
NODES GVARYING ATT{INjOLDDEF;ORIG

t 'OLDDEFe,list "~ ", ATT, """ A Retain old def
ORIG« ORIGINAL" A W gshow t"{c'NODE_'},"NODES
DTS«DEX ATT

AGAIN:

. A IN¢new vals for ATY

LATT, "ea IN’
CUR« 'CURRENT' A W gshow ¢" (< 'NODE_'),"NODES
output $ORIE CUR

END:OTS«QEY ATT
0TS¢l adefine OLDDEF

gshow (results are shown

display formatter
as barcharts)
display directly-defined function
puts ariginal/new utility barcharts
on terminal

direct definition function fixing

{

{

{ list
{ output
{
{

ddefine

Automated Analyses - Functions like GVARYING allow
the user to look at spot assessments, this is
fine if they need to home 1n on specific cases
but leaves the possibility that their
explorations might miss salient features of the
modal. What was needed was a more systematic
tool which ranged over parameters more
thoroughly, The AUTOVARY function lets us pick
up & single component of a single parameter and
have it vary systematically with everything else
held fixed:

4'

}
}
}
}

430

OCR ‘AUTOVARY "
1¢A AUTOVARY W3S;V
SeAtvpVeaW
1¢202)(8-0,.1%v10) PARANORMAL"cS/V
1¢5\12
I03AY€0,.1% 10
TeW 2

A Vary one parameter

OCR 'PARANORMAL

1¢«A PARANORMAL W A Normalise W to sum to A

LeAxWs+/W
2 AUTOVARY 'HWEIGHTS'
WEIGHTS 0.33 0 0.467
0.3 0.1 0.6
0.27 0.2 0.33
0.23 0.3 0.47
0.2 0.4 0.4
0,17 0.3 0.33
0.13 0.6 0.27
0.1 0.7 0.2
0.07 0.8 0.13
0.03 0.9 0.07
0 1 0

Empirically we find that the ten-step increment

is sufficient without being excessive. By
passing this result into a function similar to

GVARYING we can produce a table of utilities for
the specified nodes - colour highlighting on the

display terminal helping to illustrate how

preferances should change as the parameter steps

through its range of values,

A further refinement allows us to vary a pair of

parameters in a similar manner, giving a table
of node preferencess

PB¢2 AUTOVARY 'PROB B
PC¢1 AUTOVARY 'PROB C'

‘8’ *C’ XYUTILITY PB PC
PROB B 1 ¢ t t t t & { 1t 1 1 1
2 2 2 t 1 1 111t 2
2 2 2 2 2 11t 111
2 2 2 2 2 2 2 1 1t 1
2 2 2 2 2 2 2 2 2 21
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 %
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
PROB_C

What we 've achieved by this point is to take

oo

advantage of our environment and history, plugging

the new and specific developments into a framewor
of pre-existing utilities (some in APL, others
coming from mainframe facilities like GDDM),
naking a robust system, with a wide range of
feature, and which presents itself in a
cosmetically acceptible fashion on & colour
J270-family terminal.

GRAPHICS AS A USER INTERFACE

........................

Functionally, the system was complete at this
point (feature still addable as user experience
bred sophistication) - selective use of colour in

k

displays helping highlight arsas of interest but
the user still had a slight qulf in so far as they
had a tree which externally took the fors of a
disgram and a cosputer system which spoke entirely
in terms of form-filling and tablaes.

This stage was reached coincidentally with the
advent of tha IBM31796 terminal and 3832 hardcopy
unit, devices which delivered graphics capability
lincluding useable hardcopy) to a users desk at a
reslistic price - we could contemplate replacing
ageing 3278 terminals with the 31796 on a quite
large scale.

The end result is a systes which combines pure

granhice panele. nura alnhanumaricr Aamnala 2
¥ SPNALT RRNRIT, PUNS QipRaANUREriC pansis an

r
d
combined qraphics/alphanumeric panels - a
developnent which has enhanced the uswability of
the system and its ability to highlight areas of
interest within models by a similar degree to the
earlier growth from the hair-shirt prototype. What
is provided in detail s

Input -~ Following an initial panel soliciting
general parameters for the tree (scoring
attributes, score profiles, weights, etc.,) the
user is guided through tree construction by a
split graphics/input panely paraneters for each
node are gathered through the input fields at
the base of the panel and as data for each node
is collected the user defines its display
position on the tree diagram which is being
sisultaneously constructed in the upper part of
the panel. The system knows what connects where
and so all input operations can he sean in the
context of what’'s gone before. Node types are
identified both by colour and by shape.

Developaant Plan

PE ™
) . Persission 1 Build

| Mo Peraission

Definition of Node 9907
Node Type 4
Descriptive Tatie
Nases of Branches
Probabiiities

Mo Permission
908 9909 M0

There are a few problens which need to be taken
into considerations

Mice ~ May be nice, but you need to provide &
little assistance if the user is aiming to
build up & tidy diagramj what is done in this
case is to have a ‘snap grid’ with actual
mouse positions being interpreted as nearest
snap point., Users like whizzing mice arcund,
and they get a tidy picture into the bargain,

The screen’s smaller than the probles - Isn’t
it always, There were two alternatives,
gither a flexible window onto a larger

431

universe or modular treesy pragmatically the
second option was chosen., The 'join node’ is
a sinple one to define - it merely refers to
the more explicit definition of the
subsidiary page.

Diagram editing facilities are provided,
allowing the user to put a tree onto the system
quickly and later edit its appearance to 2
tidier or more acceptable form.

Output -~ Colour-highlighted tables tell the story,

particularly if they're examined closely; but
graphs to it more quickly. Alternative
approaches were:

al Link into the GDDM's ICU
b) Link to another graphics package
c) An al-fresco integral development,

Option (a) would have the advantage of
uniformity of style with much other graphics
produced within the organisation, as would (b)}
so we initially chose to go down path (c) and
put together some graphics specifically for this
systenm,

A bizarre idea, but the context was that
received wisdom from others involved in the
decision analysis area was that unadorned
ordinality was psychologically more acceptable
than apparent precision. By removing any
possibility of tagging the graphs with specific
value we could emphasise some of the important
messages of what decision tree modelling is
trying to say about the problems at hands

a) Many of the input figures are suppositional -
they came from peoples judgements

b) What matters are trends - in what direction
do preferences alter as paramsters change and
is it a lot or a little

c) Are levels of preference large or small

A byproduct of this was that it was somewhat
refreshing to see graphs which didn't have all
their text in a wmixture of propartionally spaced

Olde English Gothic ano Traplex Italian,

Again - an idea which caused us to gain insight,
what we were hoping for was that we could avoid
the ‘micrometer syndrome’ of having people take
finicky measurements from a very shifty basis of
input judgements. Sadly, users felt uneasy about
these unadorned graphs - we reverted Lo using
ICU. But ~ importantly - we know why we chase to
do what we did and the exploration didn't
consume much time,

Typical of the graphs being produced is the one
below, where we are examining (in the contaxt of
the opening tree example) whether to proceed or
not from the viewpoint of varying the weight
given to the second scoring attribute.

Autovary of WEIGHTS(2)

b -~
Ta
5+ R
241 e
g;_ — Current Yalue
- 9902
21 - - 9903
‘—-4
8
- 1 T T T T T

a) Some of the traditional APL market has moved
away, attracted by easy-to-use tools for
straightforward problems; as the limitations
of these tools become apparent to their users
APL is in a strong position to reassert its
advantages.

b) The implementation path followed by this
development has been rather different froms
that which would have been taken using a
language like Fortran - imitation never was a
strngth of APL.

c) Many end users have been reluctant to get
involved with APL because of past
all~-or-nothing committment. An approach of
‘only what you nead’, or even of not saying
that the notation is APL helps overcome this
probles.

d) Notational styles like direct definition and
vector notation are both palateable to the
newcomer and have a natural feel.

®) Evolving the system in the manner outlined
above emphasised needed feature first before
widening the useability.

) APL, particularly in the mainframe environment,
has access to many rich resourcesy by
exploiting this in addition to the powerful
native syntax we can develop systems with
powerful capabilities and attractive user
interface.

g) The system described above is computationally
quite trivial, most of its complexity is
within areas like user interface - the parts
which had already been written and were
imported intact.

h) We got a lot of insight into contentious areas
and were able to make our own choice of
solution - not always the same as that of
‘conventional wisdom’,

i) This application is a niche which hasn't been
$illed by ‘standard packeges’ - one role for
APL in the future is to fill such niches

432

quickly - if only as a yardstick for
evaluating packaged solutions as they appear.

REFERENCES

(1) Iverson, K.E., Programming Style In APL, An
APL Users Meeting, Toronto 1978

[2) Metzger, R.C., Extended Direct Definition of
APL Functions, APLBO, 1980

[31 IBM Corporation, APL2 Programming: Using the
Supplied Workspaces (SH20-9233), 198%

[4]) Gibson, L., Designing User-friendly APL
Systems, 1982 APL Users Meoting, Toronto 1982

