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ABSTRACT
Challenges associated with allowing preemptions and
migrations are compounded in multicore systems,
particularly under global scheduling policies, because of the
potentially high overheads. For example, multiple levels of
cache greatly increase preemption and migration related
overheads as well as the difficulty involved in accurately
accounting for them, leading to substantially inflated
worst-case execution times (WCETs). Preemption and
migration related overheads can be significantly reduced,
both in number and in size, by using fixed preemption
points in the tasks’ code; thus dividing each task into a
series of non-preemptive regions (NPRs). This leads to an
additional consideration in the scheduling policy. When a
high priority task is released and all of the processors are
executing non-preemptive regions of lower priority tasks,
then there is a choice to be made in terms of how to
manage the next preemption. With an eager approach the
first lower priority task to reach a preemption point is
preempted even if it is not the lowest priority running task.
Alternatively, with a lazy approach, preemption is delayed
until the lowest priority currently running task reaches its
next preemption point.

In this paper, we show that under global fixed priority
scheduling with eager preemptions each task suffers from at
most a single priority inversion each time it resumes
execution. Building on this observation, we derive a new
response time based schedulability test for tasks with fixed
preemption points. Experimental evaluations show that
global fixed priority scheduling with eager preemptions is
significantly more effective than with lazy preemption using
link based scheduling in terms of task set schedulability.

1. INTRODUCTION
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Multicore platforms have been developed to circumvent
the fact that performance gains can no longer be achieved
via further increases in processor speed, due to power and
thermal constraints [3]. Consequently, there is a revived
interest among researchers and practitioners, particularly
in the field of real-time embedded systems, to leverage on
this ability of multicore systems to provide higher
performance. In particular, the research focus has been on
the challenges associated with such a hardware-software
ecosystem, for example, the associated unpredictabilities
that may compromise timeliness. A compelling challenge
involves minimizing preemption and migration related
overheads while enabling preemptions on lower priority
tasks to aid the timely completion of both higher and lower
priority ones.

Preemption and migration related overheads include
context switch costs, cache related preemption and
migration delays (CPMD), pipeline delays, and increased
bus contention costs [4] [9], all of which significantly
increases pessimism in task execution times. Consequently,
fully preemptive scheduling can lead to prohibitively high
preemption related overheads which degrade schedulability
and can potentially cause deadline failure if not accurately
accounted for. Two main reasons for high preemption and
migration related overheads can be identified in this case.
First, there are a large number of possible preemptions and
migrations (resulting from the preemptions), and second
these preemptions and migrations can occur at points in
the code where the associated overhead is very high, for
example where there are many (useful) cache blocks.
Bastoni et al. [2] showed that the overheads due to
preemptions and migrations are similar.

Fully non-preemptive scheduling offers an alternative
that avoids preemption related overheads, at the cost of
introducing significant blocking effects. While fixed
priority preemptive and non-preemptive scheduling are
incomparable for single processor systems [12], and also in
the case of global scheduling for multiprocessor systems
[18], non-preemptive scheduling suffers from what is known
as the long task problem. This is where one task has a
Worst Case Execution Time (WCET) that is longer than
the deadline of another task, rendering the system
unschedulable on a single processor. This problem is
somewhat alleviated on multiprocessor systems, since long
tasks need to be executing on all processors in order to



cause a deadline miss [18]; however, it is still an issue.
Limited preemption scheduling has been proposed as an

alternative to the fully preemptive and fully
non-preemptive paradigms in order to reduce preemption
and migration related overheads, while also constraining
the amount of blocking and thus improving schedulability.
In limited preemption scheduling, preemptions and
migrations may be restricted using various mechanisms
such as scheduler enforced floating non-preemptive regions,
or fixed preemption points inserted into the program code.
(See [10] for a survey of the various methods). Fixed
preemption points, in addition to reducing the number of
preemptions and migrations, have the advantage of
enabling accurate estimation and accounting for
preemption and migration related overheads. Further,
preemption point placement can be optimized to reduce
the cost of each individual preemption and the total
preemption related overheads incurred within the response
time of a task [4], [6], [21]. Moreover, in multiprocessors,
by reducing the number of preemption points, the number
of potential migrations can also be reduced.

In this paper, we consider the problem of global fixed
priority scheduling of real-time tasks with fixed preemption
points on a multiprocessor. Here, there is an interesting
choice to be made in terms of how to manage preemptions
following the release of high priority tasks. Two types of
approach can be identified: With an eager approach,
preemption occurs as soon as possible, i.e. the first lower
priority task to reach a preemption point is preempted.
(Note the preempted task may not be the lowest priority
running task). Alternatively, with a lazy approach,
preemption is delayed until the lowest priority running
task reaches a preemption point.

The first analysis for global scheduling with a lazy form
of preemption was given by Block et al. in 2007 [7] called
link-based scheduling. Here, when a high priority task is
released, and the lowest priority running task τi is executing
an NPR, then the new task is linked to the processor that
is executing τi and does not preempt until that task finishes
its NPR. (Full details of the method can be found in [7] and
section 3.3.3. of Brandenburg’s thesis [9]). Brandenburg and
Anderson [8] later presented a generic schedulability analysis
method that can be applied to different global scheduling
algorithms and their schedulability tests.

Building on prior work on optimal fixed priority
scheduling with deferred preemption on single processor
systems [12], in 2013, Davis et al. [14] provided
schedulability analysis for global fixed priority scheduling
assuming eager preemptions, considering a simple task
model with a single final non-preemptive region at the end
of each task. They showed that, as in the single processor
case, schedulability can be improved by carefully choosing
both task priorities and the length of their final
non-preemptive regions. Davis et al. [16] subsequently
corrected a problem with their test. Further, they showed
that the eager and lazy approaches to preemption are
incomparable i.e., there are task sets that are schedulable
using eager preemptions that are unschedulable using lazy
preemptions and vice-versa (illustrated by worked
examples in the appendix of [16]). Later in 2013, Marinho
et al. [20] generalized the work of Davis et al. [14] to cover
task sets with fixed preemption points and hence multiple
non-preemptive regions. Marinho et al. considered both

eager and lazy forms of preemption under global fixed
priority scheduling; however, they only gave analysis of the
blocking effects, and thus stopped short of providing a full
schedulability analysis for eager preemptions. Recently,
related work has also been published on global EDF with
limited preemption [24], [11].

In this paper, we address the problem of Global Limited
Preemption Fixed Priority Scheduling (G-LP-FPS) for tasks
with fixed preemption points, and consider how the choice
of either an eager or a lazy approach to preemption affects
schedulability. The main contributions of the paper are as
follows:

1. The introduction of a response time based
schedulability test for real-time task sets with fixed
preemption points scheduled using G-LP-FPS with
eager preemptions. To the best of our knowledge, this
is the first such test in the context of G-LP-FPS with
fixed preemption points.

2. An evaluation of G-LP-FPS with eager preemptions
using the new schedulability test, against G-LP-FPS
with lazy preemptions (using link-based scheduling
[7]); evaluations shows the that G-LP-FPS with eager
preemptions outperforms link-based scheduling for a
wide range of settings.

The remainder of the paper contains the system model in
Section 2, background in Section 3, the main contributions
in Section 4, followed by the evaluations in Section 5 before
concluding in Section 6.

2. SYSTEM MODEL
In this section, we present the system model, terminology

and definitions assumed in the rest of the paper.

2.1 Task Model
We consider a set of n sporadic real-time tasks Γ=
{τ1, τ2, ...τn} scheduled on m identical processors. The
tasks in Γ are indexed according to their decreasing unique
priorities i.e., τ1 has the highest priority and τn the lowest,
and each task generates an infinite number of jobs. Let
hp(i) denote the subset of tasks with priorities greater than
τi and lp(i) denote the subset of tasks with priorities lower
than τi. Each task τi is characterized by a minimum
inter-arrival time Ti, and a relative deadline Di ≤ Ti, and
is assumed to contain qi ≥ 0 optimal preemption points
[21]. The start of the task execution is referred to as the
0th preemption point while the end of the task execution is
referred to as the qi + 1th point; however, preemption of
the task is of course not possible at these points. Let bi,j ,
j = 1...qi + 1 denote the worst case execution time of task
τi between its j − 1th and jth preemption points (The
calculation of the WCET between preemption points is an
important problem on multicores; but this is not our focus.
Instead we focus on the related problem of the prohibitive
increase of WCETs due to preemption related overheads).
We use the notation bi,j to also refer to the corresponding
Non-Preemptive Region (NPR). In any time interval of
length t, each task τi can be preempted by a higher

priority task at most hi times where hi =
∑
∀τj∈hp(i)

⌈
t
Tj

⌉
.

Therefore, an upper-bound on the number of preemptions
pi of task τi in an interval of length t is given by:

pi = min(qi, hi) (1)
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Figure 1: Task with carry-in in an interval of length t.

The Worst Case Execution Time (WCET) of each task τi
can be calculated as Ci =

∑qi+1
j=1 bi,j . Note that the

preemption related overheads can be integrated into the
above equation, since we are interested in comparing lazy
and eager preemption mechanisms and these overheads are
the same in each case, we omit their specific consideration.
Similar to Davis et al. [16], we also define C∗i for each τi,
where C∗i = Ci − bi,qi+1 + 1. This is because, when using
C∗i instead of Ci, the resulting response time implies the
completion of Ci − bi,qi+1 + 1 units of execution and hence
gives the start time of the final NPR (the +1 ensures start
of the final NPR).

2.2 Definitions
According to our model every task is composed of a set of

non-preemptive regions with specified lengths. This allows
us to define the preemptability of a task.

Definition 2.1. Any task τi ∈ Γ is defined to be
preemptable at time instant t if and only if time instant t
corresponds to a preemption point k, 1 ≤ k < qi, in the
progress of its execution.

An unfinished task is defined to be ready if it is not
currently executing (and hence it is assumed to be in the
ready queue). Non-preemptive regions within the lower
priority tasks can cause priority inversions on higher
priority tasks. We enumerate three conditions that are
necessary for a single priority inversion to occur due to an
NPR of a lower priority task under limited preemption
scheduling.

Definition 2.2. A priority inversion occurs on an
arbitrary task τi when the following conditions hold.

C1: The scheduler is invoked by τi, and τi is ready.

C2: At least one processor is executing a lower priority
task.

C3: All the lower priority jobs are not preemptable.

We differentiate the following types of interference for any
task τi.

Definition 2.3. The higher priority interference on
a task τi is defined as the cumulative executions of all tasks
having a higher priority than τi that prevent τi from
executing on the processor.

Definition 2.4. The lower priority interference on a
task τi is defined as the cumulative executions of all tasks
having a lower priority than τi that prevent τi from executing
on a processor.
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Figure 2: Task without carry-in in an interval of length t.

We use Ii(t, τj) to denote the interference on τi from a higher
priority task τj in the time interval of length t and Ii(t) to
denote the total higher priority interference. Finally, we
note that the final NPR of the jobs of any τi delays the
start of higher priority tasks released during its execution,
which may in turn interfere with the next release of τi. This
interference pushed through by any job of a task on to its
next job is defined as push though blocking (see section 1.4
of [13] for an example).

3. BACKGROUND
In this section, we review the state-of-the-art

schedulability analysis for global fixed priority scheduling
under the preemptive and limited preemption paradigms.

3.1 Schedulability Analysis for Global
Preemptive FPS

Bertogna, Cirinei and Lipari [5] derived an upper-bound
on the interference generated by any task τj on a lower
priority task τi over an interval of length t, under Global
Preemptive Fixed Priority Scheduling (G-P-FPS) and used
this to derive a response time analysis. Even though this
analysis has subsequently been improved upon by others,
we recall this specific result because of its seminal nature.
The upper-bound on the interference generated by any
task τj on a lower priority task τi over an interval of length
t is given by:

Ii(t, τj) = min(I ′i(t, τj), t− Ci + 1) (2)

where,

I ′i(t, τj) = Nj(t)Cj + min(Cj , t+Dj − Cj −Nj(t)Tj) (3)

In the above equation, Nj(t) =
⌊
t+Dj−Cj

Tj

⌋
. Consequently,

any task τi is schedulable if,

Ri = Ci +

 1

m

∑
τj∈hp(i)

Ii(Ri, τj)

 ≤ Di (4)

Baruah [1] observed that the pessimism in the interference
calculation can be attenuated by considering a larger time
interval. Baruah also observed that at the time instant
earlier than the release of τi where at least one processor is
idle, the number of jobs that have carry-in workload is at
most m − 1 (see figure 1 and 2 for an illustration of
workloads with and without carry-in)). The response time
analysis of Bertogna, Cirinei and Lipari, was improved by
Guan et al. [17] by instantiating these observations in the
context of G-P-FPS to limit the carry-in interference.
Later Sun et al. [23] identified and fixed some anomalies in
the test for the arbitrary deadline case. In order to



determine the schedulability of tasks with fixed preemption
points, similar to [16], we define:

Ii(t, τj) = min(I ′i(t, τj), t− C∗i + 1) (5)

where I ′i(t, τj) is given by (3).

3.2 Schedulability analysis with lazy
preemption

In this section, we present schedulability analysis for
Global Limited Preemption Fixed Priority Scheduling
(G-LP-FPS) with lazy preemptions using link-based
scheduling as proposed by Block et al. [7]. First we present
an example illustrating lazy preemptions.
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Figure 3: Example schedule illustrating lazy preemption.

Example 3.1. Consider the scenario in Figure 3 where
4 tasks τ1, τ2, τ3 and τ4 (in decreasing priority order) are
executing on two processors. Assume that tasks τ3 and τ4
are executing on the processor at time instant t1. Suppose
that τ1 and τ2 are released together at time instant t1, and
the scheduling policy uses lazy preemptions. In this case, τ1
starts executing only at time t4 even though a lower
priority task (τ3) was available to preempt earlier (at t2).
Moreover, task τ2 is blocked 3 times by τ3 since τ4 has to be
preempted first. At time t4, when the scheduler is invoked,
τ4 is preempted by τ1. However, since task τ3 is not
preemptible τ2 still cannot start executing. The total
number of such priority inversions could be arbitrarily large
if τ4 has a large non-preemptive region.

Davis et al. [16][14] enumerated a number of interesting
observations regarding the blocking introduced by the
priority inversions that occur due to non-preemptive
execution of lower priority tasks: 1) The number of priority
inversions is not limited to the number of processors m, as
is the case with Global Non Preemptive Fixed Priority
Scheduling (G-NP-FPS) 2) More than one job of the same
lower priority tasks can cause priority inversion on a higher
priority task 3) More than one non-preemptive region of
the same job of each lower priority task can cause priority
inversions.

Link based scheduling: Many of these challenges are
addressed by link-based scheduling developed by Block et
al. [7] in the context of resource sharing, which is equally
applicable to the problem of limited preemption scheduling
with NPRs. Link-based scheduling implements a form of
lazy preemptions whereby a newly released high priority

task is linked to the processor executing the lowest priority
task. Even though link-based scheduling emulates floating
NPR scheduling, it can be used in the context of fixed
preemption points scheduling by considering the floating
NPRs to be fixed.

Link based scheduling analysis: The analysis for
link-based scheduling presented by Block et al. [7] and
Brandenburg and Anderson [8] provides a simple generic
means of accounting for blocking due to NPRs. It uses an
inflation based method, in which the WCETs of higher
priority tasks are inflated to account for blocking from
lower priority tasks. Specifically, ∀τi ∈ Γ, the associated
WCET is inflated as follows:

Ci = Ci + max
τj∈lp(i)

bj,k, k = 1, . . . , q1i

Brandenburg and Anderson [8] proved that the resulting
taskset Γ′ obtained by inflating the WCETs of all the tasks
in Γ with the maximum blocking that they can suffer, is a
safe hard real-time approximation [9]. This means that if
there is a deadline miss with link-based scheduling and
NPRs, then there is also guaranteed to be a deadline miss
in Γ′ under fully preemptive scheduling. Consequently, a
fully preemptive schedulability analysis such as that given
in [17] can be applied to determine schedulability.

4. SCHEDULABILITY ANALYSIS WITH
EAGER PREEMPTIONS

In this section, we present the main contributions of this
paper. Specifically, we examine G-LP-FPS with eager
preemptions in which the highest priority task is allowed to
preempt the first lower priority job that becomes
preemptable. We show that the number of priority
inversions on any task τi is upper-bounded by the
associated upper-bound on the number of preemptions pi
(defined in (1)). Building on this observation, we derive a
response time analysis based test for schedulability under
G-LP-FPS with eager preemptions.
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Figure 4: Example schedule illustrating eager preemptions.

In the following we illustrate how G-LP-FPS with eager
preemptions schedules the taskset in Example 3.1.

Example 4.1. Consider the same scenario presented in
Figure 3 where τ1 and τ2 are released at time instant t1. As
with eager preemptions, illustrated in Figure 4, tasks τ1 and
τ2 are blocked at time instant t1. When τ3 finishes executing
its non-preemptive region, τ1 is scheduled on processor 1.



When τ4 finishes executing its non-preemptive region, τ2 can
start its execution.

Recall that Example 3.1 showed that with lazy preemption
every time a task is inserted into the ready queue after it is
released, it may suffer from more than one priority inversion.
Eager preemptions enable the medium priority task τ2 to be
allocated to the processor earlier than is the case with lazy
preemption, as illustrated in Example 4.1. We now derive
a bound on the number of priority inversions with eager
preemptions.

Lemma 4.1. The number of priority inversions on any
task τi that is inserted into the ready queue under G-LP-
FPS with eager preemptions is at most 1 before it can again
start executing.

Proof. Consider the time instant when τi is inserted
into the ready queue and all the processors are executing
the NPRs of lower priority tasks. Let τk be the lower
priority executing task having the longest duration to the
next preemption point from among the executing tasks.
When one of the lower priority tasks reaches its
preemption point, the scheduler is invoked and the next
highest priority task from the ready queue is scheduled.
When the next preemption point of τk is reached, either τi
will be (or would have been) scheduled or all processors
will be executing tasks having priority higher than τi. No
new non-preemptive regions of lower priority tasks can
start executing since there are higher priority tasks waiting
in the ready queue. Therefore, the number of priority
inversions on τi is at most 1 whenever it is inserted into
the ready queue.

We can upper-bound the number of priority inversions on
any task using knowledge of the number of preemption
points and an upper-bound on the number of preemptions
that it can suffer.

Corollary 4.1. The number of priority inversions on
any task τi under G-LP-FPS with eager preemptions in any
time interval of length t is at most pi, where pi is defined in
(1).

Proof. According to Lemma 4.1, τi suffers from at most
1 priority inversion every time it is inserted into the ready
queue. Recall that each task τi can be preempted at most
pi times during any interval of length t. Therefore, τi can be
inserted into the ready queue most pi times after it starts,
i.e., whenever it is preempted.

Task execution dynamics on multiprocessors:
Phillips et al. [22] noted that, under preemptive
scheduling, in any time interval of length t between the
release time and deadline of a task τi, whenever τi is not
executing, all processors are executing higher priority jobs.
On the other hand, when tasks are composed of
non-preemptive regions, Phillips et al. ’s observation needs
to be modified as follows: In any time interval of length t,
whenever a task τi is ready and is not executing, the
processor is executing higher priority tasks, or by lower
priority NPRs of tasks blocking τi. This observation can be
applied to obtain the time at which any non-preemptive
region of task τi can start executing, which in turn gives us
the corresponding response time.

In the following two lemmas, we present an upper-bound
on the lower priority interference on 1) the first NPR of any
task τi and 2) any other NPR of τi.

The lower priority interference on the first NPR of τi
needs to account for the push through blocking which is the
interference pushed through by the final NPR of the
previous job of τi. However, as noted by Davis et al. [16],
when calculating the higher priority interference using
Bertogna et al. ’s [5] method, since the higher priority
tasks are assumed to be executing as late as possible, the
effects of push through blocking is already accounted for.
We therefore, obtain the following upper-bound on the
blocking on the first NPR of any τi.

Lemma 4.2. The lower priority interference without
accounting for the push through blocking on the first NPR
bi,1 of a task τi over all m processors under G-LP-FPS
with eager preemptions is upper-bounded by

∆m
i =

∑ m
max
τj∈lp(i)

(
max

1≤k≤qj+1

bj,k

)
(6)

where, the
∑ m

max
τj∈lp(i)

term denotes the sum of the m largest

values among the NPR’s of all τj ∈ lp(i).

Proof. This follows from the fact that at most m tasks
can be executing at any given time instant, and eager
preemptions guarantee that the first preemptable lower
priority task is preempted by a higher priority task.

In the worst case, when τi is released, all the m
processors have just started executing the m largest lower
priority NPRs. Consequently, with eager preemptions τi
needs to wait until these m largest NPRs of lower priority
tasks complete their execution before all the processors are
busy executing either tasks having higher priority than τi
(in which case, there is no more priority inversion) or τi
itself.

Lemma 4.3. The lower priority interference on the pth

non-preemptive region bi,p of any task τi over all m
processors under G-LP-FPS with eager preemptions is
upper-bounded by

∆m−1
i =

∑ m−1
max
τj∈lp(i)

(
max

1≤k≤qj+1
bj,k

)
(7)

where, 2 ≤ p ≤ qi + 1 and
∑ m−1

max
τj∈lp(i)

denotes the sum of the

m− 1 largest values among all τj ∈ lp(i).

Proof. When τi is executing, then at most (m − 1)
processors are executing lower priority tasks. Suppose that
there exists a time instant between the start time and
finish time of τi when all the processors are executing lower
priority tasks. Let t denote the earliest such time instant.
This means that at time instant t, the scheduler scheduled
a new low priority job (i.e., an mth lower priority task)
even though τi was waiting in the ready queue or was
executing. We get a contradiction because of our
assumption of an global fixed priority based scheduler.

Lemma 4.4. An arbitrary task τi can start executing its
final NPR qi+1, in any time interval of length t under G-LP-
FPS with eager preemptions if τi is ready at the beginning



of the interval and,

C∗i +

 1

m

∆m
i + pi ×∆m−1

i +
∑

τj∈hp(i)

Ii(t, τj)

 ≤ t (8)

where, pi is given by (1), ∆m
i is given by (6), ∆m−1

i is given
by (7) and Ii(t, τj) is given by (5).

Proof. Recall that ∆m
i denotes the sum of the largest

lower priority NPRs that can block τi over all m processors
and Ii(t, τj) gives the worst case interference in the interval
t. We know from Lemma 4.1 that the each NPR of τi can
be blocked at most once. Moreover, we know from lemmas
4.2 and 4.3 that the first NPR of τi can be blocked by at
most ∆m

i and that each of the remaining NPRs of τi can be
blocked at most ∆m−1

i over all the m processors. Moreover,
the number of preemptions on τi is upper-bounded by pi.
In the worst case, whenever τi resumes its execution after a
preemption, it is blocked by lower priority NPRs. Therefore
the upper-bound on the blocking experienced by τi is given
by ∆m

i + pi ×∆m−1
i .

Proof follows from the fact that τi has completed C∗i =
Ci − bi,qi+1 + 1 units of execution, after incurring the worst
case higher and lower priority interference, implying that
the final NPR has already started its execution.

In the following, we present a schedulability test by
observing that any task τi can be blocked only when it is
preempted, and the number of preemptions on τi is at
most pi.

Theorem 4.1. If for any task τi, suppose t′ denotes the
smallest t for which equation (8) is satisfied, the response
time of τi under G-LP-FPS with eager preemptions is given
by,

Ri = Ci +

 1

m

∆m
i + pi ×∆m−1

i +
∑

τj∈hp(i)

Ii(t
′, τj)


where ∆m

i and ∆m−1
i are defined in (6) and (7) respectively.

Proof. The proof follows from the fact that, at t′, the
final NPR of τi has started its execution.

The smallest t that satisfies (8) can be obtained by first
setting t = C∗i and performing a fixed point iteration on
(8) until the condition is satisfied or until a value greater
than Di − bi,q+1 + 1 is obtained, in which case the task is
unschedulable.

The test presented above is, however, pessimistic since
it assumes that all the higher priority tasks have carry-in
jobs that interfere with τi. In the following, we build on
Baruah’s observations [1], and identify a critical scenario
that gives the worst case behavior under limited-preemption
scheduling while limiting the number of tasks with carry-in
jobs. Baruah [1] observed that the worst case scenario that
leads to a deadline miss on any job of τi, under preemptive
scheduling, is such that there exists a busy interval prior
to the release of τi where all the processors are executing
higher priority jobs and extends to the time instant when
the job of τi can start executing. The start time of such a
busy period is assumed to be the earliest time before the
release of τi such that at least one processor is idle and no
processors are idle between the start of the busy period and

ri t1 t0 di 
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Low priority task executions High priority task executions 

Figure 5: An illustration of the critical scenario.

the release of τi. We build on this observation by identifying
that, in the case of limited-preemption scheduling, the NPRs
of some lower priority jobs could influence the busy period
and consider the following scenario.

Critical Scenario: Consider an arbitrary job Ji of a
task τi released at time instant ri that has started its
execution, such that all jobs of all tasks released prior to ri
are schedulable. We consider the earliest time instant t1
before the release time ri at which a higher priority task is
released, and is blocked by NPRs of some tasks having a
lower priority than τi, as illustrated in Figure 5. If there
are no higher priority job releases prior to ri, we set t1 = ri
(i.e., assume Ji is the task that is blocked). Let the
number of processors executing lower priority NPRs at
time instant t1 be x, 1 ≤ x ≤ m. Let t0 denote the earliest
among the start times of these x lower priority NPRs that
block the higher priority task released at t1. If there is no
such time instant, we set t0 to be the earliest time instant
before ri at which at least one processor is idle and no
processor is idle in (t0, ri) (there is always such an instant
e.g., at the start of the schedule). Since we consider a
sporadic task system, there is always a possibility of lower
priority tasks being released, and being executed, at t0
that may potentially block the execution of τi.

Observation 4.1. At most m − 1 higher priority tasks
are active at time instant t0.

According to our identified critical scenario, at least one
processor is starting to execute a lower priority task at time
instant t0. This means that except for the higher priority
tasks currently executing on at most m − 1 processors no
other higher tasks are active. If more than m − 1 higher
priority tasks were active, lower priority tasks could not have
started executing at t0.

The above observation allows us to limit the number of
carry-in tasks to at most m− 1, rather than assuming that
all the tasks have carry-in executions. Consequently, we
can exploit the recent advances [17] in efficiently
accounting for the carry-in interference to determine the
schedulability of real-time tasks under G-LP-FPS with
eager preemptions. The workload generated by any higher
priority task τj having carry-in interference in any time
interval of length t is given as follows [17] (see Figure 1 for
an illustration):

WCI
j (t) = Cj +

⌊
max((t− Cj), 0)

Tj

⌋
× Cj+ (9)



min ([[t− Cj ]0 mod Tj − (Tj −Rj)]0, Cj)
In the above equations, [A]B means max(A,B). On the
other hand, the workload generated by any higher priority
task τj that does not carry-in interference in any time
interval of length t is given as follows [17] (see Figure 2 for
an illustration):

WNC
j (t) =

⌊
t

Tj

⌋
× Cj + min(t mod Tj , Cj) (10)

Therefore, in any time interval of length t and for any τj , we
can calculate the upper-bound on the associated carry-in as
follows [17]: W diff

j (t) = WCI
j (t)−WNC

j (t). A conservative
upper-bound on the amount of carry-in by higher priority
tasks that interferes with any task τi can be obtained from
the (m− 1) largest W diff

j s :

ICIi (t) =
∑ m−1

max
τj∈hp(i)

W diff
j (t)

Similarly, a conservative upper-bound on the interference
generated by higher priority tasks on τi, that do not carry-
in, in any time interval of length t is given by,

INCi (t) =
∑

τj∈hp(i)

WNC
j (t)

Therefore, the total higher priority interference on any task
τi in any time interval of length t can be calculated using:

Ii(t) = ICIi (t) + INCi (t) (11)

However, when restricting the number of carry-in jobs to
at most m − 1, the tasks are not assumed to be executing
as late as possible. Consequently, as noted by Davis et al.
[16], the effects of push through blocking is not automatically
accounted for. In the following we show that, for any τi, only
at most one final NPR of a previous job of τi can contribute
to the push through blocking and the push through blocking
can affect only its first NPR.

We consider the critical scenario described above and
investigate the push through blocking on the job Ji of τi.

Lemma 4.5. The push through blocking on τi comes from
at most the final NPR of the previous job of τi, under G-
LP-FPS with eager preemptions.

Proof. According to the critical scenario, all jobs
released prior to the release time of the job Ji of τi are
schedulable, including any previous jobs of τi. This means
that the final NPR of the previous job of Jτi had started
executing. Therefore, the push through blocking from its
previous NPR must have ended. Therefore, the blocking on
Ji comes from only at most the previous job of τi and its
final NPR.

Lemma 4.6. Only the first NPR of τi can be affected by
the push through blocking, under G-LP-FPS with eager
preemptions.

Proof. Follows from the fact that the push through
blocking needs to end before the first NPR of τi can start
executing, and hence does not affect any subsequent
NPRs.

Lemmas 4.5 and 4.6 allows us to upper-bound the lower-
priority interference, including any push through blocking,
on the first NPR of any τi (the blocking on other NPRs of
τi remains the same as in (7).

Lemma 4.7. The lower priority interference on the first
NPR bi,1 of a task τi over all the m processors under G-LP-
FPS with eager preemptions can be upper-bounded by

∆m
i =

∑ m
max
τj∈lp(i)

(βi) (12)

where, set βi = {τj ∈ lp(i), max
1≤k≤qj+1

bj,k} ∪ {bi,qi+1}, and∑ m
max
τj∈lp(i)

term denotes the sum of the m largest values.

Proof. At the release time of τi, when calculating
blocking, we have two cases:

1. All m processors are executing lower priority NPRs.

In this case, there is no push through blocking since it
must have ended for all the processors to be executing
lower priority NPRs. The worst case blocking in this
case is given by the m largest lower priority NPRs.

2. At least one processor is executing a higher priority
task.

In this case, the higher priority tasks may bring in push
through blocking. Therefore, the worst case blocking
on τi happens when m−1 processors are executing the
m−1 largest NPRs and the mth processor is executing
the highest priority job that brings in a push through
blocking. The push through blocking is at most bi,qi+1

according to lemmas 4.5 and 4.6

Therefore, the worst case blocking on the first NPR of any
τi is obtained by taking the maximum of the two cases
described above.

The Lemma 4.4 can be modified as follows to compute the
start time of the final NPR.

Lemma 4.8. An arbitrary task τi can start executing its
final NPR qi+1, in any time interval of length t under G-LP-
FPS with eager preemptions if τi is ready at the beginning
of the interval and,

C∗i +

⌊
1

m

(
∆m
i + pi ×∆m−1

i + Ii(t)
)⌋
≤ t (13)

where, pi is given by (1), ∆m
i is given by (12), ∆m−1

i is
given by (7) and Ii(t) is given by (11).

Consequently, the response time of any τi ∈ Γ can be
calculated by modifying Theorem 4.1, as follows:

Theorem 4.2. For any task τi, suppose t′ denotes the
smallest t for which equation (13) is satisfied, the response
time of τi under G-LP-FPS with eager preemptions is given
by,

Ri = Ci +

 1

m

∆m
i + pi ×∆m−1

i +
∑

τj∈hp(i)

Ii(t
′)


where ∆m

i and ∆m−1
i are defined in (12) and (7) respectively

and Ii(t
′) is defined in (11).

While it may seem that accounting for worst case lower
priority interference per preemption on each task is
pessimistic, it is sufficient to guarantee the absence of
scheduling anomalies. For example, it may happen that
some higher priority tasks execute for less than their worst
case execution time and a lower priority task starts
executing a large NPR in the resulting slack.



5. EVALUATIONS
In this section, we report the results of an experimental

evaluation of the performance of G-LP-FPS with eager and
lazy preemptions using weighted schedulability [2]. For this
purpose, we used the test derived in this paper for the
eager preemption approach (EPA). The schedulability
under lazy preemption approach (LPA) was determined for
link-based scheduling [7] using the inflation based approach
[8] in conjunction with the schedulability test for G-P-FPS
given by Guan et al. [17]. We calculated the weighted
schedulability variations with respect to 1) number of tasks
per taskset 2) the NPR lengths and 3) number of
processors. Specifically, we varied:

1. the number of tasks keeping the number of processors
and NPR lengths constant

2. the NPR lengths keeping the number of processors
and the number of tasks constant for tasks with 1)
long NPRs relative to their WCET and 2) short
NPRs relative to their WCET

3. the number of processors keeping the number of tasks
and NPR lengths constant

A higher weighted schedulability implies a better
scheduling algorithm since the schedulability is weighted
against taskset utilizations. For reference, we also included
the weighted schedulabilities under G-P-FPS assuming no
overheads and G-NP-FPS; the performance of G-P-FPS
will significantly decrease relative to the other algorithms
when overheads are included since the pessimism
associated with overhead accounting is much higher.
Detailed evaluation via analysis including overheads and
measurements from a real implementation are future work.
Moreover, the behavior of G-P-FPS can be obtained using
G-LP-FPS by allowing preemptions after every unit of
execution, with ties broken using task priority, and that of
G-NP-FPS can be obtained by having no preemption
points.

5.1 Experimental Setup
We used the UUnifast-Discard algorithm proposed by

Davis and Burns [15] to generate task utilizations. The
minimum separation times (periods) were uniformly
generated between 50 and 500 (note that the time period
ranges are changeable). Deadlines were set equal to periods
(implicit deadlines), although the schedulability tests also
apply to constrained-deadline tasksets. The largest NPR
values for each τi ∈ Γ were set as a percentage of its
WCET denoted by P (ceiling function was applied to get
integer values). We assumed that all NPRs of τi have the
same length equal to the largest value, except for the first
that can be smaller (depending on the WCET). Note that
prior work [14] shows that larger final NPRs give improved
schedulability. The utilization of the tasksets ranged from
a minimum of Umintot to a maximum of Umaxtot = m, where m
is the number of processors. In the experiments, we set
Umintot = 2.4 since we are more interested in scheduling
tasks with larger utilizations to effectively use the
platform. We assumed Deadline Monotonic Priority
ordering (DMPO) [19]; although better priority assignment
algorithms exists for G-P-FPS DMPO serves our purpose
of comparison since we use the same priority assignment

for all the considered scheduling algorithms. The test in
[17] was adopted as reference for G-P-FPS, and for
G-NP-FPS, we used our test after setting the largest NPR
length equal to the task computation times.

5.2 Experimental Results
In the first experiment, we examined the performance of

G-LP-FPS for varying numbers of tasks form = 4 processors
and P = 5%. The results of the experiments are illustrated
in Figure 6.

The experiment indicates that for high utilization
tasksets with large numbers of tasks, G-LP-FPS with eager
preemptions performs better than with lazy preemptions.
This is due to the inherent pessimism in the inflation based
technique, which is amplified for large tasksets and large
utilizations. We also observe that the performance of
G-NP-FPS improved significantly with an increasing
number of tasks. The main reason is that when the
number of tasks is large, the individual task utilizations are
very small, hence most tasks have relatively small
computation times in relation to their deadlines and so are
more amenable to G-NP-FPS [18]. By contrast, the
presence of preemption points introduces additional
blocking (from lower priority interference occurring after
the start of the execution) leading to reduced
schedulability. Evaluations for larger numbers of processors
(specifically m=6 and m = 8), varying the number of tasks
showed similar behavior1.

We also investigated the consequences of changing NPR
lengths, and consequently the number of preemption
points, on schedulability. Increasing NPR lengths increases
pessimism in link-based scheduling because of the inflation
of WCETs. However, it can have beneficial effects in our
test for G-LP-FPS under eager preemption. We varied the
size of NPRs as a percentage of the corresponding WCETs,
between 5% and 100% (approximated using a ceiling
function). The results are presented in Figure 7.

As can be seen the schedulability varies in a saw-tooth
manner until the NPR lengths reach 50% (i.e., the number
of preemption points reduces to 1). Once past 50%, the
schedulability continues to decrease until the tasks are
almost fully non-preemptive, after which the schedulability
starts to increase again. This is because, once the NPR
lengths go past 50% of WCET, there is no further
reduction in the number of preemption points; however,
the length of the largest NPRs continues to increase,
consequently increasing blocking on higher priority tasks
(that may have a single preemption point). Finally, when
the tasks become fully non-preemptive, schedulability
increases since the lower priority interference decreases due
to the reduction in the number of preemption points from
one to zero.

The schedulability varies in a saw-tooth fashion between
5% and 50% demonstrating the futility of increasing the
largest NPR lengths without reducing the number of
preemption points. For example, as we increase the largest
NPR lengths from 25% to 30%, there is no further decrease
in the number of preemption points (which is 3 for both
cases). On the other hand, the NPR lengths increase
leading to increased lower priority interference that occurs
after the start of the task executions, reducing

1see additional graphs available online at http://www.idt.
mdh.se/~atl05/pdf_files/graphs-G-LP-FPS-2015.pdf

http://www.idt.mdh.se/~atl05/pdf_files/graphs-G-LP-FPS-2015.pdf
http://www.idt.mdh.se/~atl05/pdf_files/graphs-G-LP-FPS-2015.pdf
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Figure 6: Varying number of tasks.
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Figure 7: Varying NPR lengths (large NPRs).
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Figure 8: Varying NPR lengths (small NPRs).
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Figure 9: Varying number of processors.

schedulability. On further increasing the largest NPR
lengths to 35%, the number of preemption points decreases
to 2, consequently improving schedulability due to
reduction of lower priority interference after the start time
of the tasks. The same reasoning explains the decrease in
schedulability when increasing the largest NPR lengths
from 35% to 45% since the number of preemptions remain
unchanged at 2. When the NPR lengths increase to 50%,
schedulability increases because the number of preemptions
decrease to 1. In a few cases, our experiment identified
some tasksets as schedulable using G-LP-FPS with eager
preemptions but unschedulable under any other approach.
However, this was not observed with link-based scheduling
since it is based on the test for G-P-FPS [17] after inflating
the WCETs. Link based scheduling fared better compared
to G-LP-FPS with eager preemptions for very small NPR
lengths as shown in Figure 8.

Finally, we varied the number of processors keeping the
number of tasks and NPR lengths constant, at 30 and 5%
respectively (reported in Figure 9). We observe that
link-based scheduling has a higher schedulability when the
number of processors increases. This is due to the fact that
availability of more processors implies better schedulability
under link-based scheduling for low utilization tasksets
with a fixed number of tasks. The same trend is seen in
the left end of Figure 6 where the number of tasks
compared to the available number of processors is small.
However, for tasksets with a large number of tasks and
high utilizations, the eager preemption approach is the

most effective (Figure 6).
Even though the focus of the experiments presented in

this paper is on schedulability, we note that, preliminary
experiments simulating G-LP-FPS with eager and lazy
preemptions suggest that the number of preemptions
observed during run-time is slightly higher in the case of
eager preemptions. This happens because with lazy
preemptions, further higher priority tasks may be released
before preemption can occur, thus the tasks are more likely
to run in priority order with fewer preemptions.

6. CONCLUSIONS
Limiting preemptions to predetermined points within

real-time tasks is an effective means of reducing
preemption and migration related overheads. However, it
introduces an interesting question of how best to manage
preemption. At one extreme, the scheduler can choose
eager preemption of the first executing lower priority task
that becomes preemptable, while at the other extreme, it
can restrict preemption to only the lowest priority
executing task, when it becomes preemptable, referred to
as lazy preemption. Each strategy has a different effect in
terms of the number of priority inversions in the schedule,
that in turn affects schedulability.

In this paper, we made the following contributions:

1. We derived a schedulability analysis for G-LP-FPS
with eager preemptions building on the observation
that blocking happens only when a task resumes



execution. To the best our knowledge, this is the first
such test for G-LP-FPS with fixed preemption points.

2. We evaluated the new schedulability test by
comparing it with a test for G-LP-FPS with lazy
preemption. The test used was the state-of-the-art
test for G-P-FPS [17] supplemented by the
inflation-based approach of accounting for blocking.
[7]. Our evaluations showed that G-LP-FPS with
eager preemptions outperforms link-based scheduling
in the context of fixed preemption points.

It remains to be seen whether the eager preemption
approach is beneficial in the context of floating NPRs.
Future work includes investigating optimal preemption
point placement strategies, as well as experiments
considering overheads on real platforms.
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