
SINk: A Middleware for Synchronization of Heterogeneous
Software Interfaces

Mohammad Hosseini*, Yu Jiang*, Poliang Wu*, Richard B. Berlin Jr.*†, Lui Sha*

*Department of Computer Science †Department of Surgery
University of Illinois at Urbana-Champaign (UIUC) Carle Foundation Hospital

{shossen2, jy1989, wu87, rberlin, rberlin, lrs}@illinois.edu

ABSTRACT
Software is everywhere. The increasing requirement of sup-
porting a wide variety of domains has rapidly increased the
complexity of software systems, making them hard to main-
tain and the training process harder for end-users, which in
turn ultimately demanded the development of user-friendly
application software with simple interfaces that makes them
easy, especially for non-professional personnel, to employ,
and interact with.

However, due to the lack of source code access for third-
party software and the lack of non-graphical interfaces such
as web-services or RMI (Remote Method Invocation) access
to application functionality, synchronization between het-
erogeneous closed-box software interfaces and a user-friendly
version of those interfaces has become a major challenge.
In this paper, we design SINk1, a middleware that enables
synchronization of multiple heterogeneous software applica-
tions, using only graphical interface, without the need for
source code access or access to the entire platform’s con-
trol. SINk helps with synchronization of closed-box industry
software, where in fact the only possible way of communi-
cation is through software interfaces. It leverages efficient
client sever architecture, socket based protocol, adaptation
to resolution changes, and parameter mapping mechanisms
to transfer control events to ensure the real-time require-
ments of synchronization among multiple interfaces are met.
Our proof-of-concept evaluation shows there is in fact poten-
tial usage of our middleware in a wide variety of domains.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical user interfaces (GUI)

General Terms
Design, Experimentation

1A demo illustrating how our middleware works in
practice is available at http://publish.illinois.edu/mdpnp-
architecture/?p=639

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ARM 2015, December 07-11, 2015, Vancouver, BC, Canada
Copyright 2015 ACM 978-1-4503-3733-5/15/12 ...$15.00
http://dx.doi.org/10.1145/2834965.2834967.

Figure 1: The SINk workflow. Multiple graphical in-
terfaces (right-side) are remotely synchronized with
a single interface (left).

1. INTRODUCTION
“Software is eating the world!” [9]. Our dependency on

software is continuously increasing, and it is said that 60-
90% of production in the automotive domain for example,
is done by software systems [21]. Many products and in-
dustrial services that would have traditionally been realized
through “hardware”, are now realized purely via “software
solutions”. Overall, one way or another, human-in-the-loop
software systems in various domains are getting more and
more complex, as they operate within a complex ecosys-
tem of libraries, models, protocols and devices, and require
human interaction [21]. The interfaces of many platform-
dependent software, such as industrial controller simulators
(e.g. Mitsubishi PLC x7 [20]) and healthcare systems (e.g.
Laerdal’s SimMan Patient Simulator [6]) for example, are
sometimes hard to manage and lack user-friendliness. There-
fore, third-parties are pushed to develop simple-to-use, and
more user-friendly and maneuverable interfaces for those ap-
plications, which in fact motivates the need for co-simulation
among different interfaces. While the graphical user inter-
faces are easy to develop, there has been a significant de-
mand on interface-to-interface synchronization of heteroge-
neous software interfaces.

Unfortunately, existing tools such as those spanning from
remote desktop applications and desktop sharing to collab-
orative software applications lack support of interface syn-
chronization, and only provide access to applications simply
through desktop screen sharing and manual control by users.

In this paper, we describe SINk, a middleware that en-
ables interface-to-interface synchronization and automatic

ar
X

iv
:1

51
0.

05
60

6v
1

 [
cs

.S
E

]
 1

9
O

ct
 2

01
5

http://publish.illinois.edu/mdpnp-architecture/?p=639
http://publish.illinois.edu/mdpnp-architecture/?p=639

remote control of heterogeneous graphical interfaces. The
design of this middleware is mainly motivated by connecting
and synchronizing heterogeneous applications with homoge-
neous functionality, but different graphical interfaces, over
a network or the Internet, as presented in Figure 1. Once
the interfaces are connected through the established client-
server connection, our middleware allows users to automat-
ically synchronize multiple applications, remotely, without
physical access or visual view of the remote desktops, as if
they were sitting right in front of the remote applications. In
this manner, we enable the user to control any remote appli-
cations and automatically perform actions such as opening
and closing windows and tabs, pushing buttons, applying
keystrokes, and updating strings, values, and checkboxes,
using only their graphical interfaces and without causing
mismatches between them. SINk is adaptive in the sense
that it can accommodate varying platform features such as
changes in display screen resolutions, as it can dynamically
adapt itself to locate pixel values relative to any resolution.
Moreover, SINk’s automated mechanisms achieved through
interface-only control incurs a high degree of flexibility, and
can effectively adapt to ecosystem changes when reconfigura-
tion of application rapidly occurs. That leads to significant
reduction in heterogeneous software maintenance costs.

Technically speaking, the SINk middleware leverages effi-
cient architecture, protocol, and parameter mapping mech-
anisms to transfer control events, while at the same time
ensuring consistency, bandwidth saving, platform indepen-
dence and the fulfillment of real-time requirements for syn-
chronization. In summary, SINk

• automatically performs remote control as opposed to
manual control by users,

• does not require visual view of remote desktop, thus
providing significant bandwidth savings,

• does not require source code or non-graphical inter-
faces (such as web services or RMI) access to remote
applications,

• performs synchronization in real-time,

• is platform independent.

To the best of our knowledge, no single middleware currently
exists that achieves synchronization among heterogeneous
applications in a coherent way. Moreover, SINk can fur-
ther assist software engineers to build a single user-friendly
interface as a general application interface for front-end in-
teraction, or to realize co-simulation among multiple hetero-
geneous graphical interfaces.

2. RELATED WORK
SINk is conceptually similar to the notion of mediators

underlying emergent connectors [16, 17, 11] such as Enter-
prise Service Bus [10] as the concept of a “connectivity mid-
dleware” is common between the two. However, SINk is
fundamentally different as the design goal of mediators is to
enable the composition of pervasive networked systems, pro-
tocol mediation, and interoperability in distributed systems
as opposed to remote interface-based synchronization. The
most related tools to SINk are remote desktop and desktop
sharing software, which allow a personal computer’s desk-
top environment to be run remotely on one system, while
being displayed on a separate client device. Microsoft’s Re-
mote Desktop Connection [5], Apple Remote Desktop [1],

and Chrome Remote Desktop [3] for example, allow users
to remotely connect to a computer from another computer,
therefore providing access to programs and files by visu-
ally controlling the keyboard and mouse and relaying the
graphical screen over a network. Similarly, desktop sharing
applications and collaborative software such as Microsoft’s
Lync [4] and TeamViewer [7] provide desktop access to a
remote machine running the same software, helping users
to remotely control and share a desktop, with the addi-
tional option of video conferencing services. However, not
only are these applications manual and user-controlled, but
the remote desktop software and desktop sharing applica-
tions also act in a computer-to-computer manner and have
computer-wide access. This is not easily applied to the syn-
chronization among platform dependent applications, such
as flight control and autopilot systems in drones [12], auto-
matic remotely-controlled construction machinery in smart-
grids [22], and co-simulation of heterogeneous production
and ERP software in the automotive industry [8].

In SINk , on the contrary, the notion of access is plat-
form independent and lightweight because it is application-
to-application or interface-to-interface. Furthermore, con-
trol and input parameters are directed automatically into the
remote graphical application interfaces residing on the re-
mote computers, thus synchronizing multiple interfaces and
allowing users to need only control a single interface. In
addition, SINk eliminates the unnecessary need to visually
share the desktop views, hence allowing for significant band-
width savings by avoiding the real-time encoding and trans-
fer of desktop views, especially crucial for power-limited mo-
bile devices [13, 15]. Moreover, remote users have no ability
to modify the shared content and resources whatsoever, and
are only passively controlling remote interfaces.

3. DESIGN OF THE MIDDLEWARE
SINk is implemented through a mapping system as well as

a communication system accomplished through a client/server
architecture. The client is installed on the local computer
running the local application and then connects to the server
component, which is installed on the remote computer. Dur-
ing SINk sessions, all corresponding keystrokes and mouse
clicks are registered as if the users were actually sitting in
front of the remote computers and performing tasks on the
remote interfaces. We implemented SINk in Java that can
be deployed on any platform running Java Virtual Machine
(JVM), including Linux and Windows. Therefore, JVM is
a base requirement, making the compiled code platform-
independent. We have designed a list of APIs for the users,
such as performing a remote connection, specifying control
attributes, and transferring parameter values.

3.1 Middleware Structure
SINk consists of three major components: a local agent

(control client) residing on the local machine, a mapping
module, and a remote agent (control server) residing on
each remote machine, as illustrated in Figure 2. The lo-
cal agent communicates with the remote agents through a
secure persistent message exchange communication system.
Users’ control inputs are received by the local agent, en-
coded to a specific message format, and are then directed to
the mapping module.

The mapping module is pre-configured with interface con-
trol attributes to provide a particular set of interface func-

Local Agent (Client)

User Input Commands

Control Queries

Encoding

Encryption

Buffer Manager

Networking- Send

Message Serializations

Networking- Receive

Buffer Manager

Deserializer

Decryption

Graphical Interface

Mapping Module

Persistent

Connection

Remote Agent (Server)

Control Attributes

Control Attributes

Figure 2: The overall structure of SINk.

Figure 3: An example mapping module.

tions on each of the remote interfaces. This happens by
performing transformation of local control inputs on the
local platform to remote interface control attributes corre-
sponding to the remote graphical interfaces on the remote
platform, thereby allowing remote synchronization with each
remote interface. This is similar to a remote desktop con-
nection, but it happens automatically and with no need
for sharing the desktop view or visual control with users.
The output data originating from the mapping module con-
sists of control attributes, which are then encrypted with
the AES 128-bit symmetric cipher in electronic codebook
(ECB) mode, buffered, serialized, and then transferred to
the remote agent via the persistent socket connection. While
placement of the mapping module as a centralized module on
the local machine is more convenient for updates, auditing,
and security reasons, it is not yet a hard requirement. The
module can be placed separately on each individual remote
machine alternatively.

The control messages are deserialized and decrypted once
received at the remote agent. Remote synchronization be-
tween the local interface and remote interfaces is performed
via interface control functions in accordance with the con-
trol attributes received through the communication channel.
Although currently synchronization is only one-way (from

local to the remote interfaces), without loss of generality,
SINk can be reconfigured so that changes and results on re-
mote interfaces be synchronized back and displayed on the
local interface for any possible adaptation purposes.

3.2 Customized Client-Sever Architecture
From an engineering point of view, unlike a regular client-

server connection such as those in chat systems with the
client looping to read the responses, our middleware tool
must also support sporadic message transfer but with no
connection termination. However, it also needs to maintain
a live and permanent connection after each transfer in order
to incur minimum latency.

To address the requirement above, we customized a low-
overhead persistent client-server connection over TCP/IP
throughout the running session rather than setting up a new
connection for each transfer. This maintains the stability
of the socket connections by initially creating a connection
at the beginning of each session, and occasionally sending
a message given the system’s input. To enable that, we
wrapped the client socket connection around a thread, and
use a blocking queue to wait for messages. A single sender
queue exists throughout the application, therefore using a
singleton pattern. On the other side, performing a read()

function causes the thread to block forever. To address that,
we use a special type of thread that calls a specific method
repetitively at specified periods and read time-out that can
be used to post a message, a ping message, every so often,
which improves the stability of connections while also relax-
ing problems associated with closing the applications due to
calling the close() function.

3.3 Data Structures and Rules for Mapping
The mapping module works on the principle of key-value

store and hashing, composed of a combination of hash-map
and 2-dimensional linked-list data structures, which is used
to simulate user interaction and control the graphical inter-
faces pre-configured with mouse and keyboard events. To
store key-value pairs, we used the first dimension of the 2D
linked-list as a bucket to store key objects corresponding to

encoded user inputs, while the second dimension is used to
store values, corresponding to an ordered list of interface
control attributes such as necessary mouse clicks and key
presses that must be executed on the remote interfaces to
perform identical actions. Similar to a regular HashMap,
the mapping module’s get(Key k) method calls hashCode
method on the key inputs, and applies returned hashValue to
its own static hash function to find a bucket location where
keys and values are stored. Figure 3 shows an overview of
an example mapping module. For example, the first entry of
the map as shown in Figure 3, executes the following chain
of events:

1. Move the mouse pointer to a specific 2D coordinate
on the display screen (given x and y coordinates as
the horizontal and vertical addresses of any pixel, re-
spectively),

2. Perform a mouse click event on current pointer (we
implemented click event as a combination of mouse left
button’s press and release events, with an intermediate
delay of 200 ms),

3. Enter a specific value or number in the current po-
sition. This requires it to iteratively press multiple
specific keys on the keyboard, and

4. Press the “Enter” key on the keyboard.

Figure 4: Interface
control process for
an example horizontal
slider bar.

Our implementation of the
mapping module imposes a
one-time overhead, and it
can be reusable. Therefore,
if the application’s user in-
terface changes considerably,
only the mapping module is
updated, incurring minimum
cost so the automation does
not need to be rewritten.

The graphical interface
control attributes are im-
plemented as a series of
sequential mouse and key-
board events. While many
of the graphical user inter-
face components are elemen-
tary actions and are straight-
forward to control through
events originating from multiple registered mice and key-
boards, such as moving the mouse pointer to a specific coor-
dinate location, clicking, pressing a key or entering a value,
interesting challenges exist when controlling or adjusting
some interface components such as scroll bars and slider
bars. Let’s take a horizontal slider bar for example. To
control a slider bar to set a new value, use of a mouse drag
event is infeasible as the initial position of the slider knob
is unknown for the mouse pointer to hover on. While the
current position of the slider knob is not known, the coordi-
nates of minimum or maximum value endpoints are known
on the horizontal bar. The design trick to address this chal-
lenging issue is to first move the mouse pointer to the coor-
dinate corresponding to either endpoint, and then perform
mouse clicks multiple times to push the slider pointer on the
track towards the specific endpoint (the maximum number

of mouse clicks is deterministic- in our experiments the num-
ber was four). Once the mouse pointer is on the slider knob,
a mouse drag event is then performed to move the knob
to the desired pre-determined position corresponding to the
desired control value. Figure 4 (top to bottom) visually illus-
trates the control process. Although graphical component
functions and views are subject to operating system, design
language and layout variants, mouse and keyboard events
can be registered for our control mapping purposes without
loss of generality.

4. EVALUATION
We have evaluated and tested SINk rigorously over our

industrial case study conducted in collaboration with Carle
Foundation Hospital [2], on a real platform where 138 syn-
chronization requirements were specified to synchronize two
medical simulator software products. The requirements were
inspected multiple times with developers, researchers, and
physicians to ensure that specific functional requirements
are satisfied.

The evaluation platform is presented in Figure 5, with the
closed-box simulator software as the remote interface on the
bottom, and the local interface illustrated on the top. The
closed-box software is SimMan’s [6] advanced patient sim-
ulator shipped with a laptop running Windows XP, which
controls a SimMan medical manikin used for basic and ad-
vanced life Support skill assessment. The SimMan’s sim-
ulator software allows observation, recognition, and mod-
ification of most vital signs which are used in emergency
medicine, fed directly to the manikin itself as well as a pa-
tient monitor. The local interface likewise, is a patient sim-
ulator locally developed for nurses and physicians as a part
of a best practice medical system to perform the most rel-
evant medical interventions according to the medical guide-
lines and protocols. The local patient simulator features a
simple, user-friendly, and easily-operated graphical interface
with straightforward and uncomplicated control functions to
help nurses and physicians avoid complications of using the
SimMan’s patient simulator. As an example, the local inter-
face incurs a single step including 10 parameters to modify
the running heart rhythm, whereas the SimMan’s patient
simulator involves 9 steps, requiring the user to audit 57
different parameters. With SINk, the input values are only
controlled through a single user-friendly interface, and are
automatically synchronized with those corresponding to the
SimMan’s simulator, thereby relieving the users from con-
fusing complications and removing the need to double-enter
the input values on a second interface. All 138 synchroniza-
tion requirements are accomplished correctly.

Apart from the case study and the important benefits re-
sulting from using SINk, our middleware was specially re-
garded for its automation role. Prior to applying our mid-
dleware, a technician was hired to replicate, and manually
perform the control functions on the SimMan’s simulator
as a way to synchronize the user-friendly patient simulator
with the SimMan’s simulator. Thenceforth, automatic syn-
chronization was achieved, removing the human from the
loop. Overall, we have received positive feedback from the
experts using the middleware. The qualitative feedback we
have received is promising, suggesting the middleware might
be applicable to large sets of requirements and extended to
domains such as co-simulation of heterogeneous production
and ERP software in the automotive industry [8].

Figure 5: Real platform testing (Middle). Local interface (Top). Remote closed-box application (Bottom).

5. CONCLUSION AND FUTURE WORK
In this paper, we presented SINk, an adaptive middleware

tool that performs interface synchronization automatically,
remotely, and without physical access or visual view of re-
mote interfaces, as if users were sitting right in front of the
remote software. We tested and evaluated SINk on a real
platform, and showed that apart from daily personal appli-
cations, there are in fact many potential uses of our middle-
ware in industry services that can not be realized by other
means.

We are currently working on an interface attribute recorder
that can capture and log interface control inputs on local
interfaces and be fed directly into the mapping module, to
strengthen the automation and the scalability of the middle-
ware. We can also exploit image segmentation and energy-
efficient texture recognition techniques to learn type and po-
sition of graphical components on software interfaces, espe-
cially when aimed at interfaces on power-constrained mobile
devices [19, 18, 14]. In the future, we also plan to systemat-
ically evaluate SINk using quantitative metrics.

6. ACKNOWLEDGMENTS
This research is funded in part by NSF CNS 13-29886 and

in part by Navy N00014-12-1-0046.

7. REFERENCES
[1] Apple - remote desktop.

www.apple.com/remotedesktop.

[2] Carle Foundation Hospital. http://www.carle.org.

[3] Chrome remote desktop - chrome web store - google.
https://chrome.google.com/webstore/detail/chrome-
remote-desktop.

[4] Lync - microsoft office (currently known as skype for
business. http://products.office.com/en-us/skype-for-
business/online-meetings.

[5] Remote desktop connection - microsoft windows.
http://windows.microsoft.com.

[6] Simman patient simulator, laerdal medical.
http://www.laerdal.com/doc/86/SimMan.

[7] Teamviewer: remote control, remote access, & online
meeting. http://www.teamviewer.com.

[8] Must-have erp features for the automotive industry.
Plex Systems, Manufacturing Business Technology,
2014.
http://www.mbtmag.com/articles/2014/01/must-
have-erp-features-automotive-industry.

[9] M. Andreessen. Why software is eating the world.
Wall Street Journal, vol 20, August 2011.

[10] D. Georgakopoulos and M. P. Papazoglou. Enterprise
service bus. In Service-Oriented Computing, pages
1–28. MIT Press, 1 edition, November 2008.

[11] J. Green, P. Protocol conversion. Communications,
IEEE Transactions on, 34(3):257–268, Mar 1986.

[12] S. Helton. Fukushima daiichi workers clear debris by
remote control. 21st Century Wire, August 2014.
http://21stcenturywire.com/2014/08/07/flight-
control-boeings-uninterruptible-autopilot-system-
drones-remote-hijacking.

[13] M. Hosseini, D. T. Ahmed, and S. Shirmohammadi.
Adaptive 3D texture streaming in M3G-based mobile

games. In Proceedings of the 3rd ACM Multimedia
Systems Conference, MMSys ’12, 2012.

[14] M. Hosseini, A. Fedorova, J. Peters, and
S. Shirmohammadi. Energy-aware adaptations in
mobile 3d graphics. In Proceedings of the 20th ACM
International Conference on Multimedia, MM ’12,
2012.

[15] M. Hosseini, J. Peters, and S. Shirmohammadi.
Energy-budget-compliant adaptive 3D texture
streaming in mobile games. In Proceedings of the 4th
ACM Multimedia Systems Conference, MMSys ’13,
2013.

[16] V. Issarny, A. Bennaceur, and Y.-D. Bromberg.
Middleware-layer connector synthesis: Beyond state of
the art in middleware interoperability. In M. Bernardo
and V. Issarny, editors, Formal Methods for Eternal
Networked Software Systems, volume 6659 of Lecture
Notes in Computer Science, pages 217–255. Springer
Berlin Heidelberg, 2011.

[17] V. Issarny, B. Steffen, B. Jonsson, G. Blair, P. Grace,
M. Kwiatkowska, R. Calinescu, P. Inverardi,
M. Tivoli, A. Bertolino, and A. Sabetta. Connect
challenges: Towards emergent connectors for eternal
networked systems. In Engineering of Complex
Computer Systems, 2009 14th IEEE International
Conference on, pages 154–161, June 2009.

[18] S. Minaee, M. Fotouhi, and B. H. Khalaj. A geometric
approach for fully automatic chromosome
segmentation. CoRR, abs/1112.4164, 2011.

[19] S. Minaee and Y. Wang. Screen content image
segmentation using least absolute deviation fitting.
CoRR, abs/1501.03755, 2015.

[20] C. M. Park, S. M. Bajimaya, S. C. Park, G. N. Wang,
J. G. Kwak, K. H. Han, and M. Chang. Development
of virtual simulator for visual validation of plc
program. In Computational Intelligence for Modelling,
Control and Automation, 2006 and International
Conference on Intelligent Agents, Web Technologies
and Internet Commerce, International Conference on,
pages 32–32. IEEE, 2006.

[21] A. Trendowicz. Why software effort estimation? In
Software Cost Estimation, Benchmarking, and Risk
Assessment, The Fraunhofer IESE Series on Software
and Systems Engineering, pages 3–7. Springer Berlin
Heidelberg, 2013.

[22] M. Williams. Fukushima daiichi workers clear debris
by remote control. Computer World, April 2011.
http://www.computerworld.com/article/2507273/computer-
hardware/fukushima-daiichi-workers-clear-debris-by-
remote-control.html.

	1 Introduction
	2 Related Work
	3 Design of the Middleware
	3.1 Middleware Structure
	3.2 Customized Client-Sever Architecture
	3.3 Data Structures and Rules for Mapping

	4 Evaluation
	5 Conclusion and Future Work
	6 Acknowledgments
	7 References

