arXiv:1510.06967v1 [cs.DC] 23 Oct 2015

Opacity Proof for CaPR+ Algorithm

Anshu S Anand
Homi Bhabha National
Institute, Mumbai
anshusanand2001@gmail.com

ABSTRACT

In this paper, we describe an enhanced Automatic Check-
pointing and Partial Rollback algorithm(CaPR™") to realize
Software Transactional Memory(STM) that is based on con-
tinuous conflict detection, lazy versioning with automatic
checkpointing, and partial rollback. Further, we provide
a proof of correctness of CaPR™ algorithm, in particular,
Opacity, a STM correctness criterion, that precisely captures
the intuitive correctness guarantees required of transactional
memories. The algorithm provides a natural way to realize a
hybrid system of pure aborts and partial rollbacks. We have
also implemented the algorithm, and shown its effectiveness
with reference to the Red-black tree micro-benchmark and
STAMP benchmarks. The results obtained demonstrate the
effectiveness of the Partial Rollback mechanism over pure
abort mechanisms, particularly in applications consisting of
large transaction lengths.

Keywords

STM, transaction, opacity, correctness, multi-core

1. INTRODUCTION

The challenges posed by the use of low-level synchronization
primitives like locks led to the search of alternative parallel
programming models to make the process of writing concur-
rent programs easier. Transactional Memory is a promising
programming memory in this regard.

A Software Transactional Memory(STM)[2] is a concurrency
control mechanism that resolves data conflicts in software as
compared to in hardware by HTMs.

STM provides the programmers with high-level constructs to
delimit transactional operations and with these constructs in
hand, the programmer just has to demarcate atomic blocks
of code, that identify critical regions that should appear to
execute atomically and in isolation from other threads. The
underlying transactional memory implementation then im-

R K Shyamasundar
Indian Institute of Technology
Mumbai
shyamasundar@gmail.com

Sathya Peri
Indian Institute of Technology
Hyderabad
sathya_p@iith.ac.in

plicitly takes care of the correctness of concurrent accesses to
the shared data. The STM might internally use fine-grained
locking, or some non-blocking mechanism, but this is hidden
from the programmer and the application thereby relieving
him of the burden of handling concurrency issues.

Several STM implementations have been proposed, which
are mainly classified based on the following metrics:

1) shared object update(version management) - decides when
does a transaction update its shared objects during its life-
time.

2) conflict detection - decides when does a transaction de-
tect a conflict with other transactions in the system.

3) concurrency control - determines the order in which the
events - conflict, its detection and resolution occur in the
system.

Each software transaction can perform operations on shared
data, and then either commit or abort. When the transac-
tion commits, the effects of all its operations become imme-
diately visible to other transactions; when it aborts, all its
operations are rolled back and none of its effects are visible
to other transactions. Thus, abort is an important STM
mechanism that allows the transactions to be atomic. How-
ever, abort comes at a cost, as an abort operation implies
additional overhead as the transaction is required to be re-
executed after canceling the effects of the local transactional
operations. Several solutions have been proposed for this,
that are based on partial rollback, where the transaction
rolls back to an intermediate consistent state rather than
restarting from beginning. [4] was the first work that illus-
trated the use of checkpoints in boosted transactions and
[11] suggested using checkpoints in HT'Ms. In [5] the partial
rollback operation is based only on shared data that does
not support local data which requires extra effort from the
programmer in ensuring consistency. [7] and [6] is an STM
algorithm that supports both shared and local data for par-
tial rollback. [12] is another STM that supports both shared
and local data. Our work is based on [7]. We present an im-
proved and simplified algorithm, Automatic Checkpointing
and Partial Rollback algorithm(CaPR™") and prove its cor-
rectness.

Several correctness criteria exist for STMs like linearizabil-
ity, serializability, rigorous scheduling, etc. However, none
of these criteria is sufficient to describe the semantics of
TM with its subtleties. Opacity is a criterion that captures
precisely the correctness requirements that have been intu-

http://arxiv.org/abs/1510.06967v1

itively described by many TM designers. We discuss Opac-
ity in section @ and present the proof of opacity of CaPR™
algorithm in section

2. SYSTEM MODEL

The notations defined in this section have been inspired
from [3]. We assume a system of n processes (or threads),
p1,...,Dpn that access a collection of objects via atomic trans-
actions. The processes are provided with the following trans-
actional operations: begin_tran() operation, which invokes a
new transaction and returns the id of the new transaction;
the write(z,v,4) operation that updates object x with value
v for a transaction i, the read(z) operation that returns a
value read in z, tryC() that tries to commit the transaction
and returns commsit (c for short) or abort (a for short), and
tryA() that aborts the transaction and returns A. The ob-
jects accessed by the read and write operations are called as
t-objects. For the sake of presentation simplicity, we assume
that the values written by all the transactions are unique.

Operations write, read and tryC may return a, in which case
we say that the operations forcefully abort. Otherwise, we
say that the operation has successfully executed. Each op-
eration is equipped with a unique transaction identifier. A
transaction T; starts with the first operation and completes
when any of its operations returns a or ¢. Abort and commit
operations are called terminal operations. For a transaction
T, we denote all its read operations as Rset(T}) and write
operations Wset(T})). Collectively, we denote all the opera-
tions of a transaction T; as evts(T%).

Histories. A history is a sequence of events, i.e., a se-
quence of invocations and responses of transactional op-
erations. The collection of events is denoted as evts(H).
For simplicity, we only consider sequential histories here:
the invocation of each transactional operation is immedi-
ately followed by a matching response. Therefore, we treat
each transactional operation as one atomic event, and let
<m denote the total order on the transactional operations
incurred by H. With this assumption the only relevant
events of a transaction Ty, are of the types: rx(x,v), ri(x, A),
wi(x,v), wi(z,v, A), tryCy(C) (or ¢k for short), tryCr(A),
tryA, (A) (or ay for short). We identify a history H as tuple
(evts(H), <m).

Let H|T denote the history consisting of events of T' in H,
and H|p; denote the history consisting of events of p; in
H. We only consider well-formed histories here, i.e., (1)
each H|T consists of a read-only prefix (consisting of read
operations only), followed by a write-only part (consisting
of write operations only), possibly completed with a tryC or
tryA operatiord, and (2) each H|p; consists of a sequence
of transactions, where no new transaction begins before the
last transaction completes (commits or a aborts).

We assume that every history has an initial committed trans-
action Ty that initializes all the data-objects with 0. The
set of transactions that appear in H is denoted by tzns(H).
The set of committed (resp., aborted) transactions in H is
denoted by committed(H) (resp., aborted(H)). The set of in-

complete or live transactions in H is denoted by incomplete(H)

#This restriction brings no loss of generality [13].

(incomplete(H) = tzns(H) — committed(H) — aborted(H)).

For a history H, we construct the completion of H, denoted
H, by inserting ar immediately after the last event of every
transaction Ty, € incomplete(H).

Transaction orders. For two transactions Ty, Ty, € tzns(H),
we say that Ty precedes Ty, in the real-time order of H,
denote Tj, <%T T, if Ty is complete in H and the last
event of T} precedes the first event of T,, in H. If neither
Ty —<I§T Ty, nor T, -<§T Ty, then Ty and Ty, overlap in
H. A history H is t-sequential if there are no overlapping
transactions in H, i.e., every two transactions are related by
the real-time order.

For two transactions Tx and Ty, in tzns(H), we say that Ty
precedes Ty, in conflict order, denoted Ty <2O Tr if: (a)
(w-w order) cx <g cm and Wset(Ti) N Wset(Tm) # 0; (b)
(w-r order) ¢, <g rm(z,v), * € Wset(Ty) and v # A; (c)
(r-w order) 7, (x,v) <H ¢m and x € Wset(T) and v # A.
Thus, it can be seen that the conflict order is defined only
on operations that have successfully executed.

Valid and legal histories. Let H be a history and rx(z, v) be a
read operation in H. A successful read 7, (z,v) (i.ev # A), is
said to be valid if there is a transaction T} in H that commits
before rx and w;(z,v) is in evts(T;). Formally, (ri(z,v) is
valid = 3T : (¢; <z ri(z,v)) A (wi(z,v) € evts(Tj)) A
(v # A)). The history H is valid if all its successful read
operations are valid.

We define ri(x,v)’s lastWrite as the latest commit event c;
such that ¢; precedes ri(z,v) in H and z € Wset(T;) (T;
can also be Tp). A successful read operation r(z,v) (i.e
v # A), is said to be legal if transaction T; (which contains
ri’s lastWrite) also writes v onto . Formally, (ri(z,v) is
legal = (v # A) A (H.lastWrite(ry(z,v)) = ci) A(wi(z,v) €
evts(T;))). The history H is legal if all its successful read
operations are legal. Thus from the definitions we get that
if H is legal then it is also valid.

Opacity. We say that two histories H and H' are equivalent
if they have the same set of events. Now a history H is
said to be opaque [9, [I5] if H is valid and there exists a
t-sequential legal history S such that (1) S is equivalent to
H and (2) S respects;<§T7 ie <BTc<ET By requiring

S being equivalent to H, opacity treats all the incomplete
transactions as aborted.

Implementations and Linearizations. A (STM) implemen-
tation is typically a library of functions for implementing:
ready, writey, tryCy and tryA, for a transaction Tj,. We
say that an implementation M, is correct w.r.t to a property
P if all the histories generated by M, are in P. The histo-
ries generated by an STM implementations are normally not
sequential, i.e., they may have overlapping transactional op-
erations. Since our correctness definitions are proposed for
sequential histories, to reason about correctness of an imple-
mentation, we order the events in a non-concurrent history
in a sequential manner. The ordering must respect the real-
time ordering of the operations in the original history. In
other words, if the response operation o; occurs before the

invocation operation o; in the original history then o; oc-
curs before o; in the sequential history as well. Overlapping
events, i.e. events whose invocation and response events do
not occur either before or after each other, can be ordered
in any way.

We call such an ordering as linearization [§]. Now for a (non-
sequential) history H generated by an implementation M,
multiple such linearizations are possible. An implementation
M is considered correct (for a given correctness property P)
if every its history has a correct linearization (we say that
this linearization is exported by M).

We assume that the implementation has enough information
to generate an unique linearization for H to reason about its
correctness. For instance, implementations that use locks for
executing conflicting transactional operations, the order of
access to locks by these (overlapping) operations can decide
the order in obtaining the sequential history. This is true
with STM systems such as [17] [16] [I4] which use locks.

3. CAPR+ALGORITHM

In this section, we present the data structures and the CaPR™"
Algorithm. The various data structures used in the CaPR™
Algorithm are categorized into local workspace and global
workspace, depending on whether the data structure is vis-
ible to the local transaction or every transaction. The data
structures used in the local workspace are as follows:

1. Local Data Block(LDB) - Each entry consists of the lo-
cal object and its current value in the transaction(Table

1).

2. Shared object Store(SOS) - An entry in Table 2 stores
the address of the shared object, its value, a read flag
and a write flag. Both read and write flags have 0 as
the initial value. Value 1 in read/write flag indicates
the object has been read/written by the transaction,
respectively.

3. Checkpoint Log(Cplog) - Used to partially rollback a
transaction as shown in Table 3, where each entry
stores, a) the shared object whose read initiated the
log entry (this entry is made every time a shared ob-
ject is read for the first time by the transaction), b)
program location from where the transaction should
proceed after a rollback, and c) the current snapshot
of the transaction’s local data block and the shared
object store.

Table 1: Local Data Block
Object | Value

Table 2: Shared object Store
Current Value | Read flag | Write flag

Object

The data structures in the global workspace are:

Table 3: Checkpoint Log
Victim Shared
object

Program Location | Local Snapshot

Table 4: qubal List of Active Transactions
Transaction | Status Conflict Objects

1D Flag

1. Global List of Active Transactions(Actrans) - Each en-
try in this list contains a) a unique transaction iden-
tifier, b) a status flag that indicates the status of the
transaction, as to whether the transaction is in conflict
with any of the committed transactions, and c) a list
of all the objects in conflict with the transaction. This
list is updated by the committed transactions.

2. Shared Memory(SM) - Each entry in the shared mem-
ory stores a) a shared object, b) its value, and c¢) an
active readers list that stores the transaction IDs of all
the transactions reading the shared object.

The CaPR™" algorithm is shown in Algorithm 1.

4. CONFLICT OPACITY

In this section we describe about Conflict Opacity (CO),
a subclass of Opacity using conflict order (defined in Sec-
tion [2)). This subclass is similar to conflict serializability of
databases whose membership can be tested in polynomial

time (in fact it is more close to order conflict serializability)
[18 Chap 3].

DEFINITION 1. A history H is said to be conflict opaque
or co-opaque if H is valid and there exists a t-sequential
legal history S such that (1) S is equivalent to H and (2) S
respects <57 and <§°.

From this definition, we can see that co-opaque is a subset
of opacity.

4.1 Graph characterization of co-opacity
Given a history H, we construct a conflict graph, CG(H) =
(V,E) as follows: (1) V = tans(H), the set of transactions
in H (2) an edge (T}, T;) is added to E whenever T; <&" T
or T; <§° Tj, i.e., whenever T; precedes T} in the real-time
or conflict order.

Note, since tans(H) = tens(H) and (<5" U <5°) = (<&F
U <$9), we have CG(H) = CG(H). In the following lem-
mas, we show that the graph characterization indeed helps
us verify the membership in co-opacity.

LEMMA 2. Consider two histories H1 and H2 such that
H1 is equivalent to H2 and H1 respects conflict order of
H2, i.e., <59C<%5S. Then, <59=<%9.

Algorithm 1 CaPR Algorithm

1
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:
38:
39:
40:
41:

42:
43:
44:
45:

46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

: procedure READTX(¢, 0, pc)

if oisin t’s local data block then
str.val < o.val from LDB
return | <— 1(Success);

else if o is in t’s shared object store then
str.val < o.val from SOS
return [<— 1(Success);

else if o is in shared memory then

if t.status_flag = RED then
Unlock lock on t and o
PL = partially_Rollback(t);
update str.PL = PL
return | < 0(Rollback);

create checkpoint entry in checkpoint log for o;

str.val < o.val from Shared Memory

add t to o’s readers’ list

add o into SOS and set its read flag to 1;

release locks on o and t;

return [<— 1(Success);
else

return | < 2(Error);

procedure WRITETX(o,t)
if o is a local object then
update o in local data block;
else if o is a shared object then
if o is in shared object store then
update o in SOS and set its write flag to 1;
else
insert o in SOS and set its write flag to 1;

procedure COMMITTX(t)
Assign t’s write-set, t.W .S =
{olo is in SOS and o’s write flag =1}
Sort all objects in t. WS, and obtain locks on them;
Initialize A = {t};
for each object o in the t. WS
A = AU active readers of o;
Sort all transactions in ’A’, and obtain locks on them;
if t.status_flag = RED then
PL = partially_Rollback(t);
release all locks;
return PL;

for each object, wo in t’s write set, t. WS
update wo.value in SM from the local copy of wo.
for each transaction rt in wo’s active readers’ list,
add the objects in t. WS to transaction rt’s
conflict objects’ list;
set transaction 1t’s status flag to RED;
delete t from actrans;
for each object, ro in t’s readers-list
delete t from ro’s active readers list;
release all locks;
return 0;
procedure PARTIALLY_ROLLBACK(t)
identify safest checkpoint - earliest conflicting object;
apply selected checkpoint;

> o not in shared memory

reset status flag to GREEN;
return PL(the new program location);

obtain locks on object o, & the entry for transaction t;

delete t from active reader’s list of all objects rolled back

Table 5: Shared Memory
Shared Val List of
object AU active readers

PROOF. Here, we have that <59 C<$$. In order to prove
<59==<5%9, we have to show that <§5C<%5{. We prove
this using contradiction. Consider two events p, ¢ belonging
to transaction T'1, T'2 respectively in H2 such that (p, q) €<%5
but (p,q) ¢<%9. Since the events of H2 and H1 are same,
these events are also in H1. This implies that the events
p,q are also related by CO in H1. Thus, we have that
either (p,q) €<% or (¢,p) €<%Y. But from our assump-
tion, we get that the former is not possible. Hence, we get
that (¢,p) €<59= (¢,p) €<%5. But we already have that
(p,q) €<%S. This is a contradiction. []

LEMMA 3. Let H1 and H2 be equivalent histories such
that <$9=<%S. Then H1 is legal iff H2 is legal.

ProOF. It is enough to prove the ‘if’ case, and the ‘only
if” case will follow from symmetry of the argument. Suppose
that H1 is legal. By contradiction, assume that H2 is not
legal, i.e., there is a read operation r;(x,v) (of transaction
T;) in H2 with lastWrite as ¢; (of transaction T%) and Tk
writes u # v to z, i.e wi(z,u) € evts(Tk). Let r;(x,v)’s
lastWrite in H1 be ¢; of T;. Since H1 is legal, T; writes v to
z, i.e wi(z,v) € evts(Ty).

Since evts(H1) = evts(H2), we get that ¢; is also in H2,
and ¢y, is also in H1. As <§¢=<%9, we get ¢; <m2 r(z,v)
and cx <mg1 7j(z,v).

Since c¢; is the lastWrite of r;(z,v) in H1 we derive that
¢k <m1 ¢ and, thus, ¢y <m2 ¢ <m2 rj(z,v). But this con-
tradicts the assumption that ci is the lastWrite of r;(x,v)
in H2. Hence, H2 is legal. [

From the above lemma we get the following interesting corol-
lary.

COROLLARY 4. Every co-opaque history H is legal as well.

Based on the conflict graph construction, we have the fol-
lowing graph characterization for co-opaque.

THEOREM 5. A legal history H is co-opaque iff CG(H)
is acyclic.

PROOF. (Onlyif)If H is co-opaque and legal, then CG(H)
is acyclic: Since H is co-opaque, there exists a legal t-
sequential history S equivalent to H and S respects <57
and <5°. Thus from the conflict graph construction we have
that CG(H)(= CG(H)) is a sub graph of CG(S). Since S
is sequential, it can be inferred that CG(S) is acyclic. Any
sub graph of an acyclic graph is also acyclic. Hence CG(H)
is also acyclic.

(if) If H is legal and CG(H) is acyclic then H is co-opaque:
Suppose that CG(H) = CG(H) is acyclic. Thus we can
perform a topological sort on the vertices of the graph and
obtain a sequential order. Using this order, we can obtain a
sequential schedule S that is equivalent to H. Moreover, by
construction, S respects -<§T:-<%T and <§0=<%O.

Since every two events related by the conflict relation (w-
w, r-w, or w-r)in S are also related by -<%O7 we obtain
<§0:<%0. Since H is legal, H is also legal. Combining
this with Lemma [3] we get that S is also legal. This satisfies
all the conditions necessary for H to be co-opaque. [

4.2 Proof of Opacity for CaPR+ Algorithm

In this section, we will describe some of the properties of
CaPR" algorithm and then prove that it satisfies opacity.
In our implementation, only the read and tryC operations
access the memory. Hence, we call these operations as mem-
ory operations. The main idea behind our algorithm is as
follows: Consider a live transaction 7T; which has read a value
u for t-object . Suppose a transaction T; writes a value v to
t-object x and commits. When T; executes the next memory
operation (after the c;), T; is rolled back to the step before
the read of . We denote that T; has invalidated the T;’s
read of x. Transaction 7T; then reads x again.

The following example illustrates this idea. Consider the
history H1 : ri(z,0)ri(y,0)r2(z,0)r1(z,0)

w2 (y,5)cowi(x,5). In this history, when 77 performs any
other memory operation such as a read after C'—, it will
then be rolled back to the step r1(y) causing it to read y
again.

il 0) nify0) nfz0) wi{z,5)

C * L4 * *

ralz, 0) sy, 10) (&

]

T " J
e .

Figure 1: Pictorial representation of a History H1

Thus as explained, in our algorithm, when a transaction’s
read is invalidated, it does not abort but rather gets rolled
back. In the worst case, it could get rolled back to the first
step of the transaction which is equivalent to the transaction
being aborted and restarted. Thus with this algorithm, a
history will consist only of incomplete (live) and committed
transactions.

To precisely capture happenings of the algorithm and to
make it consistent with the model we discussed so far, we
modify the representation of the transactions that are rolled
back. Consider a transaction 7; which has read x. Suppose
another transaction 7} that writes to « and then commits.
Thus, when T; performs its next memory operation, say m;
(which could either be a read or commit operation), it will
be rolled back. We capture this rollback operation in the
history as two transactions: 7.1 and T;.2.

Here, T;.1 represents all the successful operations of trans-
action T; until it executed the memory operation m; which
caused it to roll back (but not including that m;). Trans-

action 7;.1 is then terminated by an abort operation a;.i.
Then, after transaction 7; has committed transaction Tj.»
begins. Unlike T;.1 it is incomplete. It also consists of all
same operations of T; 1 until the read on x. T; 2 reads the lat-
est value of the t-object x again since it has been invalidated
by Tj. It then executes future steps which could depend on
the read of . With this modification, the history consists of
committed, incomplete as well as aborted transactions (as
discussed in the model).

In reality, the transaction T; could be rolled back multiple
times, say n. Then the history H would contain events from
transactions 7.1, Ti.2,T;.3....75.n». But it must be noted that
all the invocations of T; are related by real-time order. Thus,
we have that T;.1 <§T Ti.o <§T Ti3.... <§T Tin

With this change in the model, the history H1 is represented
as follows, H2 : r1.1(x,0)r1.1(y,0)r2.1(x,0)
r1.1(z, 0)wa.1(y, 5)cz.1wi(x, 5)ar.1r1.2(x, 0)r1.2(y, 10).

For simplicity, from now on in histories, we will denote a
transaction with greek letter subscript such as «, 8,7 etc
regardless of whether it is invoked for the first time or has
been rolled back. Thus in our representation, transaction
T;.1,T;i.2 could be denoted as Tt, T, respectively.

We will now prove the correctness of this algorithm. We
start by describing a property that captures the basic idea
behind the working of the algorithm.

PRrROPERTY 6. Consider a transaction T; that reads t-object
x. Suppose another transaction T writes to x and then com-
mits. In this case, the next memory operation (read or tryC)
executed by T; after cj returns abort (since the read of x by
T; has been invalidated).

For a transaction T;, we define the notion of successful final
memory operation(sfm). As the name suggests, it is the
last successfully executed memory operation of T;. If T; is
committed, then sfm; = c¢;. If T; is aborted, then sfm;
is the last memory operation, in this case a read operation,
that returned ok before being aborted.

For proving the correctness, we use the graph characteriza-
tion of co-opacity described in Section @l

Consider a history Hcqpr generated by the CaPR algorithm.
Let CG(Hcapr) be the conflict graph of Heapr. We show
that this graph denoted, gcapr, is acyclic.

LEMMA 7. Consider a path p in geapr abstracted as: To1 —
Toaz — oo = Tok. Then, sfmal <Hcap7‘ Sfmag <Hcap7_
oo <Heapr SfMak-

Proor. We prove this using induction on k.

Base Case, k = 2. In this case the path consists of only one
edge between transactions Tn1 and T,2. Let us analyse the
various types of edges possible:

L

Tia r"l.l'i--"-“.' roaly0) el 0) 'f'l.li-f'-rﬂ-l

Tia ez, 0) rrafy, 10)
l_‘ L L
L

& L 4 L & =
B o
= i weyly, 10} F21
-lf_’,l |_ .’_r.l'._.ﬂ.[:l] _|
$. ==
& l
Figure 2: Pictorial representation of the modified History H?2
o real-time edge: This edge represents real-time. In this From Lemma [0 we get that sfmae1 — sfmaz — ... —

case Tu1 —<§im Tu2. Hence, we have that s fma1 <#,.p.
sfmaz.

e w-w edge: This edge represents w-w order conflict. In
this case both transactions 7,1 and T2 are committed
and sfma1 = ca1 and sfma2 = ca2. Thus, from the
definition of this conflict, we get that sfma1 <Heapr
sfmaz.

e w-r edge: This edge represents w-r order conflict. In
this case, Ca1 <Heap, Ta2(Z,v) (v # A). For transac-
tion Ta1, $fma1 = ca1. For transaction Tu2, either
Ta2 <Heapr SfMa2 OF Ta2 = sfma2. Thus in either
case, we get that sfma1 <Heapr sfmaz.

o r-w edge: This edge represents r-w order conflict. In
this case, ra1(2,v) <H,ap, Ca2 (Where v # A). Thus
sfma2 = caz. Here, we again have two cases: (a) Ta1
terminates before T,2. In this case, it is clear that
5fMa1 <Heapr 5fMaz. (b) Ta1 terminates after Tao
commits. The working of the algorithm is such that, as
observed in Property[f] the next memory operation ex-
ecuted by Tn1 after the commit operation cq2 returns
abort. From this, we get that the last successful mem-
ory operation executed by T,1 must have executed be-
fore co2. Hence, we get that sfma1 <Heapr sfmaz.

Thus in all the cases, the base case holds.

Induction Case, k =n > 2. In this case the path consists of
series of edges starting from transactions 7,1 and ending at
Taon. From our induction hypothesis, we know that it is true
for k = n—1. Thus, we have that sfma1 <#.p, SfMa(n-1)-
Now consider the transactions Ty (n—1), Tan Which have an
edge between them. Using the arguments similar to the base
case, we can prove that sfma(m—1) <Heapr SfMan. Thus,
we have that s fma1 <w.ap, Sfman.

In all the cases, we have that sfma1 <Heapr sfman. Hence,
proved. [

Using Lemma [7] we show that geapr is acyclic.

LEMMA 8. Graph, geapr is acyclic.

PrOOF. We prove this by contradiction. Suppose that
geapr is cyclic. Then there is a cycle going from To1 —
Taz = oo > Tor — Tan.

sfmar — Sfma1 which implies that sfmai — sfmai.
Hence, the contradiction. [

THEOREM 9. All histories generated by CaPR™' are co-
opaque and hence, Capr™ satisfies the property of opacity.

PROOF. Proof follows from Theorem 5 and Lemma 8. [

5. CONCLUSION

In this paper, we have described CaPR™, an enhanced CaPR
algorithm and proved its opacity. We have also implemented
the same and tested its performance. While it shows good
performance for transactions that take time, its performance
for small transactions shows overhead which is obvious. A
thorough comparison with STAMP benchmarks with vary-
ing transactions has been done and shows good results. This
will be reported elsewhere. Further, we have been working
on several optimizations like integrating both partial roll-
back and abort mechanisms in the same implementation to
exploit the benefits of both mechanisms, and also integrate
with it the contention management.

6. REFERENCES

[1] M. Herlihy and J. E. B. Moss. 4AIJTransactional
memory: architectural support for lock-free data
structuresaAl. In Proc. of the Twentieth Annual
International Symposium on Computer Architecture,
pPp- 289§1AS300, San Diego, California, 1993, ACM
Press.

[2] N. Shavit and D. Touitou. “Software transactional
memory”. In Distributed Computing, Special Issue
(10) : 99116, 1997.

[3] Petr Kuznetsov and Sathya Peri. On non-interference of
transactions. CoRR, abs/1211.6315, 2012

[4] Koskinen E and Herlihy M, “Checkpoints and
continuations instead of nested transactions”. In
Proceedings of the Twentieth annual symposium on
Parallelism in algorithms and architectures (SPAA 08)
(New York, NY, USA, 2008), ACM, pp. 160-168

[5] Lupei, D.: “A study of conflict detection in software
transactional memory”. Masters thesis, University of
Toronto, the Netherlands (2009)

[6] Gupta, M., Shyamasundar, R.K., Agarwal, S.:
“Clustered checkpointing and partial rollbacks for
reducing conflict costs in stms”, IBM IRL Report, also
in International Journal of Computer Applications
1(22) (February 2010) 80-85

[7] Gupta, M., Shyamasundar, R.K., Agarwal, S.
“Automatic checkpointing and partial rollback in
software transaction memory”, (January 2012) IBM
patent Publication 20110029490.

[8] M. Herlihy and J. M. Wing. “Linearizability: a
correctness condition for concurrent objects”, ACM
Transactions on Programming Languages and Systems,
12(3):463§LAS492, June 1990.

[9] R. Guerraoui and M. Kapalka, “On the correctness of
transactional memory”; In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice
of parallel programming, PPoPP 08, pages 175-184.
ACM, 2008

[10] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis,
and Kunle Olukotun, “STAMP: Stanford transactional
applications for multi-processing”, In IISWC 08:
Proceedings of The IEEE International Symposium on
Workload Characterization, September 2008.

[11] M. M. Waliullah and P. Stenstrom. “Intermediate
checkpointing with conflicting access prediction in
transactional memory systems”. In IPDPS, pages
1-11.IEEE Computer Society, 2008

[12] Porfirio Alice et. al. “Transparent Support for Partial
Rollback in Software Transactional Memories”,
Euro-Par 2013 Parallel Processing, 2013

[13] Petr Kuznetsov and Srivatsan Ravi. “On the cost of
concurrency in transactional memory”. In OPODIS,
pages 112-127, 2011.

[14] Hagit Attiya and Eshcar Hillel. “A single-version stm
that is multi-versioned permissive”. Theory Comput.
Syst., 51(4):425-446, 2012.

[15] Rachid Guerraoui and Michal Kapalka. “Principles of
Transactional Memory”,Synthesis Lectures on
Distributed Computing Theory. Morgan and Claypool,
2010.

[16] Tyler Crain, Damien Imbs, and Michel Raynal. “Read
invisibility, virtual world consistency and probabilistic
permissiveness are compatible”. In ICA3PP (1), pages
244-257, 2011.

[17] Damien Imbs and Michel Raynal. “A lock-based stm
protocol that satisfies opacity and progressiveness”. In
OPODIS 08: Proceedings of the 12th International
Conference on Principles of Distributed Systems, pages
226-245, Berlin, Heidelberg, 2008. Springer-Verlag.

[18] Gerhard Weikum and Gottfried Vossen.
“Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control
and Recovery”. Morgan Kaufmann, 2002.

	1 Introduction
	2 System Model
	3 CaPR+ Algorithm
	4 Conflict Opacity
	4.1 Graph characterization of co-opacity
	4.2 Proof of Opacity for CaPR+ Algorithm

	5 Conclusion
	6 References

