
ar
X

iv
:1

50
8.

00
85

1v
2

 [
cs

.D
C

]
 5

 A
ug

 2
01

5

Fast Consensus under Eventually Stabilizing Message
Adversaries

Manfred Schwarz
TU Wien

Vienna, Austria
mschwarz@ecs.tuwien.ac.at

Kyrill Winkler
TU Wien

Vienna, Austria
kwinkler@ecs.tuwien.ac.at

Ulrich Schmid
TU Wien

Vienna, Austria
s@ecs.tuwien.ac.at

ABSTRACT
This paper is devoted to deterministic consensus in syn-
chronous dynamic networks with unidirectional links, which
are under the control of an omniscient message adversary.
Motivated by unpredictable node/system initialization times
and long-lasting periods of massive transient faults, we con-
sider message adversaries that guarantee periods of less er-
ratic message loss only eventually : We present a tight bound
of 2D+1 for the termination time of consensus under a mes-
sage adversary that eventually guarantees a single vertex-
stable root component with dynamic network diameter D,
as well as a simple algorithm that matches this bound. It
effectively halves the termination time 4D + 1 achieved by
an existing consensus algorithm, which also works under our
message adversary. We also introduce a generalized, consid-
erably stronger variant of our message adversary, and show
that our new algorithm, unlike the existing one, still works
correctly under it.

1 Introduction
We study deterministic distributed consensus in synchronous
dynamic networks connected by unreliable, unidirectional
links. Assuming unidirectional communication, in contrast
to most existing research [10, 12], is not only of theoretical
interest: According to [16], 80% of the links in a typical wire-
less network are sometimes asymmetric. In fact, in wireless
settings with low node density, various interferers and ob-
stacles that severely inhibit communication, as in disaster
relief applications [15], for example, bidirectional links may
simply not be achievable. Moreover, implementing low-level
bidirectional communication between every pair of nodes is
costly in terms of energy consumption, delay time and hard-
ware resources. It may hence be an overkill for applications
that just need some piece of information available at one
node to reach some other node, as this is also achievable via
directed multi-hop paths. Obviously, in such settings, algo-
rithmic solutions that do not assume bidirectional single-hop
communication in the first place provide significant advan-
tages.

In this paper, we model directed dynamic networks as syn-
chronous distributed systems made up of n processes, where
processes have no knowledge of n. In every round, the pro-
cesses attempt a full message exchange and compute a new
local state based on the messages successfully received in
the message exchange. The actual communication in round
r = 1, 2, . . . is modeled as a sequence of directed commu-
nication graphs G1,G2, . . . , which are considered under the
control of a omniscient message adversary [1,17]: The mes-

sage adversary determines which messages are delivered and
which get lost in each round.

In contrast to [1], where message adversaries are oblivious
in the sense that they can choose the round graphs arbitrar-
ily from a fixed set of candidates only, this paper, inspired by
the research in [3,4], considers message adversaries that may
pick the graphs generated in some round depending on the
particular round number. Obviously, this allows to model
stabilizing behavior, which is not only of theoretical interest
but also relevant from a practical point of view: Starting-up
a real dynamic distributed system is likely a quite chaotic
process, as nodes boot at different times and execute vari-
ous initialization procedures. One can expect, though, that
the system will operate in a better orchestrated way after
some unpredictable startup time. A similar effect can be ex-
pected after a period of excessive transient faults, as caused
by the abundant ionizing particles emitted during heavy so-
lar flares [2, 8], for example. In this paper, we hence focus
on stabilizing message adversaries, which allow finite initial
periods where arbitrary graphs may be generated.

The distributed computing problem considered in this pa-
per is consensus. A consensus algorithm ensures that all
processes in the system eventually agree on a common de-
cision value, which is computed (deterministically) from lo-
cal inputs. It is an important primitive for any distributed
application where data consistency is crucial. Unlike in dy-
namic networks with unreliable bidirectional links, where
solving consensus is relatively easy [12], solving consensus
under message adversaries that generate unreliable directed
links is inherently difficult: For example, it is impossible
to solve synchronous deterministic consensus with two pro-
cesses connected by a pair of lossy directional links [18],
even when it is guaranteed that only one link can fail in ev-
ery round [19]. Therefore, in order to solve consensus, the
power of the adversary must be restricted somehow. Ex-
ploring the solvability/impossibility-border for consensus in
directed dynamic networks is hence an interesting and chal-
lenging topic.

Contributions

(1) We present two variants of a “natural” stabilizing mes-
sage adversary, which takes into consideration the eventu-
ally stabilizing behavior that can reasonably be expected
from real dynamic networks. During some finite initial pe-
riod, the communication graphs can be (almost) arbitrary:
In particular, they may contain any number of root com-

http://arxiv.org/abs/1508.00851v2

ponents1 (strongly connected components that have no in-
coming edges from outside of the component), which may
even consist of the same set of nodes (with possibly vary-
ing interconnect topology) for up to D consecutive rounds.
1 6 D < n is a system parameter, known to the processes,
which ensures that information from all members of a sin-
gle root component that remains the same for at least D
rounds reaches all n processes in the system. The “chaotic”
initial period ends, at some unknown stabilization round rsr,
when, for the first time, a single root component R occurs
that consists of the same set of processes for more than D
consecutive rounds.

The simple eventually stable forever after variant of our
message adversary, ♦STABLE(D), guarantees that R remains
a root component in all rounds after rsr. ♦STABLE(D) is
quite restricted in its behavior after stabilization, but is easy
to analyze and facilitates an easy comparison of the perfor-
mance (in particular, of the termination times) of different
consensus algorithms. The rigid properties of ♦STABLE(D)
are relaxed considerably in the case of our message adver-
sary ♦STABLE

′(D), which just requires that R re-appears, as
a single root component, in at least D (arbitrary, i.e., non-
consecutive) rounds in the execution suffix after rsr +D.

(2) We prove that no consensus algorithm can terminate
under ♦STABLE(D) (and hence under ♦STABLE

′(D)) before
rsr+2D. Note that the fastest known algorithm to date was
presented in [4] and also works under ♦STABLE(D). It has a
termination time of rsr +4D and is hence sub-optimal here.

(3) We provide a simple consensus algorithm, which matches
the termination time lower bound of 2D+1 under ♦STABLE(D)
and works correctly also under ♦STABLE′(D). Note that the
algorithm from [4] fails under ♦STABLE′(D), even though its
code is considerably more complex.

Previous results

In [3], Biely et.al. showed that consensus is solvable under a
message adversary that generates graphs containing a single
root component only, which eventually consists of the same
processes for at least 4D consecutive rounds; the term 4D-
vertex-stable root component has been coined to reflect this
fact. Note that vertex-stable root components neither imply
a static network nor a stable subgraph over multiple rounds.
It has also been shown in [3] that consensus is impossible if
the adversary is not forced to generate a root component
that is vertex-stable for at least D rounds.

In [4], we showed that consensus can be solved under a
message adversary that may generate multiple vertex-stable
roots, albeit with a worse worst case termination time and a
far more complex algorithm. More specifically, the message
adversary proposed in this paper guarantees root compo-
nents that (i) are eventually stable for at least 4D rounds
concurrently, and (ii) ensures some distinct information flow
between successive vertex-stable root components (“major-
ity influence”). The proposed algorithm is gracefully degrad-
ing, in the sense that it solves k-set agreement for the worst-
case optimal choice of k, when consensus (k = 1) cannot be
solved in the given run. Recall that in k-set agreement, the

1Note that root components have already been used in the
asynchronous consensus algorithm for a minority of initially
dead processes introduced by Fischer, Lynch and Paterson
in [9].

consensus agreement condition is relaxed such that up to k
different decision values are permitted.

Other related work

Dynamic networks have been studied intensively in distrib-
uted computing (see the overview by Kuhn and Oshman [11]
and the references therein). Besides work on peer-to-peer
networks like [13], where the dynamicity of nodes (churn)
is the primary concern, different approaches for modeling
dynamic connectivity have been proposed, both in the net-
working context and in the context of classic distributed
computing. T -interval-connectivity in synchronous distrib-
uted computations has been introduced in [10].

Agreement problems in dynamic networks with undirected
communication graphs have been studied in the work by
Kuhn et al. [12]; it focuses on the ∆-coordinated consensus
problem, which extends consensus by requiring all processes
to decide within ∆ rounds of the first decision. Agreement
in directed graphs has been considered in [1,3,4,6,17,19,20].
Whereas [6, 19] considerably restrict the dynamicity of the
communication graphs, e.g., by not allowing stabilizing be-
havior, which effectively causes them to belong to quite
strong classes of network assumptions in the classification of
Casteigts et al. [5], the algorithms of [3,4,20] allow to solve
consensus under very weak network assumptions: [3] only
admits single-rooted graphs, whereas [4] provides a consen-
sus algorithm that gracefully degrades to k-set agreement in
unfavorable runs under a fairly strong stabilizing message
adversary. Afek and Gafni [1] introduced (oblivious) mes-
sage adversaries for specifying network assumptions in this
context, and used them for relating problems solvable in
wait-free read-write shared memory systems to those solv-
able in message-passing systems. Raynal and Stainer [17]
used message adversaries for exploring the relationship be-
tween round-based models and failure detectors.

2 Model
We model a synchronous message passing system as a set
Π of |Π| = n > 1 deterministic state machines, called pro-
cesses. Processes do not necessarily know n but have unique
identifiers that we pick, w.l.o.g., from the set {1, . . . , n}. In
our analysis, we use a process and its identifier interchange-
ably when there is no ambiguity. Processes operate in lock-
step rounds, where each round consists of a phase of full
message exchange, followed by an instantaneous local com-
puting step. Following [3, 4], the actual communication in
round r > 1 is according to a digraph2 Gr = (V,Er) con-
trolled by an omniscient message adversary : Each vertex
in V corresponds to exactly one process of Π, and an edge
from p to q, denoted (p → q), is present in Er iff the adver-
sary permits the delivery of the message sent from p to q in
round r. We assume that Gr contains self-loops (p → p) for
all p ∈ V , i.e., processes always receive their own message in
every round. Rounds are communication-closed, i.e., mes-
sages sent in some round r and delivered in a later round
r′ > r are dropped.

The messages sent and the state transitions performed
by the processes in a round are guided by a deterministic
message-sending and state-transition function, respectively,
which are specified implicitly by algorithms in pseudo-code:

2 Usually, we sloppily write p ∈ Gr, resp. (p → q) ∈ Gr

instead of p ∈ V resp. (p → q) ∈ Er.

The local state of a process comprises all its local variables;
the message-sending function determines the message to be
broadcast in a round, and the state-transition function de-
termines the local state reached at the end of the round,
depending on the previous state and the set of messages
received in the round. Most of the time, we will assume
that the algorithms are full-information, i.e., processes keep
track of received messages and forward their entire states to
all processes they can reach in every round.

In our analysis, pr denotes the local state of process p at
the end of round r > 1, after its computing step; p0 is the
initial state at the beginning of round 1. The value of a par-
ticular variable var in pr is denoted by varrp.

3 The vector
of states of all the processes at the end of round r is called
round r configuration Cr; C0 denotes the initial configura-
tion. An execution, or run, is an alternating sequence of con-
figurations and communication graphs. As our algorithms
are deterministic, it is uniquely determined by a given initial
configuration C0 together with an infinite sequence4 of com-
munication graphs (Gr)∞r=1, which is controlled by a message
adversary. More generally, any execution segment, starting
from configuration Cr, is uniquely specified by a tuple like
〈Cr, (Gi)ai=r+1, (G

j)bj=a+1, . . .〉. An execution is called ad-
missible, if it is in accordance with the message-sending and
state-transition functions of the processes and the definition
of the message adversary.

As in [4], we will restrict the power of a message adversary
in terms of the properties of the sequences of communica-
tion graphs it may legitimately generate. Consequently, an
adversary A that has a set of properties PA can formally
be specified via the set of its feasible infinite communica-
tion graph sequences A := {(Gr)∞r=1 | (G

r)∞r=1 satisfies PA}.
We say that an adversary A is weaker than an adversary B,
resp. that B is stronger than A, if all feasible sequences of A
are also in B but not vice-versa, i.e., A ⊂ B. If A contains
sequences not in B and B contains sequences not in A, A
and B are incomparable. An example for two incomparable
adversaries is the adversary that allows only chains for each
Gr and the adversary that allows only circles for each Gr.

We say that a problem is impossible under some mes-
sage adversary if there is no deteministic algorithm that
solves the problem for every feasible communication graph
sequence. For example, every problem that requires at least
some communication among the processes is impossible un-
der the unrestricted message adversary, which may generate
all possible graph sequences: The sequence (Gr)∞r=1 where
no Gr contains even a single edge is also feasible here.

We are interested in solving the consensus problem, where
each process p has an initial value xp and a write-once de-
cision value yp in its local state. Formally, the following
conditions must be met in every execution of a correct con-
sensus algorithm in our setting for p, q ∈ Π:
(Agreement) If p assigns value vp to yp and q assigns vq to

yq, then vp = vq.
(Termination) Eventually, every p assigns a value to yp.
(Validity) If p assigns a value v to yp, then there is some q

such that xq = v.

3Note that, throughout our paper, superscripts usually de-
note round numbers, with the implicit assumption that they
refer to the end of a round (after the computing step),
whereas subscripts typically identify processes.
4As usual, we denote by (Gr)br=a the sequence (Ga, . . . , Gb)
of communication graphs.

Dynamic graph concepts

As in [3,4], the message adversaries considered in this paper
will focus on root components in the communication graphs,
which are strongly connected components that have no in-
coming edges. Their importance has already been recog-
nized in the celebrated paper [9] by Fischer, Lynch and Pa-
terson, which also introduces an algorithm for asynchronous
consensus with a minority of initially dead processes. It
essentially identifies the (unique) root component in the ini-
tial communication graph formed by the processes waiting
for first n/2 messages to arrive.

Definition 1 (Root Component). A non-empty set
of nodes R ⊆ V is called a round r root component of Gr,
if it is the set of vertices of a strongly connected component
R of Gr and ∀p ∈ Gr, q ∈ R : (p → q) ∈ Gr ⇒ p ∈ R.
We denote by roots(Gr) the set of all root components of
Gr, resp. the single root component of Gr, and by |R| the
number of nodes in R.

By contracting the strongly connected components of Gr,
it is easy to see that every graph has at least one root com-
ponent (just called “roots” for brevity). Furthermore, if Gr

contains a single root only, contraction leads to a tree, so Gr

must be weakly connected in this case.

Corollary 1. For any directed graph Gr, |roots(Gr)| >
1, and if |roots(Gr)| = 1, then Gr is weakly connected.

We call a set of nodes R that forms a root component in
every communication graph of a sequence (Gr)r∈I a common
root of this sequence. Note carefully that the interconnect
topology of the nodes in R, i.e., the root component R taken
as a subgraph of Gr, as well as the outgoing edges to the re-
maining nodes Π \R in Gr, may be different in every round
r in the sequence. The index set I of rounds in (Gr)r∈I is
usually an interval I = [a, b] of |I | = b − a + 1 consecutive
rounds5 (we will call (Gr)r∈I a consecutive graph sequence
in this case), but can also be an arbitrary index set that is
ordered according to increasing round numbers. If a consec-
utive graph sequence is maximal wrt. R being its common
root, we call R a maximal common root.

Definition 2 (Common root). We say that a sequence
(Gr)r∈I has a common root R, iff there exists a root R
(with possibly different interconnect topology) such that R ∈
roots(Gr) for all r ∈ I. If I = [a, b] with |I | = b − a + 1 is
an interval of consecutive rounds a, a + 1, . . . , b, (Gr)r∈I is
called a consecutive graph sequence. We call R a maximal
common root of a consecutive graph sequence (Gr)br=a, iff R
is a common root of (Gr)br=a but neither of (Gr)br=a−1 nor
(Gr)b+1

r=a.

Finally, a graph sequence that has a unique common root
is called a single-rooted sequence.

Definition 3 (Single-rooted sequence). We call a
sequence (Gr)r∈I single-rooted, or R-single-rooted, if there

5In [3,4], the term I-vertex-stable root component (I-VSRC,
or alternatively d-VSRC) has been coined for R being a com-
mon root in (Gr)r∈I with I = [a, a + d − 1]. We prefer the
more general term common root of a sequence in this pa-
per, since it aligns better with the focus of our analysis on
(possibly arbitrary) sequences of communication graphs.

exists a unique root component R s.t. ∀i, j ∈ I : roots(Gi) =
roots(Gj) = {R}. We call R a maximal single root of a
consecutive graph sequence (Gr)r∈I with I = [a, b], iff R is a
single root of (Gr)br=a but neither of (Gr)br=a−1 nor (Gr)b+1

r=a.

We now introduce a notion of causal past, which is closely
related to the classic “happens-before” relation [14], albeit
presented in a way that is compatible with the process-time
graphs used e.g. in [12]. Given some round b, p’s causal
past CPb

p(a) down to round a are exactly those processes
the state of which at the end of round a has affected the
state of p at the end of round b.

Definition 4 (Causal past). For a given infinite se-
quence σ of communication graphs, we define the causal past
CPb

p(a) of process p from (the end of) round b down to (the

end of) round a as CPb
p(b) := {p} and for a < ℓ 6 b,

CPb
p(ℓ− 1) := CPb

p(ℓ) ∪ {q ∈ Π | ∃q′ ∈ CPb
p(ℓ) : (q′ →

q) ∈ Gℓ}

Note carefully an important consequence of Definition 4:
By definition, q ∈ CPb

p(a) implies that the state of q at the
end of round a is in the causal past of p by the end of round
b. Since the latter is a direct result of the communication
graphs up to round b, however, this implies that p must have
got the information about the round a state of q already
before it performs its round b computing step, e.g., in a
round b message. Thus, p can use that information already
in its round b computation.

From the monotonic growth of CPb
p(a) (recall the self-

loops in every Gr), we can deduce the following corollary:

Corollary 2. p ∈ CPb
q(a) implies p ∈ CPb′

q (a) for all

b′ > b. Analogously, p ∈ CPb
q(a) implies that p ∈ CPb

q(a
′)

for all a′
6 a.

As it will turn out in the next section, the “multi-hop
delay”of a message sent by some process to reach some other
process(es), i.e., the speed of information propagation over
multiple rounds, will be important for solving consensus.
This is particularly true in the case of a single-rooted graph
sequence, where the following lemma guarantees an upper
bound of n− 1 rounds:

Lemma 1. Let σ be a graph sequence containing a se-
quence S = (Gr1 , . . . ,Grn−1) of n−1 not necessarily consec-
utive R-single-rooted communication graphs. Then, for all
p ∈ Π : R ⊆ CP

rn−1

p (r1 − 1).

Proof. Pick an arbitrary process p ∈ Π, q ∈ R. We show
by induction that, for ℓ ∈ [1, n − 1], |CP

rn−1

p (rn−ℓ)| > ℓ or
q ∈ CP

rn−1

p (rn−ℓ). For ℓ = 1, this follows directly from Def-
inition 4. For the induction step, we assume that the claim
holds for ℓ ∈ [1, n − 1) and show that it holds for ℓ + 1 as
well. If the claim holds because q ∈ CP

rn−1

p (rn−ℓ), by Corol-
lary 2, we have q ∈ CP

rn−1

p (rn−ℓ−1). Thus, assume that
q /∈ CP

rn−1

p (rn−ℓ) and |CP
rn−1

p (rn−ℓ)| > ℓ. If it holds that
|CP

rn−1

p (rn−ℓ)| > ℓ, we get |CP
rn−1

p (rn−ℓ−1)| > ℓ+1 imme-
diately, so assume that |CP

rn−1

p (rn−ℓ)| = ℓ. Since Grn−ℓ is
R-single-rooted, there is a path from q to p in Grn−ℓ , accord-
ing to Corollary 1. Because q /∈ CP

rn−1

p (rn−ℓ), there is some
process q′ on the path from q to p s.t. q′ /∈ CP

rn−1

p (rn−ℓ) but
(q′ → p′) ∈ Grn−ℓ for some p′ ∈ CP

rn−1

p (rn−ℓ). By Defini-
tion 4, CP

rn−1

p (rn−ℓ−1) ⊇ CP
rn−1

p (rn−ℓ) ∪ {q′}. By the in-
duction hypothesis, therefore |CP

rn−1

p (rn−ℓ−1)| > ℓ+1.

p1

p2

p3 p4 p5

Round 1

p1

p3

p4p2 p5

Round 2

p1

p4

p3p2 p5

Round 3

Figure 1: Example of a communication graph sequence with
dynamic diameter D = 4, despite a small hop distance (di-
ameter = 2) in every single graph. Bold nodes represent
processes in the causal past CP3

p5
(0).

In order to specify message adversaries that guarantee
faster information propagation than guaranteed by Lemma 1,
we introduce a system parameter called dynamic (network)
diameter 1 6 D 6 n − 1. Intuitively, it ensures that the
information from all nodes in R has reached all nodes in
the network if D R-single-rooted graphs have occurred in a
graph sequence.

Definition 5 (Dynamic diameter D). A message ad-
versary MA guarantees a dynamic (network) diameter D, if
for every graph sequence σ ∈ MA that contains a subsequence
S = (Gr1 , . . . ,GrD) of D not necessarily consecutive R-single-
rooted communication graphs, it holds that R ⊆ CPrD

p (r1 − 1)
for every p ∈ Π.

It was shown in [3, Theorem 3] that processes need to
know some estimate of D for solving consensus: Without
this knowledge, it is impossible to locally verify a necessary
condition for solving consensus, namely, the ability of some
process to disseminate its initial value system-wide. Note
carefully, though, that knowledge of D does not permit the
processes to determine n in general.

Definition 5 may lead to the conjecture that a maximum
hop distance of D between q ∈ R and p ∈ Π in every
Gr1 , . . . ,GrD guarantees a dynamic diameter of D. This
is not the case, however: Consider, for example, the three-
round sequence (Gr)3r=1 of communication graphs for pro-
cesses p1, . . . , p5 shown in Fig. 1. Herein, G1 is a directed
tree of height 3, with single root node p1 and a single node
in the second level. In the following rounds, this second level
node switches places with a new node 6= p5 from the third
level. In this scenario, p1 /∈ CP3

p5
(0), even though the length

of the path from p1 to any other process is 6 2 in every Gr.

3 A simple stabilizing message adversary
Recall that the purpose of our stabilizing message adver-
sary is to allow an unbounded (but finite) initial period of
“chaotic” behavior, where the communication graphs can be
arbitrary: Unlike in [3], any Gr may be arbitrarily sparse
and could contain several root components here. Clearly,
one cannot hope to solve consensus during this initial pe-
riod in general. Eventually, however, the adversary must
start to generate suitably restricted communication graphs,
which should allow the design of algorithms that solve con-
sensus. Naturally, there are many conceivable restrictions
and, hence, many different message adversaries that could
be considered here. We will develop two instances in this
paper, and also relate those to the message adversary intro-
duced in [4].

The simple message adversary ♦STABLE(D) defined in this
section uses a straightforward means for closing the initial
period, which is well-known from eventual-type models in
distributed computing: In partially synchronous systems [7],
for example, one assumes that speed and communication
delay bounds hold forever from some unknown stabilization
time on. Analogously, we assume that there is some un-
known round rstab, from which on the adversary must be-
have“nicely”forever. Albeit the resulting message adversary
is restricted in its behavior, it provides easy comparability
of the performance (in particular, of the termination times)
of different consensus algorithms. Moreover, in Section 6,
we will show how to generalize ♦STABLE(D) to a consider-
ably stronger message adversary ♦STABLE

′(D), which does
not require such a restrictive “forever after” property.

In order to define what “behaving nicely” actually means
in the case of ♦STABLE(D), we start from a necessary condi-
tion for solving consensus in (Gr)∞r=rstab

: The arguably most
obvious requirement here is information propagation from a
non-empty set of processes to all processes in the system.
According to Lemma 1, this can be guaranteed when there
is a sufficiently long sub-sequence of communication graphs
in (Gr)∞r=rstab

with a single common root. Natural candi-
date choices for feasible graphs would hence be the very
same single-rooted graph G in all rounds r > rstab, or the
assumption that all Gr are strongly or even completely con-
nected (and hence also single-rooted). While simple, these
choices would impose severe and unnecessary restrictions on
our message adversary, however, which are avoided by the
following more general definition (that includes these choices
as special instances, and hence results in a stronger message
adversary):

Definition 6. We say that (Gr)∞r=1 has a (unique) FAES-
common root R (“forever after, eventually single”) starting
at round rstab > 1, iff R is (i) a maximal common root of
(Gr)∞r=rstab

and (ii) a maximal single root of (Gr)∞r=rsr , for
some round rsr > rstab.

♦STABILITY contains those communication graph sequences
(Gr)∞r=1 that have a FAES-common root R.

Note that the eventual single-rootedness of (Gr)∞r=rstab
im-

plied by ♦STABILITY allows the respective round graphs Gr

to be very sparse: For instance, each Gr of (Gr)∞r=rstab
con-

sisting of a chain with the same head but varying body would
satisfy the requirement for single-rootedness.

Whereas the properties guaranteed by ♦STABILITY will
suffice to ensure liveness of the consensus algorithm pre-
sented in Section 5, i.e., termination, it is not sufficient for
also ensuring safety, i.e., agreement. Consider for instance
the top run (execution ε1) from Fig. 2, where p is connected
to q in a chain forever, which is feasible for ♦STABILITY.
In any correct solution algorithm, the head p of this chain
must eventually decide in some round τ on its initial value
xp. Now consider the execution ε2, depicted in the bottom
of Fig. 2, where p is disconnected until τ and xp 6= xq. Since
ε2 is indistinguishable for p from ε1 until τ , process p will
decide xp at time τ . However, in ε2, a chain forms with head
q 6= p forever after τ . Since q is only aware of its own input
value xq, it can never make a safe decision in this execution.

This is why ♦STABLE(D) needs to combine ♦STABILITY

with another message adversary STICKY(x) that enables our
solution algorithm to also ensure safety. The above example
illustrates the main problem that we face here: If we allow

p q

p q

Rounds 1 to τ

p q

p q

Rounds τ + 1 to ∞

Figure 2: Two executions ε1 (top) and ε2 (bottom), indis-
tinguishable for p until τ .

root components to remain common for too many consecu-
tive rounds in the initial period (before rstab), the members
of such a root component (which does not need to be sin-
gle) cannot distinguish this from the situation where they
are belonging to the final FAES-common root (after rstab).
In [3], this problem was void since all communication graphs
were assumed to be single-rooted. In the following Defini-
tion 7, we require that every root R that is common during
a sequence of “significant” length x+ 1 is already the FAES-
common root R. Again, in Section 6, we will present a sig-
nificant relaxation of this quite restrictive (but convenient)
assumption.

Definition 7. STICKY(x) contains those communication
graph sequences σ = (Gr)∞r=1, where every root R that is
common for > x consecutive rounds in σ is the FAES-common
root R in σ.

We are now ready to define our simple eventually stabiliz-
ing message adversary ♦STABLE(D), which is the conjunction
of the adversaries from Definitions 6 and 7, augmented by
the additional requirement to always guarantee a dynamic
network diameter D according to Definition 5:

Definition 8. The message adversary ♦STABLE(D) =
STICKY(D) + ♦STABILITY contains those graph sequences of
STICKY(D) ∩ ♦STABILITY that guarantee a dynamic diame-
ter of D.

For exemplary graph sequences of ♦STABLE(D) with D =
2, see Figs. 3 and 4. Note carefully that Definition 6 allows
the coexistence of the FAES-common root R with some other
root component R′ 6= R in communication graphs that occur
before R becomes the single root (in round rsr). However,
according to Definition 7, R′ cannot be common root for
more than D consecutive rounds in this case.

In the remainder of this section, we will informally in-
troduce the message adversary VSRC(n, 4D) + MAJINF(k) in-
troduced in [4].6 The latter paper introduced a consensus
algorithm, which gracefully degrades to k-set agreement7 in
less favorable runs. VSRC(n, 4D) consists of all graph se-
quences σ, where up to n root components (the maximal
possible number) are allowed in every graph Gr. In addi-
tion, there must be a consecutive subsequence of graphs
(Gr)rstab+4D−1

r=rstab ⊆ σ where all root components are com-
mon8 and ensure dynamic network diameter D. On the
6In [4], a network diameter H and a root diameter D are
distinguished; we set H = D here to ensure compatibility
with our definitions.
7In k-set agreement, the consensus agreement condition is
relaxed such that up to k different decision values are per-
mitted.
8Recall that these common root components are called 4D-
vertex-stable root components (4D-VSRCs) in [4].

p1 p2p3

p4 p5

Round 1 to ∞

Figure 3: Execution ε of Theorem 2, n = 5, D = 2

other hand, MAJINF(1) guarantees that the first 2D+1-VSRC
that occurs in a run dominantly influences every subsequent
2D + 1-VRSC. This ensures that a decision value possibly
generated in an earlier 2D + 1-VRSC is duly propagated
to every subsequent 2D + 1-VSRCs. In the following The-
orem 1, we show that VSRC(n, 4D) + MAJINF(1) is stronger
than ♦STABLE(D). This implies that the consensus algo-
rithm from [4] works also under ♦STABLE(D).

Theorem 1. Message adversary VSRC(n, 4D)+MAJINF(1)
is stronger than ♦STABLE(D), i.e., VSRC(n, 4D)+MAJINF(1) ⊇
♦STABLE(D)

Proof. Since both adversaries guarantee the dynamic di-
ameterD, it suffices to show that VSRC(n, 4D) ⊇ ♦STABILITY

and MAJINF(1) ⊇ STICKY(D) both hold.
VSRC(n, 4D) ⊇ ♦STABILITY: Take any feasible sequence σ

of ♦STABILITY. By Definition 6, there is some round rsr >

rstab from which on (Gr)∞r=rsr ⊆ σ is R-single-rooted. But

then also (Gr)rsr+4D−1
r=rsr is R-single-rooted and hence σ ⊆

VSRC(n, 4D).
MAJINF(1) ⊇ STICKY(D): Pick an arbitrary feasible se-

quence σ of STICKY(D). If there is a subsequence (Gr)r∈I of
σ with common root R consisting of > 2D rounds, then it
follows from Definition 7 that there cannot be a subsequence
(Gr)r∈I′ of σ with common root R′ 6= R consisting of > 2D
rounds, as R and R′ both would need to be the single root
of (Gr)∞r=rsr . Hence, σ is trivially in MAJINF(1).

4 Termination time lower bound
It follows immediately from Theorem 1 that the gracefully
degrading consensus algorithm from [4] works also under
♦STABLE(D). According to [4, Lemma 5], it terminates at
the end of round rsr + 4D, i.e., has a termination time of
4D+ 1 rounds measured from the start of the stable period
(round rsr).

From an applications perspective, fast termination is of
course important. An interesting question is hence whether
the algorithm from [4] is optimal in this respect. The fol-
lowing Theorem 2 provides us with a lower bound of 2D for
the termination time under message adversary ♦STABLE(D),
which proves that it is not: There is a substantial gap of 2D
rounds.

Theorem 2. Solving consensus is impossible under mes-
sage adversary ♦STABLE(D) in round rsr + 2D − 1.

Proof. We will use a contradiction proof based on the in-
distinguishablility of specifically constructed admissible ex-
ecutions. Since the processes have no knowledge of Π and
|Π|, we can w.l.o.g. assume that n > 4 and D < n− 2.

Assume that an algorithm A exists that solves consensus
under ♦STABLE(D) by the end of round rsr +2D− 1. Then,
A must also solve consensus in the following execution ε: In
ε, all processes in Π start with input value 0, and all graphs

in (Gr)∞r=1 are the same G. The graph G is single-rooted with
R = {p1} and contains a chain C ⊂ G consisting of D + 1
processes C ⊆ Π that starts in p1 ∈ C and ends in p2 ∈
C. All remaining processes are direct out-neighbors of p1.
Fig. 3 shows an example of the graph G used in ε for n = 5
and D = 2. The execution is admissible because its graph
sequence is feasible for ♦STABLE(D) with rsr = rstab = 1. By
validity and our termination time assumption, every process
must hence have decided 0 by the end of round rsr +2D− 1
in ε.

We will now construct an execution ε′ of A, where some
process in Π \ {p1, p2} eventually decides 1 albeit the state
p2

rsr+2D−1 of process p2 at the end of round rsr + 2D − 1
is the same as in ε. Thus, ε and ε′ are indistinguishable
for process p2 until rsr + 2D − 1. An example of the graph
sequence used in ε′ for n = 5 and D = 2 is shown in Fig. 4.

In ε′, let two processes {p3, p4} in Π \C have initial value
1 and all remaining ones have initial value 0. The identical
graph G′ used in (Gr)Dr=1 consist of the very same chain C as
in G, and a single edge (p3, p4). Note that G′ contains two
root components, namely R1 = {p1} and R2 = {p3}. The
identical graph G′′ used in (Gr)2Dr=D+1 consist of the chain
C, an additional edge p2 to p1, and an edge (p4, p3). Again,
G′′ contains two root components, R1 = C and R2 = {p4}.
Finally, the graph G′′′ used in (Gr)∞r=2D+1 is G′′ augmented
by two edges connecting p4 to two different process in C.
Note that it contains a single root R = {p4} and guarantees
a dynamic diameter of (at most) D.

Clearly, ε′ is an admissible execution for ♦STABLE(D): It
adheres to ♦STABILITY for rsr = D+ 1, when {p4} becomes
a forever common root that becomes single forever starting
with round 2D + 1. It is also feasible for STICKY(D), as
the only graph sequence that contains a common root for
more than D rounds, namely, the final one (Gr)∞r=2D+1, is
single-rooted.

For p2, the executions ε and ε′ are indistinguishable for
the first 2D rounds, because by the end of round 2D, p2
cannot have learned of the existence of the edge (p2 → p1)
that distinguishes the root components R and R1 involving
p1 in G and G′′, respectively: It takes at least D rounds for
any information, sent by p1, to be forwarded along C to p2,
and p1 cannot have learned about the existence of this edge
before round D + 1. It hence follows that p2 decides 0 in
round 2D also in ε′, as it does so in ε.

In ε′, by validity and the assumed correctness of A, how-
ever, all processes must eventually decide 1 to solve con-
sensus: The only input value that p4 ever gets to know
throughout the entire execution is 1. The same is true in
the execution ε′′, which is identical to ε′ except that the
input value of all processes is 1. Clearly, p4 must decide
1 in ε′′ and, hence, also in ε′. This provides the required
contradiction and completes our proof.

Above, we have shown the impossibility for the case where
rsr = 1 (which would already be sufficient for the claim of
Theorem 2). Actually, it is not hard extend the proof for
general rsr, by simply prefixing ε and ε′ with the following
graph sequence π: In every round 6 rsr of π, the graphs
alternate between G′ and G′′, such that the graph in the last
round of π is G′′. The resulting prefixed executions obviously
still adhere to the message adversary ♦STABLE(D) and are
indistinguishable from their respective prefixed counterparts
for processes p2 and p4.

We will show in the next section that the lower bound

p1 p2p3

p4 p5

Rounds 1 and 2

p1 p2p3

p4 p5

Rounds 3 and 4

p1 p2p3

p4 p5

Round 5 to ∞

Figure 4: Execution ε′ of Theorem 2, n = 5, D = 2

established in Theorem 2 is tight, by providing a matching
algorithm.

5 A fast consensus algorithm
We now present our consensus algorithm for the message
adversary ♦STABLE(D), which also works correctly under
the generalized ♦STABLE

′(D) that will be introduced in Sec-
tion 6. The algorithm is based on the fact that, from the
messages a node receives, it can reconstruct a faithful under-
approximation of (the relevant part of) the communication
graph of every round, albeit with delay D.

The algorithm stated in Fig. 5 works as follows: Every

process p maintains an array Ĝp[r] that holds the graph ap-
proximation of Gr, and a matrix lockp[q][r] that holds the
history of a special value, the lock-value, for every known

process q and every round r. Ĝm
p [r] and lock

m
p [q][r] denote

the content of the respective array entry at the end of round
m as usual. The first entries of these arrays are initialized to

the singleton-graph Ĝ0
p[0] = ({p}, {}) resp. to lock

0
p[p][0] :=

xp, the input value of p, and to lock
0
p[q][0] := ⊥ for every

q 6= p. Note that lockp[p][m − 1] can be viewed as p’s pro-

posal value for round m. Every process broadcasts Ĝm−1
p [r]

and lock
m−1
p [q][r] in round m > 1, and updates Ĝm

p [r] and
lock

m
p [q][r], by fusing the information contained in the mes-

sages received in roundm in a per-round fashion (as detailed
below), before executing the round m core computation (we
will omit the attribute core in the sequel if no ambiguity
arises) of the algorithm. Note that the round m core com-
putation for m ∈ {1, . . . , D} is empty.

In the computation of some round τ , p will eventually
decide on the maximum lockp[q][a] value for all q ∈ R, where
R is a common root of some sequence (Gr)a+D

r=a but not of

(Gr)a+D−1

r=a−1 , as detected locally in Ĝτ
p [∗]. Note carefully that

τ may be different for processes other than p.
Two mechanisms are central to the algorithm for accom-

plishing this: First, any process p that, in its round m
computation, locally detects a single root component R in

Ĝm
p [m−D] will “lock” it, i.e., assign the maximum value of

lock
m
p [q][m −D] for any q ∈ R to lock

m
p [p][m]. Second, if

process p detects in round τ that a graph sequence had a
common root R′ for at least D + 1 rounds in its graph ap-
proximation, starting in round a, p will decide, i.e., set yp
to the maximum of lockτp [q][a] among all q ∈ R′.

Informally, the reason why this algorithm works is the
following: From detecting an R-single-rooted sequence of
length > D + 1, p can infer, by the STICKY(D) property of
our message adversary, that the entire system is about to
lock p’s decision value. Moreover, by exploiting the infor-
mation propagation guarantee given by Lemma 1, we can
be sure that, after p’s decision in round τ , every other pro-
cess q decides (in some round τ ′

> τ) on the very same
value: Under ♦STABLE(D), it decides because the root that
triggered the decision of p is the FAES-common root; under
♦STABLE

′(D), q decides on the same value because it will

never assign a value different from lockp[p][τ] to lockq [x][τ
′′]

for any τ ′′ > τ ′ and any known process x. Finally, termi-
nation is guaranteed since every p will eventually find an
R-single-rooted sequence of duration at least D+1 because
of ♦STABILITY.

Graph approximation and lock maintenance

Our algorithm relies on a simple mechanism for maintaining

the graph approximation Ĝp[r] and the array of lock values
lockp[q][r] at every process p: In every round, each process

p broadcasts its current Ĝp[∗] and lockp[∗][∗] and updates
all entries with new information possibly obtained in the re-
ceived approximations from other processes. In more detail,

an edge (q → q′) will be present in Ĝm
p [r] at the end of round

m > r if either p = q′ and p received a message from q in

round r, or if p received Ĝr′′

q′′ [r] for m > r′′ > r from some

process q′′ and (q → q′) ∈ Ĝr′′

q′′ [r]. Similarly, lock
m
p [q][r]

for r < m is updated to lockq′ [q][r] 6= ⊥ whenever such an
entry is received from any process q′; the entry lock

m
p [q][m]

for the current round m is initialized to lockp[p][m] :=
lockp[p][m− 1] for q = p and to lockp[q][m] := ⊥ for every
q 6= p.

Note carefully that we assume that the round m compu-
tation of the approximation algorithm is executed before the
round m core computing step at every process. Therefore,

the round m approximation Ĝm
p [∗] is already available before

the core computing step of round m at process p is executed.
We do not provide further details of the implementation

of this graph approximation here; a fitting algorithm, along
with its correctness proof, can be found in [3,4]. We remark,
though, that the full-information approach of the above im-
plementation incurs sending and storing a large amount of
redundant information. Comments related to a more effi-
cient implementation are provided in Section 6.

The crucial property guaranteed by our graph approxima-
tion is that processes under-approximate the actual commu-
nication graph, i.e., that they do not fabricate edges in their
approximation. Using our notion of causal past, it is not
difficult to prove the following assertion about edges that
are guaranteed to exist in the graph approximation:

Lemma 2. In a full-information graph approximation pro-

tocol, q ∈ CPr′

p (r) holds for r′ > r ⇔ there exists a process

q′ s.t. (q → q′) ∈ Ĝr′

p [r′′] for some r′′ ∈ (r, r′].

Proof. “⇒”-direction: If p = q, the claim trivially holds
because every communication graph contains the self-loop

(p → p). For p 6= q, since we assume q ∈ CPr′

p (r), by
Definition 4, there exists a round r′′ > r, such that ∃q′ ∈

CPr′

p (r′′) with (q → q′) ∈ Gr′′ . Therefore, p must have
received the round r′′ state of q′ and hence learned about
the edge (q → q′), by round r′. In other words, (q → q′) ∈

Ĝr′

p [r′′], as claimed.
“⇐”-direction: Since we assume a full-information proto-

col, p knowing part of the state of another process q′ im-

start of round m > D + 1 computation end of round m computation

c1:

Check if Ĝ[m−D] contains exactly one root R such that
for every q ∈ R there is a round m′ > m−D s.t.

there is an outgoing edge from q in Ĝ[m′].

b1:

Find a round a such that R is a maximal common root of (Ĝ[r])br=a

and (m−D) ∈ [a, b]. Set lock[p][m] to the maximum lock[q][a]
of all processes q ∈ R.

c2:

Does there exist a R′-single-rooted sequence (Ĝ[r])b
′

r=a′ with b′ − a′ + 1 > D?

c3:

For every process q of R′, is there some round γ > b′ s.t.

there is an outgoing edge from q in Ĝ[γ]?

b3:

If not yet decided, find a round a′′ s.t. R′ is maximum common root of (Ĝ[r])b
′′

r=a′′ and
[a′, b′] ⊆ [a′′, b′′] and decide on the maximum lock[q][a′′] of all processes q ∈ R′.

no

yes

no

yes

no

yes

Figure 5: Round m > D + 1 core computation step of our consensus algorithm for process p. Ĝ[r] = Ĝm
p [r] denotes p’s round

m view of Gr provided by the network approximation algorithm. lock[q][r] denotes lockmp [q][r], where lock[p][m] represents
p’s proposal value for the next round m+ 1.

plies that p knows the entire state of q′. Hence, if (q →

q′) ∈ Ĝr′

p [r′′], p knows the state of q′ of round r′′. Thus

q′ ∈ CPr′

p (r′′) with r′′ 6 r′. From Corollary 2, it follows

that q ∈ CPr′

p (r′′ − 1), which implies q ∈ CPr′

p (r) because
r 6 r′′.

We now present a more abstract view on this mechanism
of approximating the communication graph. First, we an-
swer which state information a process needs in order to
reliably detect which roots are present in the actual com-
munication graph.

Lemma 3. Let R ∈ roots(Gr) and let there be some pro-

cess p and round r′ such that R ⊆ CPr′

p (r). In a full-

information graph approximation protocol, R ∈ roots(Ĝr′

p [r]).

Furthermore, there exists a process q′ s.t. (q → q′) ∈ Ĝr′

p [r′′]
for some r < r′′ 6 r′.

Proof. Since R ⊆ CPr′

p (r), according to Corollary 2, by
the end of round r′, p has received the round r state qr of
all processes q ∈ R. In particular, p has received all round r
in-edges of every process q. Hence, R is a strongly connected

component of Ĝr′

p [r] and there are no processes q′ ∈ Π\R s.t.

(q′ → q) ∈ Ĝr′

p [r]. But then, R ∈ roots(Ĝr′

p [r]), as asserted.

The presence of (q → q′) in Ĝr′

p [r′′] follows directly from
Lemma 2.

We conclude our considerations regarding the graph ap-
proximation by looking at what is sufficient from an algo-
rithmic point of view for a process p to faithfully determine
the root components in some communication graph. In the
case where a root component R ∈ roots(Gr) has size |R| > 1,

we note that as soon as a process p knows, in some round r′,

at least one in-edge (q′ → q) ∈ Ĝr′

p [r] for each q ∈ R, then p
knows qr and hence all in-edges of q. Consequently, it can
reliably deduce that indeed R ∈ roots(Gr).

In the case where |R| = |{q}| = 1, if p has no edge (q′ →

q) ∈ Ĝr′

p [r], this is not sufficient for concluding that {q} ∈
roots(Gr): Process p seeing no in-edge to a process q in

the local graph approximation Ĝr′

p [r] happens naturally if

q ∈ CPr′

p (r − 1) and q /∈ CPr′

p (r), i.e., when the last message
p received from q was sent at the beginning of round r.
In order to overcome this issue, process p must somehow
ascertain that it already received the state qr of process q
in round r. In particular, process p can deduce this directly
from its graph approximation as soon as it observed some
outgoing edge from q in a round strictly after r.

Let us state this more formally in the following lemma.

Lemma 4. Consider a full-information graph approxima-

tion protocol. Let R ∈ roots(Ĝr′

p [r]) for r′ > r, and let, for
all processes q ∈ R, there be a process q′ and a round r′′ ∈

(r, r′], such that (q → q′) ∈ Ĝr′

p [r′′]. Then, R ∈ roots(Gr),

and R ⊆ CPr′

p (r).

Proof. By contradiction. Assume thatR ∈ roots(Ĝr′

p [r]),

∀q ∈ R ∃q′ ∈ Π, r′′ ∈ (r, r′] : (q → q′) ∈ Ĝr′

p [r′′] and R /∈
roots(Gr). Because of the latter, there exist some processes
q ∈ R and q′′ /∈ R with (q′′ → q) ∈ Gr. By the presence

of the edge (q → q′) in Ĝr′

p [r′′] and Lemma 2, we have R ⊆

CPr′

p (r). But then, by the assumption that (q′′ → q) ∈ Gr,

it must also hold that (q′′ → q) ∈ Ĝr′

p [r]. This, however,

contradicts that R ∈ roots(Ĝr′

p [r]).

Finally, the way how the lock arrays are maintained by
our algorithm implies the following simple results:

Corollary 3. If r′ > r, then q ∈ CPr′

p (r) implies that

also lock
r′

p [q][r′′] = lock
r′′

q [q][r′′] for all rounds r′′ 6 r.

Lemma 5. Let m be a round reached by process p in the
execution. Then, lockmp [p][r] 6= ⊥ for all 0 6 r 6 m.

Proof. Since lock0p[p][0] = xp, it follows from the update
rule lockp[p][m] := lockp[p][m − 1] that lockp[p][m] 6= ⊥
for all reached rounds m, provided that the core algorithm
never assigns ⊥ in b1. Since the latter can only assign the
maximum of lockp[q][a] for all q ∈ R from some earlier
round a 6 m−D < m, the statement of our lemma follows
from a trivial induction based on Corollary 3, provided we
can guarantee q ∈ CPm

p (a). The latter follows immediately
from c1 in conjunction with Lemma 4, however.

Correctness proof

Before proving the correctness of the algorithm given in
Fig. 5 (Theorem 3 below), we first establish two technical
lemmas: Lemma 6 reveals that our algorithm terminates
for every message adversary MAT that guarantees certain
properties (without guaranteeing agreement, though). The
complementary Lemma 7 shows that our algorithm ensures
agreement (without guaranteeing termination, though) for
every message adversary MAA that guarantees certain other
properties. Theorem 3 will then follow from the fact that
♦STABLE(D) ⊆ MAT ∩ MAA.

Lemma 6. The algorithm terminates by the end of round
τ under any message adversary MAT that guarantees dynamic
diameter D in conjunction with the following properties: For
every σ ∈ MAT,

• there is an R-single-rooted sequence (Gr)βr=α ∈ σ with
β − α+ 1 > D.

• there is a round τ such that R ⊆ CPτ
p(β), for all p ∈ Π.

Proof. We show that if process p has not decided before
round τ , it will do so in round τ . By round τ , every process
p ∈ Π received qβ for all q ∈ R by the assumption that
R ⊆ CPτ

p(β). Hence, by Lemma 3 and Lemma 4, for every

p ∈ Π, it holds that R is the single root of roots(Ĝτ
p [β]).

Furthermore, by Corollary 2, R is in fact the single root of

roots(Ĝτ
p [r]) for any r ∈ [α, β]. Therefore, process p will pass

the check c2 in round τ .
In addition, by the assumption that R ⊆ CPτ

p(β) and
Lemma 3, for every q ∈ R, there exists a round β′ ∈ (β, τ],

s.t. (q → q′) ∈ Ĝτ
p [β

′] for some process q′. Therefore, process
p will pass the check c3 in round τ and decide.

Lemma 7 below shows that, under message adversaries
that guarantee a ECS(D+1)-common root according to Def-
inition 9, the algorithm from Fig. 5 satisfies agreement.

Definition 9. We say that a graph sequence (Gr)α+d
r=α has

a ECS(x+1)-common root (“embedded x+1-consecutive sin-
gle common root”) R, if (i) (Gr)α+d

r=α has a common root R

and (ii) (Gr)α
′
+x

r=α′ ⊆ (Gr)α+d
r=α has a single root R.

Lemma 7. Let MAA be a message adversary that guaran-
tees, for every σ ∈ MAA, a dynamic diameter D in conjunc-
tion with the property that the first subsequence (Gr)βr=α ⊆ σ

with a maximum common root R and β − α+ 1 > D has a
ECS(D + 1)-common root. Under MAA, if two or more pro-
cesses decide in our algorithm, then they decide on the same
value 6= ⊥.

Proof. Let α′ and β′, with β′ − α′ + 1 > D, delimit the
maximal period where R is single-rooted, as predicted by
Definition 9.

Setting λ = maxq∈R lock
α
q [q][α], we show that if an ar-

bitrary process p decides in round τ , it decides on λ and
λ 6= ⊥. Assume that p decides in some round τ . It follows
from c2 and c3 that p detects in round τ that R′ is the single

root of (Ĝτ
p [r])

b′

r=a′ with b′ − a′ + 1 > D, and that, for every
q ∈ R′, there is a round γ > b′ where there is an edge (q, q′)

in Ĝτ
p [γ] for some process q′ ∈ Π. By Lemma 4, we have

that R′ ∈ roots(Gr) for all r ∈ [a′, b′], and R′ ⊆ CPτ
p(b

′).
Thus, Corollary 3 in conjunction with Lemma 5 confirm that
indeed λ 6= ⊥. We distinguish two cases:

Case 1. [a′, b′] ⊆ [α, β]: From the definition of MAA, in
combination with the fact that b′ − a′ + 1 > D, it follows
that R′ = R: if this was not the case, then either (Gr)βr=α

would not be the first sequence of its kind or (Gr)β
′

r=α′ would
not be R-single-rooted.

By b3, p will decide on the maximum of lockp[q][a
′′],

where a′′ is a round such that (Ĝτ
p [r])

b′′

r=a′′ has a maximum
common root R, [a′′, b′′] ⊇ [a′, b′], and q ∈ R. Hence, since
R ⊆ CPτ

p(b
′) and α < b′, it follows from Corollary 2 that

R ⊆ CPτ
p(α). Thus, by Lemma 3, we have a′′ = α. Accord-

ing to Corollary 2 in conjunction with Corollary 3, it follows
that p indeed decides on λ.

Case 2. [a′, b′] * [α, β]: First, observe that a′ > β′: If

a′
6 β′ then, because (Gr)βr=α is the first sequence of its

kind, we have that a′
> α. Thus, since Gβ′

is R-single-
rooted, R′ = R, and hence [a′, b′] * [α, β] is a contradiction

to the assumption that R is maximal common in (Gr)βr=α.

It follows from this observation and b3 that p decides on
the maximum value of lockp[q][a

′′] for q ∈ R′, where a′′ >
β′. Thus, to conclude our proof, it suffices to show that
lock

r
p[p][r] = λ for all rounds r > β′ and all processes p ∈ Π.

Since (Gr)β
′

r=β′−D
is R-single-rooted, it follows from Def-

inition 5 and Lemma 3 that in round β′ every process p

sets lockβ
′

p [p][β′] to λ via b1. Moreover, if a process assigns
a value to lockp[p][m] during some round m ∈ (β′, β′ +
D] via b1 later on, it follows from the single-rootedness of

(Gr)β
′

r=β′−D
and Lemma 4 that the assigned value is also λ.

For ℓ > β′ + D, we show by induction on ℓ that λ is as-
signed to lockp[p][m] (if there is any assignment at all), in
round m, for all m ∈ [β′, ℓ] and all processes p. The in-
duction basis is ℓ = β′ + D, for which the claim has been
established already. For the induction step, assume that
the claim holds for the interval [β′, ℓ] and all p. If no pro-
cess p changes its lock value in b1 during the core round
ℓ+ 1 computation, i.e., lockℓp[p][ℓ] = lock

ℓ+1
p [p][ℓ+ 1], then

the claim follows immediately from the induction hypothe-
sis. Thus, assume that λ = lock

ℓ
p[p][ℓ] 6= lock

ℓ+1
p [p][ℓ + 1].

This means that p has successfully passed c1 and hence, by
Lemma 4, that there is a root R′′ ∈ roots(Gℓ+1−D) with
R′′ ⊆ CPℓ+1

p (ℓ+ 1−D). If R′′ = R is a maximal common

root of (Gr)βr=α, by Corollary 2, it follows from the definition
of λ and Corollary 3 that p assigns lock

ℓ+1
p [p][ℓ + 1] := λ.

Therefore, assume that this is not the case, i.e., R′′ 6= R.

Still, R′′ must be a maximal common root in (Gr)β
′′

r=α′′ for
some α′′ > β′ with α′′

6 ℓ + 1 − D. By the induction hy-
pothesis, lockℓ+1−D

q [q][r] = λ for every process q of R′′ and

round r ∈ [β′, ℓ] and so, in particular, lockℓ+1−D
q [q][α′′] = λ.

It follows from Corollary 3 and R′′ ⊆ CPℓ+1
p (ℓ+ 1−D) that

for all processes q ∈ R′′, we have lockℓ+1
p [q][α′′] = λ. There-

fore, since, by b1, p chooses its new value for lockℓ+1
p [p][ℓ+1]

as the maximum of the entries lock
ℓ+1
p [q][α′′], it assigns

lock
ℓ+1
p [p][ℓ + 1] := λ.

Theorem 3. The algorithm from Fig. 5 solves consensus
by round rsr + 2D under message adversary ♦STABLE(D).

Proof. According to b3, a process p can decide only on
a value in lock

m
p [p][∗] in some round m. By Lemma 5, this

value must be 6= ⊥. Since lockq [q][0] is initialized to xq for
any process q, and the only assignments 6= ⊥ to any lockq

entry are lockq′ entries of other processes, validity follows.
For agreement, recall that STICKY(D) guarantees that the

first sequence (Gr)r∈I with a common root R and |I | > D
must be the FAES-common root. Hence, agreement follows
from Lemma 7.

For termination, recall that ♦STABILITY guarantees the
existence of some round rsr > rstab such that (Gr)∞r=rsr is R-

single-rooted. This implies that the sequence (Gr)rsr+D
r=rsr is R-

single-rooted and, by Definition 5, R ⊆ CPrsr+2D
p (rsr +D).

Lemma 6 thus implies termination by round rsr + 2D.

6 Generalized stabilizing message adversary
The simple message adversary introduced in Section 3 may
be criticized due to the fact that the first root component R
that is common in at least D + 1 consecutive rounds must
already be the FAES-common root that persists forever after.
In this section, we will considerably relax this assumption,
which is convenient for analysis and comparison purposes
but maybe unrealistic in practice.

In the following Definition 10, we start with a significantly
relaxed variant ♦STABILITY

′(x) of ♦STABILITY from Def-
inition 6: Instead of requesting an infinitely stable FAES-
common root R, we only require R to be (i) a ECS(x + 1)-
common root that starts at rstab and becomes single at
rsr > rstab, and (ii) to re-appear as a single root in at least D
not necessarily consecutive later round graphs Gr1 , . . . ,GrD .
Note that, according to Definition 5, the latter condition
ensures R ⊆ CPrD

p (rsr + x) for all p ∈ Π if ♦STABILITY′(x)
adheres to the dynamic diameter D.

Definition 10. Every communication graph sequence σ ∈
♦STABILITY

′(x) contains a subsequence (Gr)α+d
r=α, which has

a ECS(x + 1)-common root R; let rstab = α be its starting
round and rsr = α′ be the time when it becomes single. Fur-
thermore, there are at least D, not necessarily consecutive,
R-single rooted round graphs Gr1 , . . . ,GrD with rsr + x <
r1 < · · · < rD in σ.

Moreover, we also relax the STICKY(x) condition in Def-
inition 7 accordingly: We only require that the first root
component R that is common for at least x+ 1 consecutive
rounds in a graph sequence σ = (Gr)∞r=1 is a ECS(x + 1)-
common root:

Definition 11. For every σ ∈ STICKY
′(x), it holds that

the earliest subsequence in σ with a maximal common root R

in at least x+1 consecutive rounds actually has a ECS(x+1)-
common root.

Combining these two definitions results in the following
strong version of our stabilizing message adversary.

Definition 12. The strong stabilizing message adversary
♦STABLE

′(D) = STICKY
′(D) + ♦STABILITY

′(D) contains all
graph sequences in STICKY

′(D) ∩ ♦STABILITY
′(D) that guar-

antee a dynamic diameter of D.

Note carefully that the very first ECS(D+1)-common root
R′ occurring in σ ∈ ♦STABLE

′(D) need not be the ECS(D+1)-
common root R guaranteed by Definition 10.

The following Lemma 8 shows that the message adversary
♦STABLE

′(D) is indeed weaker than ♦STABLE(D). This is not
only favorable in terms of model coverage, but also ensures
that an algorithm designed for ♦STABLE

′(D) works under
♦STABLE(D) as well.

Lemma 8. ♦STABLE(D) ⊆ ♦STABLE
′(D)

Proof. Pick any graph sequence σ ∈ ♦STABLE(D). Since
σ ∈ ♦STABILITY, there exists a round rsr > rstab such
that (Gr)∞r=rsr is R-single-rooted. But then (Gr)rsr+D

r=rsr is
also R-single-rooted and there is a set of D additional com-
munication graphs S =

{
Grsr+D+1, . . . ,Grsr+2D

}
such that

every Gr ∈ S is also R-single-rooted. Hence, σ satisfies
♦STABILITY

′(D).
Furthermore, σ satisfies STICKY(D). Thus, for the first se-

quence (Gr)a+D
r=a with common root R, Rmust already be the

FAES-common root and hence (Gr)∞r=rsr is R-single rooted for
some rsr > a. Consequently, R is a ECS(x+1)-common root
starting at a. Hence, σ satisfies STICKY′(D).

The following Theorem 4 shows that the algorithm from
Fig. 5 also solves consensus under the stronger message ad-
versary ♦STABLE

′(D):

Theorem 4. For a graph sequence σ ∈ ♦STABLE
′(D), let

Gr1 , . . . ,GrD with r1 > rsr +D denote the D re-appearances
of the ECS(D+1)-common root R guaranteed by ♦STABILITY

′

according to Definition 10. Then, the algorithm from Fig. 5
correctly terminates by the end of round τ = rD.

Proof. The proof of validity in Theorem 3 is not affected
by changing the message adversary.

For the agreement condition, recall that STICKY′(D) guar-
antees that the first sequence (Gr)r∈I with common root R
in D+1 consecutive rounds has a ECS(D+1)-common root.
Hence, we can again apply Lemma 7 to prove that the algo-
rithm satisfies agreement.

For the termination condition, recall that for any sequence
σ ∈ ♦STABILITY

′(D) it is guaranteed that there exists some
round rsr s.t. (Gr)rsr+D

r=rsr is R-single-rooted. Furthermore,
σ contains at least D not necessarily subsequent R-single
rooted communication graphs after rsr +D. The latter im-
plies, by Definition 5, that R ⊆ CPτ

p(rsr +D) for every pro-
cess p ∈ Π. Hence, we can again apply Lemma 6, which
shows that the algorithm indeed terminates by round τ .

By contrast, the algorithm from [4] does not work under
♦STABLE

′(D). Under an appropriate adversary, this algo-
rithm ensures graceful degradation from consensus to gen-
eral k-set agreement. This does not allow the algorithm to

adapt to the comparably shorter and weaker stability peri-
ods of ♦STABLE′(D), however. In more detail, VSRC(n, 4D)
requires a four times longer period of consecutive stability
than ♦STABILITY

′(D). The adversarial restriction MAJINF(k)
that enables k-agreement under partitions in [4] for k > 1, on
the other hand, is very weak and thus requires quite involved
algorithmic solutions. Nevertheless, despite its weakness, it
is not comparable to STICKY

′(D).

Impossibility results and lower bounds

The proof of Theorem 4 indicates that two things are needed
in order to solve consensus under a message adversary like
♦STABLE

′(D): There must be some subsequence with a sin-
gle root component R in at least x+1 rounds, and, for every
process in the system, there must be some round r such that
R appears in the causal past CP

rstab+x
p (r) . Looking more

closely at the message adversary ♦STABLE
′(D), it is hence

tempting to further weaken it by instantiating STICKY
′(x)

with some x > D and/or ♦STABILITY′(x) with some x <
D. There is, however, a fundamental relation between the
STICKY

′(x) and ♦STABILITY
′(x) conditions: Weakening one

condition requires strengthening the other, and vice-versa.
To further explore this issue, we introduce the message

adversary MA(x, y), which consists of the graph sequences
in STICKY

′(x) ∩ ♦STABILITY′(y) that guarantee a dynamic
diameter D. The following Theorem 5 reveals that solving
consensus requires y > x.

Theorem 5. Solving consensus is impossible under mes-
sage adversary MA(x, y) for x > y.

Proof. Since the processes have no knowledge of Π and
|Π|, we can again w.l.o.g. assume that n > 4 and D < n−2.

Assume for a contradiction that some algorithm A ex-
ists that solves consensus under MA(x, y) for x > y, and
hence also in the following execution ε with graph sequence
σ: Every process starts with input value 0 and, for the first
x > y+1 rounds, (Gr)xr=1 is R-single rooted. Then, the com-
munication graphs alternate between being R′-single-rooted
and R-single-rooted for some root R′ 6= R. Additionally,
there are two distinct processes p and q that have only in-
coming edges throughout the entire execution ε. The actual
communication graphs outside R are such that σ has a dy-
namic diameter D.

Since every Gr in σ is single-rooted, the latter is feasi-
ble for ♦STABILITY′(y), with rstab = 1 and the communi-
cation graphs Gx+2,Gx+4, . . . ,Gx+2D where R re-appears D
times. In addition, as σ does not contain any root com-
ponent that is common in more than x rounds, it trivially
satisfies STICKY′(x) as well. By the assumed correctness of A
under MA(x, y), there is hence some round τ by which every
process must have terminated correctly.

Now consider the following execution ε′, with graph se-
quence σ′: Each process of Π\{p, q} starts with input value
0, while p and q start with 1. For every Gr of (Gr)τr=1 in
σ′, the induced subgraph of Π \ {p, q} is the same as in σ.
By contrast, the processes p and q are now connected only
with each other: There is an edge (q, p) in every Gr and an
edge (p, q) in every Gr where r is even. Finally, the graph
sequence (Gr)∞r=τ+1 forever repeats the star-graph G, where
the center p has no in-edges and an out-edge to every other
process.

Clearly, σ′ is feasible for ♦STABILITY′(y), with rstab =
τ + 1 due to the star-graph sequence (Gr)∞r=τ+1. Moreover,

(Gr)∞r=τ+1 is the only subsequence of σ′ with a common root
R and a longer consecutive duration than x. Since R is
a ECS(x + 1)-common root of (Gr)∞r=τ+1, σ

′ is feasible for
STICKY

′(x). Since also the dynamic diameter D is adhered
to in σ′, we have thus that σ′ is feasible for MA(x, y).

Observe that all processes of Π\{p, q} have the same state
in both ε and ε′ at the end of round τ . Hence, all decide
0 in ε′ as they do in ε. For p and q, ε′ is indistinguish-
able from the execution ε′′, which applies σ′ to the initial
configuration where every process started with input value
1. Consequently, p cannot make a safe decision in ε′: If it
decides 1, it violates agreement w.r.t. ε, if it decides 0, it
violates validity w.r.t. ε′′. This contradicts the assumption
that A is a correct consensus algorithm.

Essentially, the proof of Theorem 5 exploited the obser-
vation that the members of a root component R cannot dis-
tinguish whether they belong to the single root component
guaranteed by ♦STABILITY

′(y) after rstab, or to a (possi-
bly non-single) “spurious” common root in y+1 consecutive
rounds generated my MA(x, y) before rstab. Note that this is
closely related to the argument used for defending the need
to introduce STICKY(x) in Definition 7 (recall the graphs de-
picted in Fig. 2).

In the light of Theorem 5, ♦STABLE′(D) is hence the strong-
est eventually stabilizing variant of MA(x, y) for x > D we
can hope to find an algorithm for. Note that it would not be
difficult to adopt the algorithm introduced in Fig. 5 to work
under MA(x, y) for general y > x > D, though. Answering
the question of whether it is possible to solve consensus for
x < D is a topic of future research.

Finally, Theorem 6 provides a termination time lower bound
for consensus under ♦STABLE′(D). The result itself is actu-
ally a direct consequence of the fact that ♦STABLE(D) ⊆
♦STABLE

′(D) (Lemma 8) and Theorem 2. We now provide a
more involved argument showing that the result holds even
for arbitrary choices of rsr and {r1, . . . , rD}.

Theorem 6. For a graph sequence σ ∈ ♦STABLE
′(D), let

Gr1 , . . . ,GrD with r1 > rsr +D denote the D re-appearances
of the ECS(D+1)-common root R guaranteed by ♦STABILITY′

according to Definition 10. Then, no correct consensus al-
gorithm under the message adversary ♦STABLE

′(D) can ter-
minate strictly before round rD.

Proof. We assume w.l.o.g. that n > 4 and D < n − 3.
Furthermore, we do not let the adversary choose rsr and
{r1, . . . , rD}, which results in an even stronger impossibility
result.

First, let us define some communication graphs that we

employ later on. For any graph G, let G̃ denote the sub-
graph of G induced by Π \ {pn−1, pn}, augmented with the

edge (pn−1, pn). Let G be the same as G̃ except that the di-
rection of this edge is reversed. In addition, let G′ be a graph
where D + 2 processes of Π \ {pn−1, pn} constitute a chain
C (actually, a tree), with head p1 and two tails pn−3, pn−2,
where the processes of Π \C only have incoming edges. Let
G′′ be the same as G′, except that the direction of all the
edges in C is reversed and there is an edge e = (pn−3, pn−2)
in G′′. Let G′′′ be the same as G′′ but with reversed direction
of this edge e.

For a contradiction, assume that an algorithm A exists
that solves consensus in a round τ 6 rD − 1. Then, A
must solve consensus also in the following execution ε: Let

all processes start with input 0, and construct σ = (Gr)∞r=1

as follows: For r /∈ {r1, . . . , rD} and 1 6 r < rsr or r >
rsr +D, if r is even, let Gr = G′′; if r is odd, Gr = G′′′. For
rsr 6 r 6 rsr +D or r ∈ {r1, . . . , rD}, let Gr = G′. Clearly,
σ ∈ ♦STABLE

′(D). By validity and the assumptions on A,
all processes of Π must decide 0 by round τ .

We now define another execution ε′, where all processes
in Π \ {pn−1, pn} start with 0 and pn−1 and pn start with
1. The graph sequence σ′ of ε′ is the same as σ until round

τ , except that every Gr of σ is replaced with G̃r if r is even
and Gr if r is odd. Moreover, G′ in round rsr + D is not

only replaced with G̃′, but also augmented with a single
edge (p2, p1). Finally, let the Gr of (Gr)∞r=τ+1 in σ′ be a
star-graph with an out-edge from pn to every process of Π.
Again, note that σ′ ∈ ♦STABLE

′(D).
Observe that, in σ′, for any round r < rD, it holds that

p1 6∈ CPrsr+D
pn−2

(r). Hence, until round r, ε is indistinguish-

able for pn−2 from the execution ε′. In particular, pn−2 can
not have learned about the existence of the edge (p2, p1) in
Grsr+D. Therefore, since pn−2 decides 0 in round τ in ε, it
does so also in ε′. This, however, means that pn can never
make a safe decision in ε′: In order to satisfy agreement it
should decide 0. However, since pn never hears from process
that had input 0, ε′ is indistinguishable for pn from an execu-
tion ε′′, which has the same graph sequence σ′ but where all
processes have input 1. In order to satisfy validity, it should
decide 1 in ε′′. This provides the required contradiction.

More efficient algorithms

Throughout our paper, we have assumed a full-information
protocol where, every round, a process stores and forwards
its entire known state history. While this is a convenient
abstraction for introducing the fundamental concepts of our
algorithm and a valid assumption for any impossibility re-
sult, it is of course highly unpractical.

We can name two major improvements related to this is-
sue. For simplicity, we only discuss the graph approximation
here and not the matrix lockp of lock values. It is not hard
to see that arguments for the former extend in a natural way
to the latter.

First, it has already been shown, via the graph approx-
imation algorithm used in [3], that it is sufficient to store
and forward the local graph approximation history of each
process in order to faithfully approximate the communica-
tion graph sequence. In round r, this requires up to O(rn2)
local memory space at every process.

Second, the question arises whether it is indeed necessary
to maintain (an approximation of) the entire communication
graph sequence. In the case of ♦STABLE(D), it is perfectly
possible to locally store and forward only a relatively small
part of the graph approximation: Since the largest possible
latency for a process to detect the start of a single-rooted
graph sequence of duration D+ 1 is D rounds, it suffices to
maintain only the last 2D+1 rounds of the graph approxima-
tion history. This optimization yields a memory complexity
of O(Dn2) = O(n3) by Lemma 1.

In the case of ♦STABLE′(D), there is a tradeoff between
the strength of the adversary and the memory complexity
required by the algorithm. The principal issue is that if we
allow the algorithm to purge the graph approximations for
all but the last x rounds, then the adversary could generate
a run with a “terminating” ECS(D+1)-common root R with
rD > rsr +D + x, recall Definition 10. In this case, process

p ∈ Π in round rD would not have its causal past down to
round rsr + D available, which is mandatory for detecting
R.

A straightforward remedy would be an additional restric-
tion to be enforced by the message adversary, which must
ensure rD 6 rstab +D+ x for some given additional param-
eter x. A message adversary weakened in such a way would
entail a memory complexity of O(xn2) for our consensus al-
gorithm.

7 Conclusion
We introduced an eventually stabilizing message adversary
for consensus in a synchronous dynamic network with di-
rected communication. Such a model closely captures the
behaviour of a real network with arbitrarily irregular inter-
connection topology for a finite initial period, before it even-
tually starts to operate in a reasonably well-orchestrated
manner.

Our message adversary eventually asserts a single strongly
connected component without incoming edges from outside
the component, which consists of the same set of processes,
with possibly changing interconnection topology, either for-
ever (♦STABLE(D)) or, in a generalized and stronger vari-
ant, for a certain number of (partly consecutive) rounds
(♦STABLE′(D)). We established that no deterministic algo-
rithm can terminate earlier than 2D + 1 rounds after sta-
bilization in some execution under ♦STABLE(D), where D is
the dynamic network diameter guaranteed by the message
adversary, and provided a matching algorithm, along with
its correctness proof, that even works under ♦STABLE′(D).

Part of our future work in this area will be devoted to
finding even stronger message adversaries for stabilizing dy-
namic systems, and to the development of techniques for
exploiting them algorithmically.

8 References

[1] Y. Afek and E. Gafni. Asynchrony from synchrony. In
D. Frey, M. Raynal, S. Sarkar, R. Shyamasundar, and
P. Sinha, editors, Distributed Computing and
Networking, volume 7730 of Lecture Notes in
Computer Science, pages 225–239. Springer Berlin
Heidelberg, 2013.

[2] R. Baumann. Radiation-induced soft errors in
advanced semiconductor technologies. IEEE
Transactions on Device and Materials Reliability,
5(3):305–316, Sept. 2005.

[3] M. Biely, P. Robinson, and U. Schmid. Agreement in
directed dynamic networks. In Proceedings 19th
International Colloquium on Structural Information
and Communication Complexity (SIROCCO’12),
LNCS 7355, pages 73–84. Springer-Verlag, 2012.

[4] M. Biely, P. Robinson, U. Schmid, M. Schwarz, and
K. Winkler. Gracefully degrading consensus and k-set
agreement in directed dynamic networks, 2015. (to
appear in Proc. NETYS’15, Springer LNCS; arxiv
version: http://arxiv.org/abs/1501.02716).

[5] A. Casteigts, P. Flocchini, W. Quattrociocchi, and
N. Santoro. Time-varying graphs and dynamic
networks. IJPEDS, 27(5):387–408, 2012.

[6] É. Coulouma and E. Godard. A characterization of
dynamic networks where consensus is solvable. In

Proceedings Structural Information and
Communication Complexity - 20th International
Colloquium (SIROCCO’13), Springer LNCS 8179,
pages 24–35, 2013.

[7] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, Apr. 1988.

[8] C. Dyer and D. Rodgers. Effects on spacecraft &
aircraft electronics. In Proceedings ESA Workshop on
Space Weather, ESA WPP-155, pages 17–27,
Nordwijk, The Netherlands, nov 1998. ESA.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, Apr.
1985.

[10] F. Kuhn, N. A. Lynch, and R. Oshman. Distributed
computation in dynamic networks. In STOC, pages
513–522, 2010.

[11] F. Kuhn and R. Oshman. Dynamic networks: Models
and algorithms. SIGACT News, 42(1):82–96, 2011.

[12] F. Kuhn, R. Oshman, and Y. Moses. Coordinated
consensus in dynamic networks. In Proceedings of the
30th annual ACM SIGACT-SIGOPS symposium on
Prin ciples of distributed computing, PODC ’11. ACM,
2011.

[13] F. Kuhn, S. Schmid, and R. Wattenhofer. Towards
worst-case churn resistant peer-to-peer systems.
Distributed Computing, 22(4):249–267, 2010.

[14] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[15] F. Legendre, T. Hossmann, F. Sutton, and
B. Plattner. 30 years of wireless ad hoc networking
research: What about humanitarian and disaster relief
solutions? What are we still missing? In International
Conference on Wireless Technologies for
Humanitarian Relief (ACWR 11), Amrita, India,
2011. IEEE.

[16] C. Newport, D. Kotz, Y. Yuan, R. S. Gray, J. Liu, and
C. Elliott. Experimental Evaluation of Wireless
Simulation Assumptions. SIMULATION: Transactions
of The Society for Modeling and Simulation
International, 83(9):643–661, Sept. 2007.

[17] M. Raynal and J. Stainer. Synchrony weakened by
message adversaries vs asynchrony restricted by
failure detectors. In Proceedings ACM Symposium on
Principles of Distributed Computing (PODC’13),
pages 166–175, 2013.

[18] N. Santoro and P. Widmayer. Time is not a healer. In
Proc. 6th Annual Symposium on Theor. Aspects of
Computer Science (STACS’89), LNCS 349, pages
304–313, Paderborn, Germany, Feb. 1989.
Springer-Verlag.

[19] U. Schmid, B. Weiss, and I. Keidar. Impossibility
results and lower bounds for consensus under link
failures. SIAM Journal on Computing,
38(5):1912–1951, 2009.

[20] M. Schwarz, K. Winkler, U. Schmid, M. Biely, and
P. Robinson. Brief announcement: Gracefully
degrading consensus and k-set agreement under
dynamic link failures. In Proceedings of the 33th ACM
SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, PODC ’14, pages 341–343,
New York, NY, USA, 2014. ACM.

	1 Introduction
	2 Model
	3 A simple stabilizing message adversary
	4 Termination time lower bound
	5 A fast consensus algorithm
	6 Generalized stabilizing message adversary
	7 Conclusion
	8 References

