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ABSTRACT
Prior work on multiprocessor real-time locking protocols
has shown how to support fine-grained lock nesting with
asymptotically optimal worst-case priority-inversion blocking
(pi-blocking) bounds. However, contention for each resource
has heretofore been considered an unconstrained variable.
This paper presents the first fine-grained multiprocessor real-
time locking protocol with contention-sensitive worst-case
pi-blocking bounds. Contention-sensitive pi-blocking is made
possible by incorporating knowledge of maximum critical-
section lengths—which must be known a priori for analysis
anyway—into the lock logic.

1. INTRODUCTION
When designing software for a multiprocessor platform, the

need for e�cient synchronization looms large. In the domain
of real-time systems, multiprocessor locking protocols exist
that can be used to realize synchronization requirements,
but protocols that can be flexibly applied and do not overly
inhibit parallelism have remained somewhat elusive. This is
mainly due to di�culties caused by nested lock requests.

There are two principal means for supporting nested locks:
coarse-grained locking and fine-grained locking. Under coarse-
grained locking, all resources that potentially could be locked
simultaneously by any task are statically coalesced under
one lock. This approach clearly inhibits parallelism. How-
ever, under the alternative of fine-grained locking, wherein
resources are locked individually, correctness-related issues
such as deadlock-avoidance become problematic.
Perhaps because of such di�culties, the first fine-grained

multiprocessor real-time locking protocol was proposed only
recently, in the form of the real-time nested locking protocol
(RNLP ) [12, 14]. When expressed in terms of the proces-
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sor count, m, and the task count, n, the RNLP has worst-
case priority-inversion blocking (pi-blocking) bounds that are
asymptotically optimal. However, these bounds are actually
not an improvement over those possible under coarse-grained
locking. This may seem surprising, given the improved run-
time parallelism a↵orded by fine-grained locking. A key mo-
tivation for designing a fine-grained protocol is to avoid the
artificial inflation of lock contention caused by coarse-grained
locking. Clearly, analysis that does not consider contention
as a first-class parameter (like m and n) cannot demonstrate
contention-related benefits. Similarly, protocols that are not
designed to be contention sensitive in the worst case will not
exhibit worst-case pi-blocking improvements.

Realizing this, we consider for the first time in this paper
the issue of contention sensitivity in the design of multi-
processor real-time locking protocols. We show that such
protocols do exist by presenting an asymptotically optimal
variant of the RNLP that is contention sensitive. A number
of challenges arise when attempting to design a contention-
sensitive real-time locking protocol. We discuss some of these
challenges below, and how they were addressed in the proto-
col proposed herein. To provide needed context, however, we
first briefly review prior related work.

Prior related work. While the first multiprocessor real-
time locking protocols were presented over two decades
ago [9, 10], the first protocols to be asymptotically opti-
mal with respect to pi-blocking began to appear only a few
years ago [2, 3, 4], and a contention-sensitive protocol has
never been presented. The aforementioned RNLP is the only
multiprocessor real-time locking protocol proposed to date
that supports fine-grained lock nesting [12, 14]. The RNLP
is actually a family of protocols, where specific variants are
obtained by determining how waiting is realized (spinning vs.
suspending), the mechanism used to ensure that tasks make
progress, and how pi-blocking is analyzed. (A more detailed
description of the RNLP is given later in Sec. 2.) Worst-case
pi-blocking under the RNLP is either O(m) or O(n) per re-
source request, depending on analysis assumptions. As noted
above, these worst-case bounds are asymptotically optimal
when such bounds are expressed in terms of m and n only.
Intuitively, the RNLP achieves optimality by delaying the
satisfaction of some lock requests to ensure that earlier-issued
outermost requests are never blocked by later-issued ones.
Wieder and Brandenburg [15] recently showed that the prob-
lem of obtaining precise worst-case pi-blocking bounds for
FIFO- or priority-ordered nested locks is NP-hard. This re-
sult does not directly apply to a protocol such as the RNLP
that can opt to delay the satisfaction of some requests.
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Figure 1: Illustration of the worst-case blocking behav-

ior of the RNLP and the proposed improvement in the

C-RNLP. R4 is transitively blocked by R1 even though

they do not conflict unless R4 cuts ahead of R3.

Key problem: transitive blocking chains. The delay-
ing of some requests in the RNLP gives rise to the possibility
of long transitive blocking chains, which are a major compli-
cation in the design of a contention-sensitive locking protocol.
Consider the example in Fig. 1, which depicts four requests
R1, . . . ,R4 contending for four resources `

a

, . . . , `
d

. Blocked
requests wait within per-resource FIFO queues. In the de-
picted situation, R1 has acquired `

d

, R2 is waiting to acquire
both `

c

and `
d

(and is enqueued on the waiting queue for
both resources), R3 is waiting to acquire both `

b

and `
c

, and
R4 is waiting to acquire both `

a

and `
b

. In this example,
despite the fact that R1 and R4 do not conflict, or access a
common resource, they are serialized due to requests R2 and
R3, forming a transitive blocking chain. Such transitive block-
ing chains are the very reason why the current RNLP is not
contention sensitive. Observe that the worst-case pi-blocking
for R4 is not upper bounded by the worst-case contention
for the resources it accesses, `

a

and `
b

, but is a function of
the maximum number of queued requests.

Contributions. We present the C-RNLP, a contention-
sensitive variant of the RNLP. Under the C-RNLP, per-
request pi-blocking bounds are asymptotically optimal when
such bounds are expressed as a function of m, n, and lock
contention. In describing the C-RNLP, we mainly focus on a
spin-based variant due to space constraints, but variants can
be defined corresponding to all RNLP variants.
The key new idea in the C-RNLP is a “cutting ahead”

mechanism that breaks long transitive blocking chains. In
designing such a mechanism, care must be taken to ensure
that requests that are cut ahead of do not experience in-
creased worst-case blocking. The C-RNLP addresses this
concern through the incorporation of critical-section length
information into the lock and unlock logic. Such information
is necessary for a priori worst-case blocking and schedulabil-
ity analysis, so it is reasonable to assume lock requests could
be annotated with such information.

The C-RNLP’s lock/unlock logic is more complicated than
the RNLP’s. To address this concern, we implemented a
spin-based variant of the C-RNLP and conducted an exper-
imental evaluation on a dual-socket 36-core Intel machine.
Our experimental results demonstrate a clear trade-o↵ be-
tween lock/unlock overheads and the increased parallelism
a↵orded by using a contention-sensitive locking protocol.
These experiments show that the additional overheads can
be worth incurring if nesting is common.

Organization. In the rest of the paper, we provide needed
background (Sec. 2), describe the C-RNLP, first in a rather

abstract way (Sec. 3) and then in a more implementation-
oriented way (Sec. 4), present our experimental results (Sec. 5),
and finally, conclude (Sec. 6).

2. BACKGROUND
In this section, we provide relevant background material.

Task model. We consider the classic sporadic real-time
task model and assume familiarity with this model. Specifi-
cally, we consider a task system � = {⌧1, . . . , ⌧n} scheduled
on m processors. We denote an arbitrary job of ⌧

i

as J
i

. We
limit our attention to job-level fixed-priority schedulers, such
as static-priority and earliest-deadline-first (EDF) schedulers,
under which the base priority of each job is fixed. As dis-
cussed below, a synchronization protocol may change the
priority of a job.

Resource model. We extend the task model above by
assuming that there are n

r

shared resources to which tasks in
� require synchronized access. We denote these resources as
L = {`1, . . . , `nr}. We assume that all resources are serially
reusable, i.e., no reader/writer sharing. We assume familiarity
with synchronization-related terminology, such as critical
section, lock, unlock, outermost critical section, etc. When
a job J

i

requires a resource `
a

, it issues a request R
i

for
`
a

.1 R
i

is satisfied as soon as J
i

holds `
a

, and completes
when J

i

releases `
a

. Two requests conflict if they access
a common resource. We define the number of issued and
not-yet-completed requests that conflict with R

i

when R
i

is
issued to be the contention that R

i

faces, denoted c
i

. The
maximum critical-section length is denoted L

max

.

Priority inversions. Locking protocols designed for real-
time systems must enable bounds on priority-inversion block-
ing (or pi-blocking) to be determined; such bounds are applied
in schedulability analysis. Intuitively, pi-blocking occurs when
a job is delayed while lower-priority work is executing in its
place. A job may experience pi-blocking while it waits for a
resource it has requested—this is called request blocking—or
as a result of a progress mechanism (described later)—this
is called progress-mechanism-related (PMR) blocking.

Analysis assumptions. For asymptotic analysis, we con-
sider critical-section lengths, as well as the number of requests
per job to be constant. We consider m and n to be variables
when discussing both the proposed C-RNLP and prior pro-
tocols, and each c

i

for ⌧
i

2 � to also be a variable when
discussing the C-RNLP. All other parameters are considered
to be variable unless stated otherwise.

Progress mechanisms. To ensure that pi-blocking times
can be reasonably bounded, real-time locking protocols em-
ploy progress mechanisms that may temporarily raise a job’s
e↵ective priority. In this paper, we limit attention (due to
space constraints) to spin-based protocols that employ the
progress mechanism of priority boosting [3, 6, 10, 11], wherein
a resource-holding job’s priority is unconditionally elevated
above the highest-possible base (i.e., non-boosted) priority.
In suspension-based locks, other progress mechanisms are
used such as priority inheritance [11] or priority donation [4].

Basic RNLP structure. The C-RNLP builds directly on
the structure of the RNLP, so a basic understanding of that
1We letR

i

denote an arbitrary request of J
i

. We have no need
to disambiguate di↵erent requests from J

i

as our analysis
focuses on individual outermost requests.
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Figure 2: Architecture of the RNLP [12].

protocol is required to understand the results of this paper.
As noted in Sec. 1, the RNLP is actually a family of protocols:
a given instantiation is obtained by determining how waiting
is realized (spinning or suspending), the progress mechanism
to employ (priority inheritance, priority boosting, or priority
donation), and potentially other factors (such as whether
“long” critical sections are to be distinguished from “short”
ones [12], and whether reader/writer sharing constraints
exist [13]). All such instantiations share a common structure,
which consists of two components: a token lock and a request
satisfaction mechanism (RSM). This is illustrated in Fig. 2.
When a job J

i

requires a shared resource, it requests a token
from the token lock. Once J

i

has acquired a token, it can
issue requests for di↵erent resources within the RSM. The
RSM orders the satisfaction of such requests.

Each particular RNLP instantiation is defined by specifying
the token-lock algorithm to use, the total number of tokens,
and the RSM implementation to be employed. For the case
of spin-based locking with priority boosting (our focus here),
each task is assigned a token when it becomes non-preemptive,
so the token lock is essentially obviated. For the spin-based
variant, worst-case request and PMR blocking are both O(m),
which is asymptotically optimal. The other variants have
asymptotically optimal pi-blocking bounds as well.

The RSM. When a job is granted a token, it is assigned a
timestamp. Within the RSM, each resource has a timestamp-
ordered wait queue of pending requests for that resource.
When requests can be nested, deadlock is a potential concern.
A simple way to obviate any potential deadlock is to impose
a partial ordering on resources, and to require that nested
locks are acquired according to this ordering [5]. This is an
old technique that is commonly used in practice (e.g. in the
Linux kernel).

In some instantiations of the RNLP, resource orderings can
be avoided by using dynamic group locks (DGLs) [12]. Let
D

i

be the set of all resources that may be acquired within
an outermost lock request R

i

. When DGLs are used, instead
of issuing requests for resources in D

i

in a piecemeal fashion
as nested requests are encountered, all such resources are
requested simultaneously at the time of token acquisition. (In
a real-time system, the set of all such requests would have to
be known for schedulability analysis.) In essence, a resource
group is identified dynamically and coalesced under one lock.
The disadvantage of using DGLs is that requests may be
issued for resources that are not actually needed. For example,
if after acquiring resource `1, one of `2 and `3 is acquired,
then requests would be issued for all three resources even
though only two are needed. The main advantages are that
resource orderings are not required and runtime overheads
tend to be lower. Also, worst-case pi-blocking bounds are not
altered under our existing analysis techniques when DGLs
are used. Note that the usage of DGLs is not the same as
coarse-grained locking: coarse-grained locking groups are

statically defined o✏ine, while DGLs can be used to acquire
a subset of the resources that are a part of such a group.

3. C-RNLP
In this paper, we extend the RNLP to the C-RNLP, the first

fine-grained locking protocol with contention-sensitive worst-
case blocking. We show that blocking under the C-RNLP
is O(min(m, c

i

)) for each task ⌧
i

. This is accomplished by
allowing some lock requests to “cut ahead” of other queued
requests, thereby limiting the length of transitive blocking
chains. For ease of explanation, we assume that lock nesting
is realized through the use of DGLs. Thus, each request R

i

specifies a set of resources D
i

to be locked.
We define the C-RNLP in two passes: first, we give an

abstract description based on how the wait-for graph is
updated as requests are issued and completed, similarly to
Dijkstra’s early work on the dining philosophers problem [5];
later, in Sec. 4, we describe a more concrete implementation
that conforms to the abstract specification.

The ordering of requests is maintained in a directed, acyclic
wait-for graph G = (V,E), where vertices denote requests
and edges denote waiting relationships, i.e., (R

i

,R
j

) 2 E
means that R

i

is blocked by R
j

. Initially G is empty, with
V = ; and E = ;. When a request is issued, it is added
to the graph. This addition of a request along with any
associated edges is called an insertion. Likewise, when a
request completes, the removal of it and all of its edges is a
removal. We denote the graph that results from G after an
insertion or a removal as G0 = (V 0, E0). (We similarly use
primes in referring to notation relevant to G0.) We say that
the graph G0 is instantiated when it results from applying
an insertion or removal operation on G. For now, we assume
that these operations are atomic and take zero time to apply.
R

i

is satisfied when it has no outgoing edges. A resource
`
a

requested by R
i

is locked by R
i

when R
i

is satisfied. A
protocol is considered safe if at most one request can lock any
one resource at a time. We assume that once R

i

is satisfied,
R

i

completes within L
i

time units. Later we will explore the
implications of the violation of this assumption. We now use
a series of examples to motivate the rules of the C-RNLP.

Safety. Our first example motivates the rules presented
later that ensure that the C-RNLP is safe.

Ex. 1. Consider the wait-for graph G shown in Fig. 3.
Each request requires only `

a

. R1 is satisfied and holds `
a

and blocks R2, as shown by the directed arrow to R1. Now
suppose that R3 is issued and requires `

a

. R3 is added to G,
and we must consider which edges to add. Several positions for
inserting R3 are displayed in Fig. 3, denoted as positions P1–
P5. For now, it su�ces to understand the notion of a position
intuitively, but later we shall see that a formal definition is
needed. Intuitively, when a request is inserted into G, it is
implicitly reserving a position. (Actually, with DGLs, a set
of positions is reserved, but we will ignore this additional
complication for now.) We examine these positions below
after presenting several definitions.

Def. 1. For any request R
i

, let In(R
i

) denote its in-
coming edges, In(R

i

) = {(R
j

,R
i

) : (R
j

,R
i

) 2 E}, and let
Out(R

i

) denote its outgoing edges, Out(R
i

) = {(R
i

,R
j

) :
(R

i

,R
j

) 2 E}.

Def. 2. Let S be the set of satisfied requests: S = {R
i

:
Out(R

i

) = ;}.
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Figure 3: A wait-for graph G and several positions at

which R3 could be inserted. (The legend also applies to

subsequent figures. Note that edge weights are not used

in this particular figure.)

Def. 3. A request R
i

precedes R
j

, denoted R
i

� R
j

, if
there exists a directed path from R

j

to R
i

.

Def. 4. A request R
i

has cut ahead of R
j

2 V if G0 is
obtained by the insertion of R

i

and R
i

� R
j

is established.

Ex. 1 (continued). We examine each of the positions
P1–P5:

• P1. Here R3 would have no edges, and thus would be
satisfied. However, this would lead to `

a

being locked by
both R1 and R3, which violates safety. Therefore, our
protocol should not allow R3 to be placed at P1.

• P2. Here R3 would cut ahead of R2 and would be wait-
ing for R1 to finish. This position ensures safety, i.e.,
`
a

will be locked by at most one request at a time.

• P3. Here R3 would not cut ahead of any request, and
would be waiting for R2. This position is also safe.

• P4. Here R3 would cut ahead of R1 and wait for R2.
This maintains safety, but creates deadlock in the sys-
tem.

• P5. Here R3 would be cutting ahead of R1, which should
be disallowed since R1 is already satisfied.

Motivated by the above example, we note that to ensure
safety, there must be a single order in which each request
for the same resource will be processed. A newly inserted
request should also avoid cutting ahead of a request that has
already been satisfied.

Def. 5. A set of requests Q ✓ V has a unique ordering
if and only if for any two distinct requests R

i

and R
j

in Q,
either R

i

� R
j

or R
j

� R
i

.

Def. 6. Let Q
a

be the set of requests that require the
resource `

a

: Q
a

= {R
i

: R
i

2 V ^ `
a

2 D
i

}.

R4

R6

R5

R7

R2

R3

R1

5
3

8

4

2

4 4
{b}

{a, b}

{a}

{a, b, c}

{c}

{d}

{a}

Figure 4: A wait-for graph G that includes seven re-

quests.

Def. 7. An insertion into G resulting in G0 is a safe in-
sertion if: (i) for each resource `

a

, there is a unique ordering
on the set Q0

a

; and (ii) a new request R
i

does not cut ahead
of a satisfied request, i.e., for any R

j

in V , (R
j

,R
i

) 2 E0 )
R

j

/2 S. (Note that S is the set of satisfied requests in G.)

Delay preservation. Now that we have determined which
insertions are safe, we investigate which are “best.” In order
to do so, we add information to G about how long each
request will run.

Def. 8. The weight of an edge (R
i

,R
j

) 2 E is given by
W (R

i

,R
j

) = L
j

.

Ex. 2. Suppose we start with G containing nodes R1,
R2, and R3 and the edges depicted between them as shown
in Fig. 4, after which, R4, R5, R6, and R7 are inserted in
order into G. We examine each of those insertions.

• R4. The insertion of this request with no edges is clearly
safe, as no other request in G requires `

d

.

• R5. This request cuts ahead of R2. While this is a safe
insertion, it increases R2’s blocking time, as R2 must
now wait for up to L1 + L5 = 6 time units to execute,
as opposed to waiting for at most L1 = 4 time units.

• R6. This request cuts ahead of R3 and waits for R1 to
complete. Since R3 is already waiting for as much as
L1 +L2 = 9 time units, R6 cutting ahead is acceptable,
as it would cause at most L1 + L6 = 7 time units of
waiting time.

• R7. This request cuts ahead of R3. Using the same
reasoning as used with R6, we see that L7 < L1 + L2.
However, since L7 > L2, if R1 had already been running
for close to L1 time units, then inserting R7 in this
position could delay R3.

In order to reason about where to insert a request, we
must know how long a satisfied request has been satisfied,
as demonstrated by Ex. 2 above.
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Def. 9. The running time of a request R
i

, denoted r
i

,
is the time for which R

i

has been satisfied.

Note that under our current assumption that R
i

completes
within L

i

time units, r
i

< L
i

.

Def. 10. A path in G from R
i

2 V to R
j

2 V is denoted
R

i

;R
j

. The length of this path is given by the sum of the
weights of the included edges. This is denoted |R

i

;R
j

|.

As seen in Ex. 2, to determine a request R
i

’s maximum
blocking time, we are only concerned with the maximum
distance traversed through G from R

i

’s node to a satisfied
node, and we must take into account r

j

for any R
j

that is
satisfied. R

i

’s maximum blocking time is given by the value
|A(R

i

)|, defined next.

Def. 11. If R
i

/2 S, then let A(R
i

) denote a path R
i

;
R

j

such that R
j

2 S and |R
i

;R
j

|� r
j

is maximal; in this
case, we define |A(R

i

)| = |R
i

;R
j

|� r
j

. If R
i

2 S, then we
define |A(R

i

)| = 0.

As suggested by Ex. 2, we want to preserve the existing
maximum delays for each request. Requiring preservation
of maximum delays would also prevent the possibility of
deadlock as shown in Ex. 1.

Def. 12. An insertion into G is delay-preserving if and
only if (8R

i

2 V :: |A0(R
i

)|  |A(R
i

)|).

C-RNLP rules. Motivated by the examples above, our
C-RNLP implementation must satisfy the following rules:

Rule 1: All requests wait until satisfied.

Rule 2: R
i

is removed when R
i

completes.

Rule 3: A node is inserted at a safe, delay-preserving posi-
tion in G that gives the lowest |A(R

i

)|.

Rule 4: Insertions into and removals from G are atomic.

Using the rules of the C-RNLP, we sometimes insert re-
quests into G in di↵erent positions than if we were using the
RNLP. As shown in Fig. 1, the RNLP orders requests in the
order they are issued, with no cutting ahead. However, the
C-RNLP would allow R4 in this example to cut ahead of
R3, if this would not increase R3’s blocking time, thereby
avoiding transitive blocking.

Refining Rule 3. We have presented the abstract rules
that define the C-RNLP, but Rule 3 lacks su�cient informa-
tion to guide an actual implementation. Therefore, we will
refine Rule 3 after giving some necessary definitions. We first
refine the notion of a position.

Def. 13. R
i

and R
j

are consecutive with respect to `
a

if {R
i

,R
j

} ✓ Q
a

^R
i

� R
j

^¬(9R
l

: R
l

2 Q
a

:: R
i

� R
l

�
R

j

).

Ex. 3. Given the graph shown in Fig. 5, R1 and R2 are
consecutive with respect to `

a

, and R1 and R3 are consecutive
with respect to `

b

.

Def. 14. A position P
k

has at most one incoming edge
and at most one outgoing edge, which in an abuse of previous
notation, we denote In(P

k

) and Out(P
k

), respectively.

P1

P2

R1

R2

{a, b}

L1

R3 {a, b}

{a}

L2

L1

L3

L4

Figure 5: A wait-for graph G with two possible positions

for R4.

• If In(P
k

) = ;, then P
k

is called a top-most position.

• If Out(P
k

) = ;, then P
k

is called a bottom-most posi-
tion.

• Otherwise, if In(P
k

) = R
i

and Out(P
k

) = R
j

, then P
k

is called an inner position. An inner position must have
Out(P

k

) � In(P
k

).

A position is said to be an `
a

-position if In(P
k

) and Out(P
k

)
are each either ; or a request that includes `

a

.

When a request R
l

is inserted into a graph G, it re-
serves a set of positions X, and In0(R

l

) =
S

Pk2X

In(P
k

)

and Out0(R
l

) =
S

Pk2X

Out(P
k

).
We now use Ex. 3 to motivate the discussion of a position’s

capacity, defined below.

Ex. 3 (continued). Suppose G is as shown in Fig. 5,
with request R4 for resource `

b

about to be added to the
graph at either position P1 or position P2. Both positions
would yield a safe insertion. Whether R4’s insertion at P1

is delay-preserving depends on the values of L2 and L4 and
how much longer R1 will be executing in the worst case. For
this insertion to be delay-preserving, R4 must finish at the
latest when R2 would finish in the worst case (where each
request takes exactly its stated maximum time to execute),
as this would ensure that all later requests—only R3 in this
scenario—would experience no additional worst-case blocking.
To reason about what values of L4 would meet this condition,
we introduce the concept of position capacity.

Def. 15. The capacity of a position P
k

is defined as:

cap(P
k

) =

8
><

>:

1 if In(P
k

) = ;
|A(R

i

)| if In(P
k

) = R
i

^Out(P
k

) = ;
! � � otherwise

(1)

where ! = |A(R
i

)|� |A(R
j

)| and � = (L
j

� r
j

).

Ex. 3 (continued). We can now reason about the ca-
pacities of P1 and P2. For P1 we obtain, cap(P1) = |A(R3)|�
|A(R1)| � (L1 � r1) = (L1 + L2 � r1) � 0 � L1 + r1 = L2.
This value indicates how long R3 will be waiting in the worst
case due solely to its blocking on R2 and taking into account
that any request reserving position P1 would also be waiting
for R1 to finish. Therefore, if L4 were at most this value, R4
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Figure 6: A wait-for graph G with all possible positions

shown. P1–P4 are `
a

-positions, P5–P8 are `
b

-positions, and

P9–P11 are `
c

-positions.

could be inserted into P1 and be delay-preserving. Because
In(P2) = ;, cap(P2) = 1. Intuitively, a request of any length
could be inserted into P2.

Def. 16. Let P
Di be a D

i

position set, such that for each
`
a

2 D
i

there is an `
a

-position in P
Di .

When a request R
i

is issued, it must reserve all posi-
tions in a D

i

position set, P
Di . In turn, R

i

is inserted
into G, with In(R

i

) =
S

Pk2PDi
{In(P

k

)} and Out(R
i

) =
S

Pk2PDi
{Out(P

k

)}.

Def. 17. The capacity of the position set P
Di is the

smallest |A(R
i

)| where R
i

2 In(P
Di) (or 1 if In(P

Di) = ;)
minus the largest |A(R

j

)|+ L
j

where R
j

2 Out(P
Di) (or 0

if Out(P
Di) = ;)

Note that the capacity of a position set is at most that of
each individual position in the set.

Now that we have more fully developed relevant concepts
pertaining to positions, we replace Rule 3 with Rule 30, which
upholds Rule 3 and refines how safe and delay-preserving
positions are found.

Rule 30: R
i

is inserted by reserving all positions in P
Di

where L
i

 cap(P
Di) and |A(R

i

)| is minimized.

Ex. 4. Suppose G is as shown in Fig. 6. (Note that all
possible positions are shown.) Now that we have defined Rule
30, we can easily examine all possible positions that a request
R

i

may reserve and determine which minimizes |A(R
i

)|. If
D

i

= {`
a

}, then R
i

must reserve one of the positions P1–P4.
If instead D

i

= {`
a

, `
b

}, then R
i

must reserve both an `
a

position P1–P4 and an `
b

position P5–P8. Thus, Ri

will have
at least two edges.

The fact that Rule 30 upholds Rule 3 follows from the next
three lemmas, the latter two of which are stated without
proof, as they are straightforward.

Lemma 1. R
i

inserted under Rule 30 is delay-preserving.

Proof. Suppose to the contrary that R
i

reserves a set of
positions P

Di and the insertion of R
i

is not delay-preserving.
Then, there is at least one node that obtains a new edge
directed to R

i

that experiences increased blocking. Let R
j

denote such a node. Because R
j

’s blocking increases,

|A0(R
j

)| > |A(R
j

)|. (2)

Let R
l

denote a node to which an outgoing edge from R
i

is
directed due to the insertion such that the value |A(R

l

)|+L
l

is maximized. (If no such node R
l

exists, then a slightly
simpler version of the proof that follows can be applied. We
omit this case due to space constraints.) Then, by Def. 11,

|A0(R
i

)| = |A0(R
l

)|+ L
l

� r
l

. (3)

Note that, after the insertion of R
i

, there can be no path
from R

l

to R
i

, for then a cycle would exist (and hence,
deadlock). More technically, if such a cycle were caused, then
the set of positions P

Di would have zero or negative capacity
by Def. 17, and thus R

i

would not have been inserted by
Rule 30. Because the insertion of R

i

does not result in any
path from R

l

to R
i

,

|A0(R
l

)| = |A(R
l

)|. (4)

Because the insertion of R
i

caused R
j

’s blocking to increase,
|A0(R

j

)| depends on R
i

, which upon insertion has not yet
accessed any resource, as it waits on R

l

. Therefore, by Def. 11,

|A0(R
j

)| = |A0(R
i

)|+ L
i

. (5)

The following reasoning establishes cap(P
Di) < L

i

.

cap(P
Di)  {by Def. 17}

|A(R
j

)|� (|A(R
l

)|+ L
l

)
< {by (2)}

|A0(R
j

)|� (|A(R
l

)|+ L
l

)
< {by (4)}

|A0(R
j

)|� (|A0(R
l

)|+ L
l

)
= {by (5)}

|A0(R
i

)|+ L
i

� (|A0(R
l

)|+ L
l

)
= {by (3)}

|A0(R
l

)|+ L
l

� r
l

+ L
i

� (|A0(R
l

)|+ L
l

)
= {by simplification}

L
i

� r
l

 {because r
l

� 0}
L

i

Therefore, for R
j

to have experienced increased blocking
upon the insertion of R

i

, R
i

must have reserved a set of
positions with cap(P

Di) < L
i

, which violates Rule 30. Thus,
such a set of reservations cannot occur.

Lemma 2. R
i

inserted under Rule 30 is safe.

Lemma 3. R
i

is inserted by following Rule 30 with the
same |A(R

i

)| as by following Rule 3.

Establishing a bound. Based on the rules for the C-
RNLP, we can bound the latest time at which a request
could be satisfied.

Lemma 4. Suppose that G is instantiated at time t and
G0 is instantiated at time t0. If |A(R

i

)| > 0, then |A0(R
i

)| 
|A(R

i

)|� (t0 � t).

Proof. The lemma follows because reservations are delay-
preserving, and because all satisfied requests blocking R

i

execute continuously between times t and t0, due to priority
boosting.

Def. 18. Let B
i

= |A(R
i

)| at the time of R
i

’s insertion.

Lemma 5. R
i

is satisfied within B
i

time units from its
initial insertion.
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{b}
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Figure 7: G with worst-case blocking for request R
i

re-

quiring `
a

, with L
i

just greater than L1, L3, and L5.

Proof. Follows directly from Lem. 4.

Lemma 6. B
i

< c
i

(L
max

+ L
i

).

Proof. SupposeR
i

requires only one resource. By Rule 30,
R

i

cannot be inserted into a position P
k

where cap(P
k

) < L
i

.
In the worst-case scenario, R

i

would have to be inserted into
a top-most position with all other relevant positions having
capacity just less than L

i

. This scenario is shown in Fig. 7,
where R

i

requires `
a

and L1, L3, and L5 are all just less
than L

i

. In this case, B
i

< c
i

L
max

+ c
i

L
i

.
In the more general case, R

i

requires a set of resources.
Again, the worst-case scenario would only allow the insertion
of R

i

at a top-most position, with each other set of positions
having capacity less than L

i

. This scenario establishes the
same bound. Therefore, B

i

< c
i

(L
max

+ L
i

).

Theorem 1. A request R
i

is satisfied within c
i

(L
max

+
L

i

) time units.

Proof. Follows from Lem. 5 and Lem. 6.

Uniform C-RNLP. Referring back to the proof of Lem. 6,
when request R

i

is inserted, call a potential position for it
problematic if that position has a non-zero capacity that
is less than L

i

. In the bound established in Thm. 1, the
term c

i

L
i

arises because there can be up to c
i

problematic
positions when R

i

is inserted. We now briefly discuss a second
variant of the C-RNLP, which we call the uniform C-RNLP,
in which problematic positions cannot occur.

In this variant, the time line is segmented into fixed-length
frames of size L

max

, wait-for graph modifications are allowed
to occur only at frame boundaries, with all node removals oc-
curring before any node insertions (we are still assuming that
these graph modifications take zero time), and all satisfied
requests are required to remain satisfied for exactly L

max

time units. With these modifications, all parameters that
a↵ect the graph’s basic structure are a multiple of L

max

and
it can be formally shown by examining (1) that each position
has a capacity that is a multiple of L

max

, or is 0, or is 1.
This implies that problematic positions cannot exist. As a
result, the bound in Thm. 1 reduces to c

i

L
max

. However,
because any request that occurs within a frame is delayed
until the next frame boundary, this blocking bound must be
increased by L

max

(the frame size). From this discussion, we
have the following theorem.

Theorem 2. Under the uniform C-RNLP, a request R
i

is satisfied within (c
i

+ 1)L
max

time units.

Corollary 1. Under either variant of the C-RNLP,
worst-case request blocking is O(min(m, c

i

)).

Proof. Follows from Thms. 1 and 2, and our analysis
assumptions and assumed progress mechanism of priority
boosting, which limits contention to at most m.

Removal of assumptions. In the two variants of the
C-RNLP just described, safety is maintained even if resource-
holding times are longer than specified. In fact, our stated
blocking bounds actually remain unaltered if a request R

i

can hold a resource for longer than L
i

time units, provided
no request holds any resource for longer than L

max

time
units. However, if a request is allowed to hold a resource
for longer than L

max

time units, then our bounds no longer
hold. From a practical point of view, this really is not a
deficiency, because if reliable bounds on resource-holding
times are not known, then it is pointless to attempt to
conduct schedulability analysis.

So far, we have assumed that all modifications to a wait-for
graph take zero time. In reality, of course, such modifications
will entail some overhead. Such overheads can be factored
into our blocking bounds using straightforward techniques.
If these overheads are regarded as constants (which is some-
thing assumed in all prior work on real-time locking protocols
known to us), then blocking times under both protocol vari-
ants remain contention sensitive.

4. IMPLEMENTATION
In the prior section, we described two variants of the C-

RNLP at an abstract level. In this section, we present a
concrete implementation of the uniform variant.

Data structures. Fig. 8 depicts the key data structures of
our implementation. A request acquires resources by reserving
a set of positions in a reservation table, Table, which is an
array of bit masks. Each bit in a bit mask represents a
resource that can be reserved or locked for a frame of time of
length L

max

. We use bit masks because modern processors
provide fast register-level operations for manipulating them.
A request reserves a set of positions by selecting a row in Table
(wrapping if necessary) and by setting the bits corresponding
to its needed resources in that row’s bit mask. The arrays
Enabled and Blocked are both indexed by frame. A request R

i

that has reserved a position given by row k is satisfied when
Enabled[k] = 1 holds; we say that such a row is enabled. The
manner in which Blocked is used is explained later. Several
other variables are used as well. Head indicates the currently
enabled row of Table. Pending requests records the number
of pending (issued but not completed) requests. Size gives
the size of each array, which must be at least the number of
pending requests at any time.

Pseudo code. The lock and unlock routines of our im-
plementation are shown separately in Alg. 1 and Alg. 2,
respectively. Note that shared variables are capitalized, while
variables specific to a request or a function call are lowercase.

In Fig. 8, we show how a set of requests in a wait-for graph
G would be represented in our implementation. As in G,
requests that will be fulfilled later appear higher in Table. R1

and R2 are satisfied, as is indicated by Enabled[0] = 1. R3
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Figure 8: Illustration of G and Table.

has reserved `
b

and `
c

in Table[1]. The value 2 in Blocked[1]
indicates that R3 is waiting for both R1 and R2 to finish. R4

has similarly reserved `
a

and `
b

in Table[2]. We now explain
the lock and unlock routines by means of examples.

Ex. 5. Suppose R5 for `
b

and `
c

is issued when the sys-
tem state is as in Fig. 8. First, a lock on Sublock is obtained
at Line 2 of Alg. 1 to serialize access to the protocol’s shared
state. For the request under consideration, the test in Line 3
would evaluate to true, so searching in Table for an available
set of positions would begin. This search occurs in the loop
at Lines 5 and 6, where the bit masks of di↵erent rows are
checked. Upon termination of this search, the variable start
indicates the corresponding row where the available positions
were found. Following the search, next is set, Blocked[next]
and Pending requests are incremented, and the appropriate
row of Table is updated at Lines 11–14. The lock on Sublock
is then released at Line 15. The task issuing the request then
spins on Enabled[start] at Lines 16 and 17.

Ex. 6. Now suppose that R2 completes. A lock on Sublock
must first be obtained at Line 21 in Alg. 2. At Line 22,
Table is cleared of R2 by bit-wise ANDing the negation of
R2’s requested bitmask and its row in Table. Note that Head
now points to the acquired row of R2. Blocked[next] and
Pending requests are then decremented at Lines 23 and 24.
If there are no more requests blocking requests in the row
indicated by next, i.e., Blocked[next] = 0 at Line 25, then that
row is enabled and Head is updated at Lines 26–28. Finally,
the lock on Sublock is released at Line 30.

The above implementation limits the total number of re-
sources to be at most the number of bits per bit mask, e.g.,
on a 64-bit machine, there could be at most 64 resources in
total. This restriction can be eased by applying results on
the renaming problem, which is a classic problem in work on
concurrent algorithms [1]. In this problem, tasks that have
identifiers over a large name space are “renamed” by giving
them identifiers over a small name space—such names can
be both acquired and released [8]. A renaming algorithm
could be applied in our context to assign a unique identi-
fier to any resource while it is being used. As a result, we
would merely need to limit the total number of concurrently
requested resources to be at most the bit mask size. While
renaming algorithms can be implemented with low overhead
using appropriate atomic instructions, we have not yet fully
explored their use. We note also that it is possible to extend

Algorithm 1 Uniform C-RNLP Lock

1: procedure C-RNLP Lock(requested)
2: lock(Sublock)
3: if Pending requests > 0 then

4: start (Head+ 1) mod SIZE
5: while (Table[start] & requested) 6= 0 do

6: start (start+ 1) mod SIZE
7: end while

8: else

9: start Head
10: end if

11: next (start+ 1) mod SIZE
12: Blocked[next] Blocked[next] + 1

13: Pending requests Pending requests+ 1

14: Table[start] Table[start] | requested
15: unlock(Sublock)
16: while Enabled[start] 6= 1 do

17: /⇤ null ⇤/
18: end while

19: end procedure

Algorithm 2 Uniform C-RNLP Unlock

20: procedure C-RNLP Unlock(requested)
21: lock(Sublock)
22: Table[Head] Table[Head] & ⇠requested
23: Blocked[next] Blocked[next]� 1

24: Pending requests Pending requests� 1

25: if Blocked[next] = 0 then

26: Enabled[Head] 0

27: Head next
28: Enabled[Head] 1

29: end if

30: unlock(Sublock)
31: end procedure

our implementation by using several bit masks per row of
Table, though this would increase lock/unlock overheads.

5. EXPERIMENTAL EVALUATION
To evaluate our C-RNLP implementation, we conducted a

series of experiments, measuring lock/unlock overheads, as
well as observed blocking and runtime performance.

We performed these experiments on a dual-socket, 18-cores-
per-socket Intel Xeon E5-2699 platform. We compared the
C-RNLP to the RNLP [14] and Mellor-Crummey and Scott’s
queue lock (the MCS lock) [7], applied as a coarse-grained
lock, treating all resources as one resource group.

Measuring lock/unlock overheads. We measured lock
and unlock overheads (i.e., the time it takes to perform the
lock and unlock calls of each protocol) as a function of the
number of requested resources, i.e., |D

i

|, the total number
of managed resources, n

r

, and the number of contending
tasks, n. Tasks were statically pinned one per core.2 We
considered n 2 {2, 4, . . . , 36}, n

r

2 {1, 2, 4, 6, . . . , 64}, and
|D

i

| 2 {1, 2, 4, 8, 12, . . . , 48} where |D
i

|  n
r

. Each contend-
ing task executed lock and unlock calls in a tight loop 1,000
times, with a negligible critical section, so as to maximize
contention for shared variables within the lock and unlock
calls.
The C-RNLP lock and unlock calls themselves acquire a

lock (which is true of the RNLP as well). Thus, blocking
can occur within the lock/unlock logic. This blocking is part
of the lock/unlock overhead, and we therefore refer to it as

2Tasks were pinned to cores on the same socket when possible.
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Figure 9: Measured C-RNLP lock overhead as a function

of |D
i

| for n = 36 and n
r

= 64.

overhead blocking, to di↵erentiate it from the protocol blocking
(Lines 16 and 17 in the C-RNLP) experienced while waiting
for C-RNLP-protected resources to be released. Therefore,
when measuring lock/unlock overheads, we included overhead
blocking in the measurement, but not protocol blocking. A
similar methodology was applied to the RNLP and the MCS
lock (the latter has no overhead blocking). We measured
these overheads using the cycle counter, and report the 99th

percentile of observed lock/unlock overheads, so as to filter
any spurious measurements. Due to space constraints, we
focus only on lock overheads here; a similar story emerges
when considering unlock overheads. Also, we can only present
a subset of the data we collected.

Fig. 9 gives several curves pertaining to the lock-overhead
data we collected for the C-RNLP. Each curve is plotted
with respect to the number of requested resources, |D

i

|. For
the curve labeled serial, D

i

was defined to be the same for
all tasks (i.e., resources are accessed serially). For the curve
labeled parallel, D

i

was determined at random (i.e., resources
can be accessed in parallel). These two curves include any
overhead blocking. One might argue that it is better to
account for such blocking analytically rather than by relying
on measurement. To assess this possibility, we present two
additional curves, serial analytic and parallel analytic, which
were derived by measuring lock overheads with overhead
blocking excluded and by inflating that measurement by
accounting for overhead blocking analytically. Based on Fig. 9,
we make the following two observations.

Obs. 1. The complexity of the lock logic in the C-RNLP
requires an analytical estimation of worst-case overhead block-
ing as opposed to a purely measurement-based approach.

We observed a surprising overhead trend, supported by
Fig. 9, in the parallel case in that, as the number of requested
resources |D

i

| increased, the observed worst-case lock and
unlock overheads decreased. In comparison to the serial case,
the observed overheads were higher, which was also surprising
given the potential that less of Table needed to be considered
if more requests could be processed in parallel. Initially, we
conjectured this was because our experimental process was
not able to produce the worst-case overhead blocking. To
address this, we considered overhead blocking analytically.
The overheads using this analytical approach are indeed much
higher, and therefore in a truly hard-real-time safety-critical
system, an analytically rigorous approach must be taken to
account for overhead blocking.
Interestingly, this observation has implications for other

locking protocols that themselves employ a lock. In particular,

Figure 10: Lock overhead as a function of task count n
for n

r

= 64 and |D
i

| = 4.

suspension-based locks, which are implemented in the kernel,
often acquire kernel-based spin locks. To truly bound the
worst-case overheads of such protocols, a similar analytical
approach should be taken to account for overhead blocking.

Obs. 2. Runtime parallelism can increase worst-case lock
and unlock overheads for the C-RNLP.

This can be seen by comparing the curves for the serial
cases in Fig. 9 to those for the parallel cases. We found the
better performance in the serial cases quite surprising, be-
cause in these cases tasks do not “share” rows of Table and
hence longer searches through Table are needed (indeed, we
confirmed that less of Table was typically searched in the
parallel case). However, at least in the context of our experi-
mental framework, greater parallelism allows requests to be
issued at a faster rate, since they experience less protocol
blocking. This in turn increases contention for the shared
variables in the C-RNLP implementation. We conjecture this
increased contention resulted in cache invalidations and ad-
ditional cohearance tra�c that resulted in increased memory
latency and therefore higher overheads.
The measurements discussed so far pertain only to the

C-RNLP. In Fig. 10, we plot measured lock overheads for
all three considered protocols as a function of the task count
n (recall that in our experimental framework, n  m). Two
observations are supported by this data.

Obs. 3. For the C-RNLP, observed overheads increase
dramatically when resources are shared across sockets.

This observation applies to the RNLP as well. It can be
confirmed by examining the sharp rise in the curves for both
protocols between n = 18 and n = 20. This rise is due to
increased memory latencies due to cross-socket interactions.

Obs. 4. Fine-grained locking protocols have higher over-
head than coarse-grained ones.

This can be easily seen in Fig. 10. This result is not
surprising, as coarse-grained protocols require far simpler
lock/unlock logic. This exposes an interesting tradeo↵: fine-
grained protocols o↵er decreased blocking with higher over-
heads, while coarse-grained protocols o↵er decreased over-
heads at the expense of increased blocking.

Runtime performance. To examine this tradeo↵, we
measured the total lock and unlock overhead (including over-
head blocking) and protocol blocking, which we hereafter
simply refer to as total blocking. Specifically, we tested the
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Figure 11: Total blocking time of lock call as a function

of critical-section length for n = 36, n
r

= 64, and |D
i

| = 2.

same configuration parameters as in the previous experi-
ments, and we also varied critical-section lengths within
{1, 10, 20, . . . , 100} microseconds. Fig. 11 is a sample graph
from this study, where n = 36, n

r

= 64, and |D
i

| = 2, though
many others are available online.3 Based on these results, we
make the following observation.

Obs. 5. When critical-section lengths are greater than
several microseconds and some parallelism is possible, the
C-RNLP has less total blocking than previous protocols.

This can be seen quite dramatically in Fig. 11, where both
the RNLP and C-RNLP substantially outperform the MCS
lock, with the C-RNLP (because of the greater parallelism it
a↵ords) besting the RNLP. Fig. 11 was chosen to highlight
the best-case scenario for the C-RNLP, i.e., the case in which
the most cutting ahead is possible. Obviously, for cases in
which there is little if any cutting ahead (e.g., the serial case
described previously), the C-RNLP has inferior total blocking
to the MCS lock as it results in the same request ordering, but
with higher overheads. Additionally, in the graphs available
online, there exist cases in which the overhead of the C-RNLP
results in higher total blocking than the other protocols.

6. CONCLUSION
We have presented two variants of the C-RNLP, the first

multiprocessor real-time locking protocol to be contention
sensitive. The C-RNLP uses novel techniques, which incorpo-
rate knowledge of critical-section lengths, that enable requests
to be ordered in a way that breaks long transitive-blocking
chains. These techniques increase lock and unlock overheads.
However, the experimental results presented herein suggest
that these overheads may be worth incurring in some use
cases.
Due to space constraints, we have limited our attention

to spin-based variants of the C-RNLP in this paper. In a
future expanded version of the paper, we will fully present
C-RNLP variants corresponding to all RNLP variants and
show that worst-case pi-blocking for each C-RNLP variant is
asymptotically optimal when lock contention is considered.
To complement the measurement-based study presented

herein, we plan in future work to examine overhead/parallel-
ism tradeo↵s in the context of a full overhead-aware schedu-
lability study that considers several coarse- and fine-grained
locking protocols. Such a study will require implementations

3http://www.cs.unc.edu/˜anderson/papers.html

of all C-RNLP variants. While the spin-based implementa-
tion presented herein entails only user-level code, suspension-
based variants require kernel-level implementations. For all
variants, we intend to consider the possibility of using a “lock
server” as an option to reduce overheads. The idea here is to
bind such a server to one processor and have tasks acquire
and release resources by invoking the server. Such a server
would tend to run “cache hot,” which might significantly re-
duce overheads. We also intend to more fully investigate the
potential of using renaming algorithms (see Sec. 4), as well
as other techniques that might reduce overheads or increase
flexibility.
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