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ABSTRACT
Performance-analysis tools are indispensable for understand-
ing and optimizing the behavior of parallel programs run-
ning on increasingly powerful supercomputers. However,
with size and complexity of hardware and software on the
rise, performance data sets are becoming so voluminous that
their analysis poses serious challenges. In particular, the
search space that must be traversed and the number of indi-
vidual performance views that must be explored to identify
phenomena of interest becomes too large. To mitigate this
problem, we use visual analytics. Specifically, we accelerate
the analysis of performance profiles by automatically iden-
tifying (1) relevant and (2) similar data subsets and their
performance views. We focus on views of the virtual-process
topology, showing that their relevance can be well captured
with visual-quality metrics and that they can be further as-
signed to topical groups according to their visual features.
A case study demonstrates that our approach helps reduce
the search space by up to 80%.

1. INTRODUCTION
The basis of viable parallel-performance optimizations is

the analysis of parallel-performance data, which can reveal
inefficient program behavior. The performance of parallel
applications is often far away from the machine’s peak per-
formance. This is often due to inefficiencies such as wait-
states caused by load and communication imbalances [1].
The detection of such inefficiencies is facilitated by per-
formance tools that are collecting performance-critical data

during the program run. This data can be used by appli-
cation developers to gain insight into the behavior of their
program and thus to get crucial hints for its potential opti-
mization.

However, with hard- and software complexity on the rise,
performance data is becoming so data intensive that its anal-
ysis poses serious challenges [2]. Performance data com-
prises numerous performance metrics, sometimes a hundred
or more, as well as their distribution across the program, the
runtime, or various system resources. The metrics combined
with all the entities of program and system location span a
very large search space. Increasing program complexity and
scale let the amount of performance data grow even further.
Consequently, the time and knowledge needed for the proper
evaluation of the data is increasing drastically.

One approach to mitigate the exploration efforts is to use
visual representations of performance data for developing an
understanding of the application behavior. While many vi-
sualization techniques that turn performance data into per-
formance views have been developed in the last years [3],
the number of individual performance views for large and
complex performance data becomes overwhelming. Often, a
user can choose among thousands of different performance
views—too many to find relevant and similar ones without
the right intuition or guidance.

Therefore, we propose to simplify the analysis of parallel-
performance data with visual analytics. Visual analytics de-
scribes an integral approach combining visualization, data
analysis and human interaction [4, 5, 6]. Because neither
visualization nor data analysis alone is sufficient for explor-
ing large and complex data, visual analytics combines both
techniques for creating fast and valuable insights.

The vision that we follow is that performance analysts
do not need to inspect thousands of performance views, but
only a small list of performance phenomena. This would sig-
nificantly reduce the time for performance analysis, so that
application developers could again concentrate on develop-
ing their applications. The steps that need to be taken in the
direction of this vision are a reduction of the performance
data to its relevant parts, an identification of similar parts,
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an assignment of resulting similarity groups to performance
phenomena and a technique for presenting these phenom-
ena to the analyst. In this paper, we take the first steps
and describe an approach for the automatic identification of
relevant and similar performance data. The contributions of
this paper are:

• Presentation of an approach for a performance-data
search-space reduction using visual analytics.

• Presentation of concepts and selection of methods for
the automatic identification of (1) relevant, and (2)
similar performance data based on visual quality and
visual features.

• Application to the Sweep3D performance data set, de-
monstrating the approach’s benefits by a search-space
reduction of 80%.

The remainder of this paper is structured as follows: Sec-
tion 2 describes related work and the background of parallel-
performance data that we use in this paper for demonstrat-
ing our approach. Section 3 describes the challenges for
defining a visual analytics driven analysis workflow. Built
on this, Section 4 describes our approach for a search-space
reduction with visual analytics. Section 5 then demonstrates
the functionality of our approach by presenting results from
a prototypical implementation. Section 6 discusses future
work for visual analytics of parallel-performance data. Fi-
nally, Section 7 concludes this paper.

2. BACKGROUND AND RELATED WORK
In this section we describe related work and the back-

ground needed for this paper. We first describe the perfor-
mance data model and the kind of performance views that
we use to demonstrate our approach. Then we describe ap-
proaches for automatically identifying relevant and similar
parts of performance data.

2.1 Performance Data Model
Performance data can be categorized with respect to the

granularity into traces and profiles [7]. Traces provide fine-
grained data through the collection of individual runtime
events, whereas profiles provide coarse-grained data through
aggregated performance metrics for every function call path
and every system location. In this paper, we focus on per-
formance profiles.

The Scalasca performance toolset [7] was designed with
the idea of prescreening voluminous runtime-event traces to
find execution patterns and aggregate the search results into
much more compact profiles [8]. These profiles can be ana-
lyzed using Cube [9], a browser to explore performance met-
rics along the function call tree and the system resources.
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Figure 1: The
Cube performance-
data model.

The underlying Cube perfor-
mance-data model is essentially a
mapping of (m, c, s)-tuples onto a
performance value p, i.e.,

p : M × C × S → R,

where m ∈ M denotes the perfor-
mance metric, c ∈ C the call path
and s ∈ S the system location [8].

As illustrated in Figure 1, the
data can be logically represented as
a three-dimensional matrix, from

Figure 2: The Cube performance-data browser. The browser
visualizes the data in three panes: the metric pane (left), the
call path pane (middle), and the system pane (right). Here, the
system pane shows the virtual-topology view.

which the name Cube is derived. All three dimensions are
organized hierarchically: the performance metrics in a spe-
cialization hierarchy with subset semantics (e.g., communi-
cation time is a subset of execution time); the call paths in
the call-tree hierarchy; and the locations in a relatively rigid
machine hierarchy with the levels machine, node, process,
and thread.

Cube performance data can be explored in the Cube per-
formance-data browser. As shown in Figure 2, the browser
provides three panes: the metric pane, the call-path pane
and the system pane. Each of these panes visualizes its
entities by default in a tree hierarchy. In the most common
usage scenario, the user first chooses a metric in the left pane
to see its distribution across the call tree in the middle pane
and then selects a call path for which the chosen metric
exhibits a high value. The distribution across the system
resources for this particular metric call-path combination is
then displayed in the right pane. In this paper, we denote
the data for a metric call-path combination as a data subset.

2.2 Performance Views
Each data subset can be visualized and results in an indi-

vidual performance view. A specific kind of a performance
view is the virtual-topology view, which describes a mapping
of process ranks onto multi-dimensional coordinates, repre-
senting the position of the process in the simulated domain.
As shown in Figure 2, for Cube performance profiles, the
spatial distribution of performance values along the system
dimension can be visualized with virtual-topology views [13].

The effectiveness of visualizing performance data on in-
tuitive domains, such as virtual-topologies views, is subject
of current research. Schulz et al. showed that interpreting
performance data across hardware, application and commu-
nication domains can give valuable insights into the behav-
ior of parallel programs [10]. Spear et al. presented an
approach to creating performance visualizations in a paral-
lel profile analysis tool [11]. Huck et al. also presented an
approach for linking performance data into scientific visual-
ization tools [12].

Although such performance views are well suited for giv-
ing insight into the program behavior, they are often too nu-
merous to be explored manually. In this paper, we therefore
prescreen the performance views and automatically analyze
them for relevance and similarity.



2.3 Identifying Relevant and Similar
Performance Data

Current performance analysis tools can identify relevant
and similar parts of performance profiles with techniques
from data analysis, such as data mining.

In Cube, the relevance of a performance data subset is
currently equated with the intensity of its performance met-
rics. The metric values are visualized in the tree hierarchies
with color coded markers (see Figure 2) summarizing the
intensity of a given metric for a whole data subset [8]. In
the default color encoding, cold colors indicate low values
and warm colors indicate high values.

PerfExplorer is a framework for performance-profile data
mining [14]. This framework was developed together with
the profile visualization tool ParaProf [15], which is used in
the TAU performance system [16]. PerfExplorer uses statis-
tical analysis packages, such as R or Octave, for performing
cluster or correlation analysis. Cluster analysis is used for
finding groups of processes that exhibit similar performance
metrics. Correlation analysis is used for determining the
relationship between different performance metrics.

However, additional contextual information from the visu-
alizations of performance data (i.e., from performance views)
has not yet been taken into account for automatically iden-
tifying relevant and similar performance data. In this paper,
we therefore fill this gap and use an integral visual-analytics
approach for parallel-performance data.

3. CHALLENGES IN EXPLORING
PERFORMANCE DATA

Parallel-performance analysis often entails large and com-
plex performance data. In this section we describe typi-
cal challenges in exploring performance data that need to
be considered for defining a visual-analytics driven analysis
workflow.

3.1 Exploring Large Search Spaces
Table 1 shows the sizes of performance-data search spaces

from three applications examples (namely Sweep3D [17, 18],
CICE [19, 20] and PFLOTRAN [21, 22]). Taking into ac-
count the number of the performance metrics, call paths and
system resources together with its tree structures and in- and
exclusive entities, the number of available data items is in
the order of a billion. Even the metrics and call paths span
a search space that already consists of thousands of individ-
ual data subsets resulting in thousands of individual perfor-
mance views. The exploration of such large performance-
data sets takes a significant amount of time and often is
infeasible. To mitigate this problem, we prescreen the per-
formance data and automatically identify those data subsets
and views that are relevant for the understanding for per-
formance phenomena.

In the following, we demonstrate our approach by using a
performance data set from Sweep3D. Sweep3D is an ASCI
benchmark code, solving a time-independent discrete ordi-
nates 3D Cartesian geometry neutron transport problem [17,
23]. For the parallelization, the originally 3D computational
domain is mapped onto a 2D virtual topology. The perfor-
mance data set used is a profile created through an event-
trace analysis with Scalasca [18]. The experiment was con-
ducted with 294,912 MPI processes on an IBM Blue Gene/P
system at the Jülich Supercomputing Centre.

Data set |M | |C| |S| |M × C| |M × C| �=0

Sweep3D 95 41 294,912 8,694 846
CICE 110 54 2,634 11,826 844
PFLOTRAN 97 1533 16,384 356,580 33,330

Table 1: Sizes of performance-data sets and their search spaces.
For each performance measurement the number of available per-
formance metrics |M |, call paths |C|, and used system resources
(processes) |S| is given. Taking into account their tree struc-
tures with in- and exclusive entities, the resulting number of
data subsets, that is possible metric call-path combinations, is
|M × C|. The number of data subsets with non-zero values is
given as |M × C| �=0.

3.2 Selecting Data or View Space
Performance data can be explored in the data space or in

the view space. The data space describes the space of raw
data, whereas the view space describes the space of views
that result from mapping the raw data onto topologies, i.e.,
from visualizing the data [24]. An advantage of exploring
performance data in the data space is the aggregation of in-
formation into simple statistics. Examples are the tree hier-
archies in Cube [9] or the clustering in PerfExplorer [14]. An
advantage of exploring performance data in the view space is
the inclusion of contextual information. Examples are topol-
ogy views, such as performance data mapped onto hardware,
application or communication topologies as in [10], or onto
virtual topologies [13].

In this paper, we explore performance data in its view
space so that additional domain information is taken into
account. In particular, we prescreen virtual-topology views
and automatically identify those that are relevant and sim-
ilar.

3.3 Defining Relevance
Only a small part of the large performance-data search

space is relevant for performance analysis. Our understand-
ing of relevance is motivated by the approach that Scalasca’s
specific trace analysis follows: Load and communication im-
balances manifest themselves in wait states that prevent par-
allel applications from making full use of available comput-
ing resources [1]. The Scalasca performance toolset searches
for such wait states by measuring temporal displacements
between matching operations [7]. Therefore, relevant per-
formance data subsets are not necessarily the metrics or
call paths with the largest values, but those with a com-
bination of large and small values. We denote performance
data subsets or views as relevant when they reveal load and
communication imbalances between groups of processes. In
contrast to that, irrelevant data subsets show well-balanced
parallel behavior.

We found out that relevant performance views generally
exhibit a high visual quality, that means they contain visual
structures. Table 2 shows examples of performance views
and illustrates relevance and visual quality. The first col-
umn shows an example of an irrelevant performance view.
It reveals balanced parallel behavior in the form of a ho-
mogeneous view. The execution time in the call path in-

ner_auto is evenly distributed and only shows noise in the
virtual-topology view. The next four columns show relevant
performance views, revealing imbalances in the form of vi-
sual structures. For example, the inclusive time spent in
the call path MPI_Recv reveals imbalances between differ-



1. Relevance � � � �
2. Similarity

Lines � �
Edges � � �
Gradients � �

Table 2: Examples of performance views. The examples in this table show virtual-topology views from the Sweep3D performance-data
set. The first column shows an example for an irrelevant view and the remaining columns show examples for relevant views. The relevant
views can be further partitioned into similarity groups by considering three visual-feature classes: lines, edges (demarcating regions),
and gradients (smooth gradients). These five performance views are used as reference views for illustrating our approach.

ent groups of processes. These are exposed in the virtual-
topology view as visual structures, such as the edges from
the central overload region, the gradient of increasing time
from northwest to southeast, and the oblique lines radiating
from the overload region to the borders.

3.4 Finding Similarities
An analyst needs to examine and compare several data

subsets for finding links between performance metrics and
call paths for understanding performance inefficiencies. For
a particular phenomenon often the spatial distribution in the
performance view is characteristic. Therefore, we identify
similar performance-data based on similar visual structures
in their performance views.

We found out that the similarity of performance views can
be described based on three general visual-feature classes:
lines, edges and gradients. A line describes an abrupt dif-
ference of the color level in an image and is typically em-
bedded in a single homogeneous region. It can describe an
abrupt increase and following decrease of the color level, or
vice versa. An edge also describes an abrupt difference of
the color level in an image, but it demarcates two differ-
ent regions. It can describe either an abrupt increase of the
color level, or an abrupt decrease. A gradient, specifically a
smooth gradient, describes a gradually changing color level.
Table 2 shows how the relevant reference views are assigned
to these visual-feature classes. Since each view can reveal
not only a single performance phenomenon, but also a super-
position of phenomena, each view can be assigned to several
feature classes.

The visual-feature classes can indicate different kind of
performance inefficiencies. Lines indicate various kinds of
performance imbalances that can be due to the parallel al-
gorithm itself, the scheduling, or the mapping. Edges in-
dicate algorithm specific under- or overload regions. (It is
not the region that describes a performance inefficiency, but
the imbalance between different regions. Such an imbalance
can visually be described by the separation between the re-
gions, that is the edge demarcating them.) Smooth gradi-

ents indicate algorithm-specific waiting times in collective
operations.

Since the performance views that are assigned to the same
feature class can still be different from each other, these data
views can be further partitioned into similarity groups, each
representing a particular performance phenomenon. While
the feature classes are generic, the similarity groups are spe-
cific for each performance-data set.

4. REDUCING THE PERFORMANCE-DATA
SEARCH SPACE WITH VISUAL
ANALYTICS

We simplify the analysis of performance data with visual
analytics. According to the visual-analytics process, as de-
fined by Keim et al. [4], data can be turned into knowl-
edge through visualizations, data models, or an integration
of both. Visualization techniques can not only be applied to
raw data, but also to data models. The other way around,
automatic data analysis methods can not only be applied to
raw data, but also to visualizations (i.e., to views).

4.1 Automatic Analysis of Performance Views
We combine data analysis and visualization for identifying

relevant and similar performance views. We identify relevant
performance data by analyzing it in the view space, because
the performance views enhance the data with contextual in-
formation. In particular, we analyze the data subsets based
on their virtual-topology views.

As illustrated in Figure 3, we reduce the performance
data and view space through an automatic identification of
first the relevant, and second the similar data subsets, re-
spectively their views. For this purpose, we prescreen all
virtual-topology views. We process the views as matrices
of performance values linearly converted to grayscale. In
the first step of the search-space reduction, we automati-
cally identify the metric call-path combinations that lead to
potentially relevant performance views. In the second step,
we analyze the potentially relevant performance views for
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(c) Identified
similar subsets.

Figure 3: Steps of the performance-data search-space reduction.
We analyze performance data based on data subsets and their
performance views (3a). A data subset contains the performance
values along the system dimension for a metric call-path com-
bination and can be visualized in a virtual-topology view. The
search space of performance data subsets, or performance views,
can be reduced in two steps: First, the relevant performance views
are identified (3b). Second, the relevant performance views are
partitioned into similarity groups (3c).

similarity and partition them into similarity groups, each
representing a particular performance phenomenon.

The benefit of our approach—identifying relevant and sim-
ilar performance data and its views with visual analytics—is
a reduction of the data and view search space. In particu-
lar, it leads to both a faster and more comprehensive perfor-
mance analysis process. First, the analyst can concentrate
on the analysis of a small, relevant portion of the original
data. Since data subsets that are potentially relevant are
identified automatically, the analyst does not need to search
for them manually anymore. The information about the
relevant data subsets can either be used to distill a reduced
performance-data set or to guide the analyst during the anal-
ysis to the relevant views. Second, the analyst automatically
gets additional information about the performance data in
the form of similarity groups, each representing a particular
performance phenomenon. This way, the analyst not only
saves the time of finding the similarities manually, but also
gets additional insights in the parallel program’s behavior.
Such additional insights can be, for example, an overview of
all occurring performance phenomena, or information about
(hidden) dependencies between metrics and call paths.

4.2 Methods for Automatic Analysis
Based on our notion that relevant performance views are

characterized by high visual quality (as explained in Sec-
tion 3.3), they can be automatically identified with meth-
ods from visual-quality analysis. As surveyed by Bertini
et al. [24], visual-quality analysis uses automatic analysis
methods to evaluate the visual quality, that is the poten-
tial relevance, of given views. These methods apply quality
metrics—measures that assess the quality of views by ab-
stractly quantifying their information content. Their main
objective is to rank a group of views according to their po-
tential relevance. Quality metrics that can be used for eval-
uating performance views are metrics that are designed for
pixel-based visualization techniques, for example, the Noise-
Dissimilarity measure [25], or the entropy and standard devi-
ation that are used in the Pixnostics approach [26]. Whereas
the Noise-Dissimilarity evaluates the mappings based on their
dissimilarity to a noise function, Pixnostics evaluates them
based on entropy or standard deviation. Since the Noise-

Dissimilarity measure can filter various visual structures, we
prefer this measure for evaluating performance views.

Based on our notion that similar performance views are
characterized by similar visual structures (as explained in
Section 3.4), they can be automatically identified with meth-
ods from visual-feature detection. We first analyze the views
for the occurrence of visual features, and possibly assign
them to corresponding feature classes. For this, detection
methods from image processing [27] can be used. We fur-
ther partition the views that are assigned to a feature class
into similarity groups, each representing a particular perfor-
mance phenomenon. For this, we use methods from data
mining, specifically Gaussian kernel estimation [28].

5. RESULTS FROM PROTOTYPE
To demonstrate our approach for identifying relevant and

similar performance views using visual analytics, we show
results from our prototype. First, we show results from the
relevance estimation with the Noise-Dissimilarity method.
Second, we show results from the similarity identification
based on visual features.

5.1 Identifying Potentially Relevant Views
Before we analyze the performance views with the actual

analysis method, i.e., the Noise-Dissimilarity method, we fil-
ter out all views with performance value distribution that is
constantly zero. This preliminary step reduces the Sweep3D
performance data set, which initially provided 8,694 views
(see Table 1), to 846 views.

These views are then analyzed for relevance with the Noise-
Dissimilarity method [25]. It evaluates the visual quality of
an image based on a measure (the Noise-Dissimilarity mea-
sure NDM(g, g)) that quantifies the dissimilarity between
the original image (with its gray values g) and the corre-
sponding noise image (with its gray values g). The noise
image is created from the original image through a ran-
dom permutation of the pixel values. The larger the Noise-
Dissimilarity Measure NDM(g, g) of an image, the higher is
its potential relevance.

Table 3 illustrates how the Noise-Dissimilarity method
measures the potential relevance of performance views by
showing results for the Sweep3D reference views. Each row
illustrates the results for a single performance view con-
verted to a linear grayscale, which is shown in the first col-
umn. The second column shows corresponding noise images.
The dissimilarity images in the third column illustrate the
dissimilarity between the original image and the correspond-
ing noise image. The dissimilarity images reflect the visual
structures, which are characteristic for a relevant perfor-
mance view, of the original image. The automatic judgment
of the relevance, which is based on the quality metric and a
fixed relevance threshold, agrees with the manual judgment
for all five reference views.

From all views of the Sweep3D performance data set (pro-
cessed in peer-percent mode), the Noise-Dissimilarity method
identifies 225 views as potentially relevant. Taking into ac-
count all available views (i.e., 8,694 views, including the
views showing a performance value distribution that is con-
stantly zero, which we filtered out in a preliminary step) we
reduce the search space by 97%. Considering the 846 non-
zero views as the true search space, the Noise-Dissimilarity
method reduces the search space by 74%. Assuming that
the size of the view search space is proportional to the time



Noise Dissimilarity Quality Metric

Image g Noise g Δ(g, g) NDM(g, g) Rank Rel.

0.01 431

0.13 69 �

0.10 120 �

0.15 50 �

0.06 186 �
Table 3: Example results of the Noise-Dissimilarity method for
the Sweep3D performance data set. Each row shows intermediate
and final results for a single reference data subset. Intermediate
results are the image g, the noise image g, and the dissimilarity
image Δ(g, g). The quality metric NDM(g, g) approximates the
visual quality of the original image, respectively the potential rele-
vance of the performance data subset. The predicted rank is based
on the performance data set without zero views, which consists
of 846 data subsets. The lower the rank, the more relevant. For
dividing the performance views in relevant and irrelevant views,
we used a threshold of NDM(g, g)rel ≥ NDM(g, g)thresh = 0.04.

that is needed for the analysis of performance data set, even
our prototypical implementation of visual-quality analysis
can reduce this time significantly.

5.2 Grouping Views with Similar
Visual Structures

We analyze the performance views that have been identi-
fied as being relevant in a further step for similarities. Our
aim is to group views with similar visual structures.

For this, we proceed the following way: First, we analyze
all the potentially relevant views for visual structures. For
each of the defined feature classes (lines, edges, smooth gra-
dients) a separate detection method is used. We apply image
analysis techniques, such as a line-detection algorithm [27].
The methods analyze the occurrence of the respective fea-
ture in a performance view and possibly assign the view to
the respective feature class. Second, we analyze for each fea-
ture class the views assigned to it for similarities. For this,
we measure statistics for each view, such as the mean line
length, and group those views with similar statistics. For
the grouping we use kernel density estimation, in particular
Gaussian kernel estimation [28].

Table 4 illustrates the results of the similarity group iden-
tification for the performance views of the Sweep3D data set.
For this data set, we identify five similarity groups: Three
similarity groups in the line-feature class, one in the edge-
feature class, and one in the gradient-feature class. 20% of

the 846 performance views are assigned to any of the similar-
ity groups. This represents a search-space reduction of 80%.
Even better: we reduce the search space to only five sim-
ilarity groups, each representing a particular performance
phenomenon.

With respect to the similarity groups, the following per-
formance phenomena are detected: (1) The first similarity
group in the line-feature class, which is shown in 4% of the
performance views, exposes a visual structure consisting of
many short horizontal lines. This structure can be assigned
to the mapping of the processes to the hardware resources.
The processes that become visible as a group through a short
horizontal line are processes that are assigned to one node
board. The lines show that the work is not perfectly bal-
anced between the node boards and thus probably reveal a
mapping problem. (2) The second similarity group in the
line-feature class, which is shown in 4% of the performance
views, exposes a visual structure consisting of oblique lines
radiating from the interior to the border of the domain. As
described by Wylie et al. in a Sweep3D scaling study [18],
these oblique lines reveal a computational imbalance that
is due to so called “fixup iterations”, which apply correc-
tions to negative fluxes and are necessary for a physically
realistic solution. (3) The third similarity group in the line-
feature class, which is shown in 8% of the performance views,
exposes a visual structure consisting of long vertical lines.
These lines illustrate the systematic deviations in the execu-
tion time for a broadcast operation and is thus the effect of
a communication imbalance. (4) The one similarity group
in the edge-feature class, which is shown in 8% of the per-
formance views, exposes a visual structure consisting of a
central rectangle. The central rectangle reveals a load im-
balance and is, like the oblique lines of similarity group (2),
also the result of the“fixup iterations” [18]. (5) The one sim-
ilarity group in the gradient-feature class, which is shown
in 2% of the performance views, exposes a visual structure
consisting of a diagonal smooth gradient. This gradient il-
lustrates the difference in the processes’ waiting time, which
results from the subsequent sweeping wavefronts. While the
last wavefront is sweeping through the domain all other pro-
cesses have to wait until it is finished, resulting in a gradually
changing waiting time for the domain.

6. FUTURE WORK
While our prototype already demonstrated the usefulness

of using an integral visual-analytics approach for parallel-
performance data, we have identified four central research
directions that should be further explored in the future.

We demonstrated the benefits of using an integral visual-
analytics approach specifically for performance profiles. How-
ever, this approach, particularly the automatic identification
of relevant and similar performance views, can and should
also be used for other kinds and performance data and views.
For these the definition of relevance and similarity should
be adapted and methods from visual-quality analysis and
visual-feature detection should be selected accordingly.

Another important research question for future work is the
correlation between specific visual features and performace
phenomena; and possibly also physical phenomena. Our
vision is that performance analysts do not need to explore
thousands of performance views, but only a few groups, each
representing a particular performance phenomenon. Striv-
ing for such a significant simplification of the whole perfor-



Kernel estimate Group Struct. Ex.

0 50

0

20

40
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80

Mean line angle

1 2 3

L. 1 (4%)

L. 2 (4%)

L. 3 (8%)

0 200 400 600

0
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40

Mean edge length

1

E. 1 (8%)

0 100 200

0

10

20

Mean smooth gradient

1

G. 1 (2%)

ANY: 20%

Table 4: Results of the similarity group identification for the per-
formance views of the Sweep3D performance data set. The table
shows the similarity groups for each visual feature class. The first
row shows the results for the lines, the second for edges, and the
third for smooth gradients. The first column shows the Gaus-
sian kernel estimate for the corresponding visual feature—each
maximum represents a similarity group. The similarity groups
are illustrated in the remaining columns. The group percentages
gives the share of views assigned to the similarity group (with
respect to a search space of 846 views). In total, 20% of the
views are assigned to any group. The views on the right show
the visual structure representing the similarity group, as well as
a performance view example.

mance analysis process, the meaning of visual features in
the context of parallel performance—the connection of spe-
cific visual structures and their similarity groups to specific
performance phenomena and their root causes—should be
further investigated.

Future work should address the integration of the auto-
matic analysis and its results in the graphical user inter-
face of the performance-data explorer. This should include
visual guidance to the relevant performance views and an
overview of the similarity groups of occurring performance
phenomena. Analytic workflows that follow the Overview-
and-Detail Mantra [29] could be used for representing gen-
eral relationships among the performance metrics, program
and system locations, or combinations thereof. However, the
depiction of representatives for the found groups, as well as
the visualization of the inter-group relationships, is challeng-
ing in itself and might influence the analytic workflow. Es-
pecially promising is also the coupling of data analysis and

visualization through human-computer interaction: Inter-
active relevance-thresholds allow a filtering of performance
data until the desired level is reached.

Another interesting research question could be the auto-
matic identification of relevant low-dimensional projections
for high-dimensional topologies.

7. CONCLUSION
Performance analysis is essential for the optimization of

parallel programs. However, the data to be analyzed often
confronts the analyst with a very large search-space consist-
ing of thousands of individual data subsets and views.

In this paper, we proposed to simplify the performance
analysis of parallel programs by means of visual analyt-
ics, and presented an approach for a search-space reduction
through an automatic identification of relevant and similar
performance views. The benefit of our approach is a reduc-
tion of the data and view search space. In particular, it
leads to both a faster and more comprehensive performance
analysis process.

We presented an approach for the search-space reduction
of profile-based performance data using visual analytics con-
sisting of the two steps (1) identification of relevant perfor-
mance views and (2) identification of similar performance
views. We showed that the potential relevance of perfor-
mance views can be estimated with methods from visual-
quality analysis, such as the Noise-Dissimilarity method.
Since similar performance views show similar visual struc-
tures in their virtual-topology views, we identified them with
visual-feature detection. We demonstrated that topology-
views can be classified according to the visual features lines,
edges and smooth gradients, and that the views assigned to
each feature class can be partitioned into similarity groups.
Through the automatic identification of relevant and sim-
ilar performance views with these methods, we achieved a
search-space reduction of 80% and condensed the Sweep3D
performance-data set to five similarity groups, each repre-
senting a particular performance phenomenon.

All in all, our findings extend the knowledge-based ap-
proach of the performance tool Scalasca, which already re-
duces detailed event traces to a condensed profile [7, 8]. We
showed that performance profiles can be even more con-
densed to similarity groups, each representing a particular
performance phenomenon. Such a condensation reduces the
time needed for performance analysis significantly.
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Z. Szebenyi, and F. Wolf, “Large-scale performance
analysis of Sweep3D with the Scalasca toolset,”
Parallel Processing Letters, vol. 20, pp. 397–414, Dec.
2010.

[19] National Center for Atmospheric Research,
“Community ice code (cice) user’s guide, version 4.0,
released with ccsm4.0.” http://www.cesm.ucar.edu-
/models/ccsm4.0/cice/ice usrdoc.pdf, 2010. [Online;
accessed 04-March-2015].
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