Hierarchical Semi-supervised Classification
with Incomplete Class Hierarchies

Bhavana Dalvi
Carnegie Mellon University
Pittsburgh, PA 15213

bbd@cs.cmu.edu

ABSTRACT

In an entity classification task, topic or concept hierarchies
are often incomplete. Previous work by Dalvi et al. [I12] has
showed that in non-hierarchical semi-supervised classifica-
tion tasks, the presence of such unanticipated classes can
cause semantic drift for seeded classes. The Exploratory
learning [12] method was proposed to solve this problem;
however it is limited to the flat classification task. This pa-
per builds such exploratory learning methods for hierarchical
classification tasks.

We experimented with subsets of the NELL [§] ontol-
ogy and text, and HTML table datasets derived from the
ClueWeb09 corpus. Our method (OptDAC-ExploreEM) out-
performs the existing Exploratory EM method, and its naive
extension (DAC-ExploreEM), in terms of seed class F1 on
average by 10% and 7% respectively.

1. INTRODUCTION

A common way to organize information is by classifica-
tion into a concept or topic hierarchy. For example, the
Open Directory Project and the Yahoo! Directory are ex-
amples of topic hierarchies developed to organize pages on
the Web, and Wordnet, NELL and Freebase are examples of
large knowledge bases that organize entities into concept hi-
erarchies. However, in an open-domain task, hierarchies are
often incomplete, in the sense that there is meaningful struc-
ture in the data not captured by the existing hierarchy. E.g.,
consider a hierarchical entity classification task, with class
hierarchy ‘onto-1’ shown in Figure (left). There are 2 types
of locations defined in it: ‘State’ and ‘Country’. However,
the unlabeled data about entities on the Web can include lo-
cation entities of type ‘City’, ‘Museum’, etc., that are absent
in this ontology, hence called ‘unanticipated classes’.

Dalvi et al. [I2] showed that in a non-hierarchical semi-
supervised classification task, the presence of such unantic-
ipated classes hidden in the unlabeled data can cause se-
mantic drift for seeded classes. They also proposed an ap-
proach to solve this semantic drift problem by employing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Aditya Mishra
University of Massachusetts
_Amherst, MA 01003
adityam@cs.umass.edu

William W. Cohen
Carnegie Mellon University
Pittsburgh, PA 15213
wcohen@cs.cmu.edu

exploratory learning. This algorithm is an extension of the
semi-supervised EM algorithm that can create new classes
for datapoints that do not belong to the classes known up-
front. It explores different numbers of classes while learning.
In this paper we first summarize a naive extension of this ap-
proach (DAC-ExploreEM method), that applies exploratory
learning in a top-down divide and conquer (DAC) manner.
However, we notice that DAC-ExploreEM improves over flat
ExploreEM in only some cases. Finally we present an opti-
mized version of it (OptDAC-ExploreEM method [11]) that
gives more significant improvements over the baseline.

Our proposed OptDAC-ExploreEM method traverses the
class hierarchy in top-down fashion to detect whether and
where to add a new class for the given datapoint. It also
uses a systematic optimization strategy to find the best set
of labels for a datapoint given ontological constraints in the
form of subset and mutual exclusion constraints.

We demonstrate OptDAC-ExploreEM’s effectiveness
through extensive experiments on datasets constructed with
subsets of the NELL ontology (shown in Figure[l)) and text
and semi-structured HTML table datasets derived from the
ClueWeb09 corpus. In particular, OptDAC-ExploreEM im-
proves seed class F1 on average by 13% when compared to its
semi-supervised counterpart (OptDAC). It also outperforms
both previously proposed exploratory learning approaches
FLAT-ExploreEM and DAC-ExploreEM [II] in terms of
seed class F1 on average by 10% and 7% respectively.

Contributions:

Our contributions are as follows.

e We present a method that can do hierarchical semi-
supervised classification in the presence of incomplete
class hierarchies. It enriches existing knowledge base in
two ways: first, by adding new instances to the existing
classes; and second, by discovering new classes and
adding them at appropriate places in the ontology.

e Our proposed method, named OptDAC-ExploreEM
uses divide and conquer style approach to add a new
class and mixed integer programming based optimiza-
tion to find the best set of labels for a datapoint given
the ontological constraints.

e We demonstrate the effectiveness of our method
through extensive experiments on four hierarchical en-
tity classification datasets constructed with subsets of
the NELL ontology (shown in Figure [I) and text,
semi-structured HTML table datasets derived from
ClueWeb09 [7].

i Everythin
Everything onto-1 | onto-2 y‘ 9
— Location | | .
Abstract Thing Agent Item Location
State Organizati _
- —— Organization Cit
Country — Academic Field — Body part y
Food Sports Company Building State
—— Foo —
Vedetables L Award Trophy Tournament Newspaper Clothing Country
9 — Boardgame Sports Team Food Continent
Condiments — Conference sportsteague L eymiture Room
Bever —— Economic Sector University Sports Equipment
cverage — Movie Person — Tool
Animals B irqfesslion Actor — Vehicle
L Anima
Ceo
t Mammals I:Mammal Politician
Reptiles Reptile

Figure 1: Subsets of NELL [8] ontology used in our hierarchical classification experiments. Some nodes in
onto-1 are bold-faced, they are used as seeded classes in the experiments described in Section

e To facilitate further research on this topic, we will
make the datasets from this paper publicly available.

Outline:

Rest of the paper is organized as follows: In Section[2] we de-
fine the problem formally and then present a generic version
of the “Hierarchical Exploratory EM” algorithm. Section
describes different variants of this algorithm. Overview of
the datasets is covered in Section[d]followed by experimental
findings in Section[5] We discuss the related work in Section
[6l and conclude in Section [7}

2. OUR APPROACH

Our method is derived from the Exploratory EM algo-
rithm proposed by Dalvi et al. [I2]. Exploratory learning
takes the same inputs as traditional Semi-Supervised Learn-
ing (SSL) methods, i.e. a set of classes C1,Cs,...Cl, a few
labeled datapoints X' and a large number of unlabeled dat-
apoints X“. X' contains a (usually small) set of “seed” ex-
amples of each class, the task is to learn a model from X'
and use it to label datapoints in X*. Every example x may
be predicted to be in either a known class C; € C ...Cy, or
a newly discovered class C; € Cx41...Cn.

There are two main differences between the Exploratory
EM algorithm (ExploreEM) and standard classification-EM
(SemisupEM) approaches to SSL. First, in the E step, each
of the unlabeled datapoint x is either assigned to one of the
existing classes, or to a newly-created class. A new class is
introduced when the probabilities of x belonging to existing
classes are close to uniform. This suggests that x is not a
good fit to any of the existing classes, and that adding x
to any existing class will lower the total data likelihood sub-
stantially. Second, in the M-step of iteration ¢, we choose ei-
ther the model proposed by ExploreEM method which might
have more classes than the previous iteration ¢t — 1, or the
baseline model with same number of classes as iteration ¢t—1.
This choice is based on whether exploratory model satisfies
a model selection criterion in terms of increased data likeli-
hood and model complexity. This intuition is derived from
the Structural EM approach [14].

As per the experimental results presented in [12], the Ex-
ploreEM method is comparable or better than “Gibbs sam-
pling with Chinese Restaurant Process (CRP) approach”
and does not involve tuning the concentration parameter
for CRP. However, ExploreEM is limited to flat class hierar-
chies. In this paper we propose the Hierarchical Exploratory
EM algorithm which can work with incomplete class hierar-
chies and small amount of seed labels.

2.1 Problem Definition

Given a set of class constraints Zx, a small set of labeled
data points X!, their labels Y!, and a large set of unla-
beled data points X*“; the task is to label data points from
X" adding m new classes if needed and extending the class
constraints to Zi4m,. Here, each point from X! can have
multiple labels at different levels of the hierarchy satisfying
constraints Zy, and Zg4., defines the class constraints on k
seed and m newly added classes, Zx C Zr+m and the labels
Y™ of X" satisfy Ziym. Next let us see different methods
proposed to solve this problem.

2.2 Flat Exploratory EM

One simple way to use ExploreEM algorithm [I2] for our
purpose will be to run it as it is at each level of hierarchy.
Henceforth, we refer to this approach as FLAT-ExploreEM
and consider it as a baseline for our proposed Hierarchical
Exploratory EM approach. At each level, it selects one of the
existing classes or creates a new class in case the datapoint
doesn’t clearly belong to one of the known classes. This
algorithm does not make explicit use of class constraints
while making class assignments at each step. Hence the
assignments done by this algorithm might not be consistent,
since assignments at level 3 are not influenced by assignment
at level 2.

2.3 Hierarchical Exploratory EM

We summarize a generic Hierarchical exploratory learning
algorithm that can take a set of class constraints in terms
of subclass or mutual exclusion constraints (proposed in our
preliminary work [II]). This algorithm, in each iteration,

Algorithm 1 Generic Hierarchical Exploratory EM

Algorithm 2 MinMax criterion for new class creation

1: function Hierarchical-ExploreEM (X!, Y!, X% Z,):
9k:+m7 Zk+m7 Y
2: Input: X! labeled data points; Y labels of X?;
X" unlabeled data points;
Z) manually input constraints on k seed classes <—
3: Output: {601,..., 0k} parameters for k seed and m newly
added classes; Y* labels for X*;
Z+m Set of class constraints between k + m classes; <=
{Initialize classifiers 6; for class C; using seeds provided for
Gy}
: 9(1) . ,.02 = argmazgL(X!,Y?)
: while class assignments AND #classes not converged do
koiq is #classes before E step. Log-likelihood BaseLL =
logP(X|91<€to)Ld, Z’gi)zd)
{E step: (Iteration t) Classify each datapoint at each level}
7: for i=1 to |X| do
8: Find P(C;|X;) for all classes C;
{Assign a bit vector of labels for each unlabeled data-
point. A new class gets created for a datapoint that does
not fit into existing classes.}

9: Yi(t> = Consistent Assignment(P(C;|X;), h, Z(1)) <

S Ut

{If a new class is created, then class constraints are up-
dated accordingly.}
10: Z() = UpdateConstraints(X!, Y, X% v 7Z1)) «—

11: end for
12: knew is #classes after E step. Log-likelihood ExploreLL

= logP(XI07), 24,
{M step: Recompute model parameters based on y(® }
13: if Model selection criterion(kyq, BaseLL, knew, Fz-
ploreLL) selects exploratory model then
{Adopt the new model with knew classes}

14: 9,(;::1,”) = argmazg L(X!, Y, X%, yu(®) \9]82&“} , Z]itn)ew)
15 zt+) =z
16: else e
{Keep the old model with k4 classes}

. t+1 t t
17: 9,(%!(1) = argmazgL(X!, YL, Xu yu®) \6,(6{))”, Z}in)ld)
18: Z(t4+1) — 7

’ Kold
19: end if

20: end while
21: end function

assigns a bit vector to each data point with one bit per
class. Class constraints decide whether a bit vector is con-
sistent or not, e.g. if class constraints include “Car is of type
Machine”, then for consistency, when the bit for “Car” is
set, the bit for “Machine” should also be set. Further new
classes can be added during each iteration, hence the length
of these bit vectors changes dynamically and the algorithm
maintains class constraints containing old as well as newly
added classes. The generic Hierarchical Exploratory EM al-
gorithm is described in Algorithm [I] The important differ-
ences from the FLAT-ExploreEM algorithm are marked us-
ing <= . There can be multiple ways to implement functions
“Consistent Assignment” and “UpdateConstraints”, which we
will discuss below.

Lines 13-19 of Algorithm [I] does model selection. Similar
to Exploratory EM [12], at the end of every E step, we
evaluate two models, one with and one without adding
extra classes. These two models are scored using a model
selection criterion like AIC, BIC or AICc, and the model
with best penalized data likelihood score is selected in

1: function Is Nearly Uniform([P(Ci|z) ... P(Ck|x)]):

2: Input: [P(Ci|z)...P(Ck|z)]: probability distribution
of existing classes given a data point =

3: Output: decision : true iff new class needs to be cre-
ated

4: k : current number of classes

5: maxProb = max(P(Cj|z))

6: minProb = min(P(Cj|z))

7: if maxProb/minProb < 2 AND maxzProb < 2/k then

8: decision = true

9: else

10: decision = false

11: end if

12: end function

each iteration. The extended Akaike information criterion
(AICc) suited best for our experiments since our datasets
have large number of features and small number of data
points.

Computing Probability of Classes given a Dat-
apoint (Algorithm (1} Line 8)

This step computes probabilities P(Cj|z;;6;), where 6, is
the current estimate of model parameters for class C;. A
variety of techniques may be used for this estimation, we
briefly describe one such choice here: the seeded version
of K-Means, proposed by Basu and Mooney [3]. In this
model P(Cj|z) «x P(z|C;)*P(C}), and we define P(z|C;) =
x - Cj, i.e., the inner product of a vector representing x and
a vector representing the centroid of cluster j. Specifically,
x and C; both can be represented as L; normalized feature
vectors. The centroid of a new cluster is initialized using
feature counts from x. Since the EM algorithm can be used
for both classification and clustering tasks, we will use the
terms “class” and “cluster” interchangeably.

Modeling Class Constraints

Consider a toy example of ontological class constraints in
Figure[2l Here, we can see two kinds of class constraints im-
posed by the ontology. Following are example constraints:
(1) The “Subset” constraint between “Fruit” and “Food” cat-
egories suggests that if a datapoint is classified as “Fruit”,
then it should also be classified as “Food”. (2) The “Mutual
Exclusion” constraint between “Food” and “Organization”
says if a datapoint is classified as “Food”, then it should
not be classified as “Organization”, and vice versa.

Let {C1,...Ck} be the Knowledge Base (KB) categories.
Let Subset be the set of all subset or inclusion constraints,
and Mutex be the set of all mutual exclusion constraints.
In other words, Subset = {(i,k) : C; C Cx} and Mutex =
{(i,k) : C; N Cx = ¢}. The class constraints referred to as
7 in Algorithmcan be defined as Z, = {Subset, Mutex}.

3. VARIANTS OF HIERARCHICAL
EXPLORATORY EM

Hierarchical Exploratory EM (described in Algorithm
is a generic algorithm that can be instantiated in different
ways, by changing the functions “ConsistentAssignment”
and “UpdateConstraints”. Next we describe two such vari-

Vegetable

)
T rrmmm=="

=3 Subset constraint

*« o » ? Mutual exclusion constraint
-

Figure 2: An example of ontological class constraints.

ants namely, DAC-ExploreEM and OptDAC-ExploreEM.

3.1 Divide and Conquer (DAC-ExploreEM)

One simple instantiation of Algorithm [1| can be done
by using Divide-and-Conquer (DAC) strategy introduced in
[11]. Here we assume that classes are arranged in a tree hi-
erarchy, and classes at any one level are mutually exclusive.
To do class assignments for any unlabeled datapoint, we tra-
verse the class ontology from root to leaf level. Every data
point belongs to the root node. Then at each level we chose
the best label at that level and consider only its children as
candidates at the next level.

Further we check whether the probability distribution
among the candidate classes at each level is nearly uniform
(using heuristic described in Algorithm [2)) to decide whether
to create a new class at that level. We do not describe the
“Consistent Assignment” and “UpdateConstraints” functions
formally, however they can be easily derived by setting pa-
rameter ¢ = 1 in the OptDAC-ExploreEM algorithm that
we present next.

Also, note that the example ontologies in Figure [1| have
tree structure. However, in practice, class constraints can be
more complicated (e.g., overlapping classes can exist). The
DAC-ExploreEM algorithm is limited to a tree structured
ontology and assumes mutual exclusion of classes at any
level of hierarchy. Next we present the OptDAC-ExploreEM
algorithm that can work with more complicated class con-
straints.

3.2 Optimized Divide and Conquer
(OptDAC-ExploreEM)

DAC-ExploreEM can do semi-supervised learning in the
presence of unanticipated classes. However, we will see in
the experimental evaluation (refer to Section that DAC-
ExploreEM could provide marginal improvements over the
baseline (ExploreEM). During the error analysis we found
that the classification at higher levels of hierarchy is not per-
fect, and once we make a decision at level 7 of the ontology,
there is no way to change the decision once we move on to
level i + 1. Here we present a softer version of this method,
that keeps track of top-q labels at each level instead of keep-
ing only the best label.

Algorithm [3] describes how the “ConsistentAssignment”
and “UpdateConstraints” functions are implemented for this

approach. It is similar to DAC-ExploreEM method in the
sense that we traverse the classes in top down fashion, and
check whether new class needs to be created at each level
of the hierarchy. However, at each level [of the class hier-
archy, a mixed-integer program is run to get optimal class
assignments for the active classes from levels 1 to [. Further
instead of considering only the best classes in previous lev-
els, the top-¢q classes from each level are selected to be added
into the set of active classes, which are used in turn to select
the candidate classes at the next level of hierarchy.

This method combines the Divide-and-Conquer strategy
to detect/place new classes and the mixed integer program-
ming based optimization strategy to assign an optimal set of
labels to a datapoint given the ontological constraints. The
optimal label assignment method is generic enough to sup-
port any set of subset and mutual exclusion class constraints.
The new class detection based on Divide and Conquer can
be extended for non-tree hierarchies using a breadth first
search strategy that can be applied to any graph. Hence
the OptDAC-ExploreEM method can be extended easily for
non-tree structured ontologies.

Note that like DAC-ExploreEM, it makes greedy decisions
about new cluster creation. However, it performs overall
optimization of label assignments while satisfying the on-
tological constraints. This lets us correct any sub-optimal
decisions made by the greedy heuristic at higher levels of
the class hierarchy. Generally as we increase the value of
q, we may get some improvement in accuracy at the cost
of increased runtime. Since the value of ¢ directly decides
the size of active nodes set used while taking the decision at
each level of the hierarchy, there is a trade-off between time
complexity and solution optimality. For all the experiments
in this paper, we added the top two classes per level to the
set of selected classes (i.e. ¢ = 2) in Line 21 of Algorithm
This approach is referred to as OptDAC-ExploreEM below.

Optimal Label Assignment given Class Constraints
(Algorithm[3} Line 20)

Let X = {z1,...2n} be the datapoints, and {Ci,...Ck}
be the KB categories. Let y;; € {0,1} be an indicator vari-
able specifying whether x; belongs to C;. Let 6; denote the
centroid for category C;. Using the model parameters 6; for
class Cj, we can estimate P(Cj|z;), the probability of z; be-
longing to Cj. Given the category membership probabilities
{P(Cj|z:i)} estimated in the E step, this step computes the
category membership variables {y;s, V1 <i< N, 1 <5<

Algorithm 3 OptDAC-ExploreEM

1: function ConsistentAssignment-OptDAC (P(Cj|z),
Zw}): Yo, Ziym

2: Input: P(Cj|z) probability distribution of classes given a
datapoint x; Zj class constraints on k seed classes.

3: Output: label(x) assignment of x to classes satisfying Zx;
Z+m extended set of class constraints on k + m classes.

4: h is the height of the class ontology.

5: for | =1 to h do

6: if x has seed label at level [then

7

8

label(z, level;) = seed label;

else

9: candidateC = children of active classes

10: if candidateC is not empty then

11: Let P.4nq = probability distribution over candidateC

12: if Is Nearly Uniform (P.qnq) (using Algorithm
then

13: Create a new class Cperw at level [

14: Initialize parameters for class Cyeqw using x

15: Set parent(Crew) = class choice at level I — 1

16: Add Chew to active classes

17: end if

18: P,ctive = probability distribution over active classes

19: Zactive = class constraints between active classes

20: Choose label(x, level;) by computing optimal label as-
signment considering (Pyctive, Zactive) (using Eq.

21: Add top-gq classes to the set of active classes using
P,ctive as scores

22: end if

23: end if

24: end for

25: end function

26: function UpdateConstraints-OptDAC (X, Y, z°!4):
ZnE’LU

27: Input: X: Dataset; Y: Class assignments for each point in

K
Z°: Old constraints on the existing set of classes.
28: Output: Z"¢%: Updated set of class constraints,
29: Each newly created class is assigned a single parent at the
time of creation
30: Add each parent, child relationship as a constraint in Z,
31: end function

K}. We solve a Mixed-Integer Program (MIP) to estimate
yji’s. One such problem is solved for each datapoint. This
MIP takes the scores {P(Cj|z;)}, and class constraints Z
as input and produces a bit vector of labels y;;’s as output.

maximize (Zyji * P(Cjlxi) — Z Cik

{vji}Cik 0k

J (i,k) ESubset

_ Z 5ik>

(i,k)E Mutex (1)
subject to,
Yjii > Yk — Cik, V(j, k) € Subset
Yji +yki < 146, VY(j, k) € Mutex
Gk Ok > 0, w0 €{0,1}, Vi k

The MIP formulation for a datapoint z; is presented in
Equation For each datapoint, this method tries to max-
imize the sum of scores of selected labels, after penalizing
for violation of class constraints. Let (ji be the slack vari-
ables for Subset constraints, and ;. be the slack variables
for Mutexr constraints. To solve these mixed integer linear
programs we used the MOSEK solver [2].

Such optimization techniques have been shown to be ef-
fective for the task of semi-supervised learning in the pres-

ence of multiple data views and hierarchical class constraints
[9, I3]. Here we use this formulation for the task of hierar-
chical exploratory learning.

4. DATASETS AND EXPERIMENTAL
METHODOLOGY

In this section we present the experimental results of our
Hierarchical Exploratory EM approach. Figure [[]shows two
ontologies that we used in this paper, each being a subset of
NELL’s ontology at different point in NELL’s development.

4.1 Datasets

Our task includes discovering new classes that are not
present in the input class ontology. To make the evalua-
tion easier, we created datasets that have ground truth la-
bels for all entities in them, i.e. the entire class hierarchy
is known. However, only part of that hierarchy and corre-
sponding training data is given as input to the algorithm.
Rest of the classes and corresponding labels are unknown to
the algorithm, and used only during evaluation. Thus we
are simulating the scenarios where some classes are known
while others are unanticipated. To achieve this, we derived
four datasets using the two ontologies (shown in Figure [1))
and two feature sets extracted from the ClueWeb09 corpus.
The first ontology, named onto-1 in Figure [1| (left), has 3
levels and 11 classes. The second ontology, named onto-2 in
Figure [1] (right), has 4 levels and 39 classes.

We created our datasets using the two corpora: Text-
Patterns and HTML-Tables, both derived from ClueWeb09
data [7]. Text-Patterns corpus contains frequency counts
of text context patterns that occurred with each entity
w.r.t. text sentences that appeared in ClueWeb09 dataset.
HTML-Tables corpus contains frequency counts of table
columns in which entities occurred, derived from HTML
tables that appeared in ClueWeb09 dataset. E.g. an en-
tity “Pittsburgh” having a Text-Patterns feature, value being
(“lives in _argl”, 1000) means that the entity “Pittsburgh”
appeared in argl position of the context “lives in _argl” for
1000 times in the sentences from ClueWeb09 dataset. Simi-
larly, an entity “Pittsburgh” having a HTML-Tables feature,
value being (“clueweb09-en0011-94-04::2:1”, 1) means that
the entity “Pittsburgh” appeared once in HTML table 2,
column 1 from ClueWeb09 document id “clueweb09-en0011-
94-04”.

To create a dataset from an ontology, we took all entities
that are labeled with at least one of the classes under consid-
eration, and retrieved their feature representation in terms
of occurrences with text patterns or HT'ML table columns.
Thus we created four datasets Text-Small to Table-Medium,
using combinations of two ontologies and two corpora. Ta-
ble [describes the statistics about these four datasets. We
plan to make our hierarchical entity classification datasets
publicly available upon publication of the paper.

4.2 Methods

We experimented with three different methods for the
entity clustering task: FLAT, DAC and OptDAC. Each
of them have SemisupEM and ExploreEM variants. The
SemisupEM variant performs semisupervised learning with
the seeded classes, whereas ExploreEM variant can add ex-
tra classes discovered from unlabeled data.

e FLAT: This method performs flat entity classification

Dataset Feature Ontology | #Classes #Levels #Classes #Entities #Contexts #(Entity, #(Entity,
Type per level context) label)

pairs pairs

Text-Small Text onto-1 11 3 1,3, 7 2.5K 3.4M 8.8M 7.2K
Text-Medium onto-2 39 4 1,4, 24, 10 129K 6.7M 25.8M 42 2K
Table-Small Tables onto-1 11 3 1,3, 7 4.3K 0.96M 6.3M 12.2K
Table-Medium onto-2 39 4 1,4, 24, 10 33.4K 2.2M 21.4M 126.1K

Table 1: Statistics of the hierarchical entity classification datasets used in this paper. Refer to Section [4.1]

for more details.

at each level of the class hierarchy. Decisions made at
each level are independent.

e DAC: This method performs hierarchical classification
of entities, by making class assignment decision in top-
down fashion. At each level maximum probable class is
selected and candidates at next level are children of the
class selected at previous level. This greedy algorithm
is described in Section Bl

e OptDAC: This is another hierarchical classification
method. It also makes class assignment decisions in
top-down fashion. The creation of extra classes and
placing them in hierarchy is similar to DAC method.
However, class assignments at each level [are deter-
mined by solving a linear optimization problem con-
sidering all nodes under consideration (ActiveC' in Al-
gorithm spanning levels 1 to [. Hence the greedy de-
cisions about new cluster creations are combined with
overall optimization of label assignments while follow-
ing ontological constraints.

Further we used seeded K-Means algorithm for clustering
(as described in Section [2.3)) and the MinMax criterion [I2]
for new class creation (described in Algorithm [2)).

4.3 Methodology

Remember that for the experiments in this paper, we feed
a part of the ontology (seed classes) to the algorithm and rest
of the part (unanticipated classes) is hidden from the algo-
rithm. SemisupEM variant of each method learns classifiers
only for seed classes. Along with this, ExploreEM variant
of each method can add new classes. To make the semi-
supervised and exploratory variants of each method compa-
rable, we use “macro-averaged seed class F1” as the evalua-
tion metric. It is computed by macro averaging F1 values of
seed classes only. Further, if ExploreEM variant improves
the seed class F1 over SemisupEM variant, it indicates that
adding extra classes helped towards keeping the seed classes
pure (i.e. reducing semantic drift).

This “macro-averaged seed class F1” metric is further av-
eraged for 10 runs of each algorithm. Each run’s input con-
sists of different seed ontologies and randomly sampled 10%
of relevant datapoints as seed examples. The same set of
inputs is given to all algorithms being compared. Note that,
for a given dataset with a choice of of seed classes and train-
ing percentage, there are many ways to generate a train-test
partition. We report results using 10 random train-test par-
titions of each dataset. The same partitions are used to
run all the algorithms being compared and to compute the
statistical significance of results.

For Text-Small and Table-Small, we generated 10 sets of
seed examples, for the same seed ontology. The chosen seed

ontology is bold-faced in Figure [1| (left). Here seed ontol-
ogy always contains the same 7 out of 11 classes. For Text-
Medium and Table-Medium, seed ontology also varies across
runs. In each run, we randomly chose 10 leaf nodes accord-
ing to their class frequency (i.e. popular class is more likely
to be chosen in each run). After sampling 10 leaf nodes
(sampling without replacement), we included all their ances-
tors to create the seed ontology for that run. The average
ontology size generated using this method was 16.7. Table
column 2 shows avg. number of seed classes chosen at
each level of the hierarchy. 10% of the datapoints from leaf
classes are them randomly sampled, and hierarchical labels
of this datapoints are used as training data for the run.

S. EXPERIMENTAL RESULTS

In this section we will compare semi-supervised and ex-
ploratory variants of FLAT, DAC and OptDAC methods, in
order to answer certain research questions.

5.1 Do ontological constraints help?

Table [2| shows the comparison between semi-supervised
versions of all three methods. The best values in each row
(per dataset per level in the hierarchy) are bold-faced. We
can see that for every row, the best performance was given by
a method that uses ontological constraints while clustering.
Hence we can conclude that using ontological constraints do
help.

We also did statistical significance tests with 0.05 (and
0.1) significance level denoted by A (and A) in Table[2] Re-
sults show that in 5 out of 10 cases the gains of DAC over
FLAT are statistically significant, whereas OptDAC method
proved to be better by producing statistically significant
gains over FLAT in 7 out of 10 cases.

5.2 Is Exploratory learning better than semi-
supervised learning for seed classes?

We present the comparison of Semi-supervised vs. Ex-
ploratory versions of all three methods in Table[3] The best
performance in each row is bold-faced. From Table [3| we
can see that, ExploreEM version of each algorithm improves
seed class F1 when compared to SemisupEM for all three
methods in 24/30 cases. Our proposed approach OptDAC-
ExploreEM improves seed class F1 on average by 13% when
compared to its semi-supervised counterpart.

While comparing among the ExploreEM approaches,
OptDAC method independently beats previously proposed
FLAT and DAC methods in 8/10 cases each. Empiri-
cally, OptDAC-ExploreEM outperforms FLAT-ExploreEM
and DAC-ExploreEM in terms of seed class F1 on average
by 10% and 7% respectively.

Further we did statistical significance tests for perfor-

Dataset Level Macro-avg. Seed Class F1
W /o constraints W constraints
""""" FLAT | 'DAC T OptDAC
SemisupEM SemisupEM SemisupEM
Text-Small 2 46.6 47.1 52.0
3 23.5 26.1 25.8 A
CText-Medium 27T 32 T 3.7 TTR3y T
3 27.9 334 A 339 4
4 17.4 24.5 26.8 A
CTable-Small 27T T 746A T 748 4
3 36.8 38.8 A 38.9 A
“Table-Medium 27 TTUR2 T 64.8 622 T
3 43.7 46.4 A 48.0 A
4 47.3 57.7 A 57.1 A

Table 2:

Comparison of FLAT, DAC, and OptDAC methods in the semi-supervised setting. A (and A)

indicates that improvements of the DAC and OptDAC methods are statistically significant w.r.t the FLAT
method with 0.05 (and 0.1) significance level. Please refer to Section for details.

Dataset #Seed Level Macro-avg. Seed Class F1
/#1deal FLAT DAC OptDAC
classes SemisupEM ExploreEM | SemisupEM ExploreEM | SemisupEM ExploreEM
Text-Small 2/3 2 | 46.6 64.4 47.1 61.8 52.0 62.6
4/7 3| 23.5 32.7 26.1 36.3 25.8 42.3 A
Text-Medium 3.9/4 2532 7 R02 3T 27 533 R25 T
9.4/24 31279 27.0 334 26.8 33.9 34.9 A
2.4/10 41174 25.8 24.5 29.4 26.8 31.6 A
" Table-Small 2/3 21695 T wsR T 4e T 762 7487 780.0a
4/7 3| 36.8 43.9 38.8 40.9 v 38.9 41.5
Table-Medium 3.9/4 21627 el 648 65.04 | 6227 65.0a
9.4/24 3| 43.7 49.1 46.4 48.6 48.0 50.1
2.4/10 4 | 47.3 52.2 57.7 59.9 A 57.1 58.4 A

Table 3:

Comparison of FLAT, DAC, and OptDAC methods using KM representation on Text-Small to

Table-Medium. A (and A) indicates that improvements of the DAC-ExploreEM and OptDAC-ExploreEM
methods are statistically significant w.r.t FLAT-ExploreEM method with 0.05 (and 0.1) significance level.

Please refer to Section [5.1] for more details.

mance improvements of DAC-ExploreEM and OptDAC-
ExploreEM over FLAT-ExploreEM, with 0.05 (and 0.1) sig-
nificance level denoted by A (and A) in Table |3| It shows
that improvements of DAC-ExploreEM are statistically sig-
nificant in 2/10 cases, whereas improvements of OptDAC-
ExploreEM are significant in 6/10 cases. Thus OptDAC-
ExploreEM turns out to be the best method being com-
pared.

5.3 What is the effect of varying the number
of labeled examples?

We ran OptDAC-ExploreEM method on datasets Text-
Small and Table-Small with different values of training per-
centage averaged over 10 random train/test partitions of our
data.

In Figure [3] we can see that as the training percentage
increases the performance of OptDAC-ExploreEM method
improves. Also note that as we go down the hierarchy rela-
tive improvements are more larger. For example, there are
larger relative improvements at Level 3 compared to Level
2 of the hierarchy.

5.4 How do the methods compare in terms of
runtime?
Here we compare runtimes of all methods averaged over

all the runs with different seed ontologies and seed training
data. In our MATLAB implementation, the running time of
Exploratory EM is much longer. Table [d] shows that the in-
crease in runtime of ExploreEM variants w.r.t. their Semisu-
pEM counterparts is by the factor 3.2 on average across all
methods and datasets. Further the exploratory methods
take on average 10.3 times the time of SemisupEM variant
of the FLAT method.

In particular, OptDAC-ExploreEM method is on average
twice as expensive as DAC-ExploreEM. This is due to the
fact that DAC-ExploreEM takes greedy decisions at each
level of the hierarchy, whereas OptDAC-ExploreEM keeps
track of the top-q active nodes. We set ¢ = 2 in these exper-
iments. Thus the value of ¢ results in a trade-off between
improvement in seed class F1 and increased runtime of the
algorithm.

5.5 Evaluation of extended cluster hierarchies

In this section, we present the evaluation of extra clusters
added by our Hierarchical Exploratory EM algorithm to the
incomplete class ontology given as input. If it started with
k classes, and produced k + m classes as output, we first
need to label these m extra classes. Since our datasets are
completely labeled, each new class can be assigned a major-
ity label based on entities assigned to that class and level of

80

T »
8 70 Pl
3 - 0
60 LA - Be
-§ /._&N(' ¢§,
»n 50 ¢ el
> A
m40 |:--I:|"EI
)
S 30 ® -Level 2
= -8-Level 3
20 -
0 50 100

Training percentage

100
v
0
B 80 e e
(8]
o
o o
® 60 o’
) g~
4 a-
«© n'—n-'ﬂ'
© 40 o~
[&]
&
=

20 ;

0 50 100

Training percentage

Figure 3: Comparison of OptDAC-ExploreEM method with different training percentage on datasets Text-

Small (left) and Table-Small (right).

Avg. runtime in sec. Average run-time in multiple of FLAT-SemisupEM
Dataset FLAT |~ FLAT |77 77 DAC T OptDAC 7
SemisupEM | ExploreEM SemisupEM ExploreEM SemisupEM ExploreEM
Text-Small 53.5 8 1 6 7 17
Table-Small 50.7 3 3 6 10 21
Text-Medium 524.7 5 7 11 11 25
Table-Medium 5932.4 4 6 7 7 10

Table 4: Comparison of average runtimes of all methods. Please refer to Section for more details.

the class in the hierarchy. E.g. if the class is at level 2 in
the hierarchy then we choose the best label at level 2 of the
class hierarchy.

Figure [4] shows an example of an extended class hierar-
chy generated by OptDAC-ExploreEM algorithm on Table-
Small starting with 7 seed classes from onto-1. The bold-
faced nodes are from seed ontology, and nodes in blue (non
bold-faced) are the ones added by our proposed exploratory
learning methods. It is labeled using the above described
majority label approach. (Note that there are multiple clus-
ters with same label, to differentiate them we have labeled
them as “Food_1", “Food_2” etc.)

Once this labeling is done, we can measure the precision
of labels across (parent, child) links in the cluster hierar-
chy. E.g. in Figure {4 parent-child link between (Food 2,
Beverage_2) is correct, however the link between (Location,
Beverage) is incorrect. These links can be classified into
seed or extra links based on whether the child cluster was
one of the seed clusters or introduced by the Hierarchical
Exploratory EM algorithm.

Table [B] shows the link precision values for OptDAC-
ExploreEM algorithm when run on all four datasets. We
can see that for seed clusters, accuracy numbers are high
(81 - 100%) for all four datasets. In terms extra clusters, for
the Text-Small and Table-Small datasets with smaller ontol-
ogy (onto-1), and unanticipated class fraction being low, the
precision of edges for extra clusters is very high in around
85%.

However for the Text-Medium and Table-Medium
datasets, with a medium sized ontology (onto-2), and with
higher fraction of unanticipated classes, the precision for ex-

Dataset Fraction of %Precision of (parent,
unanticipated | child) edges
classes Seed Extra All
Text-Small 0.36 88.3 84.5 85.5
Table-Small 0.36 100.0 90.4 924
Text-Medium | 0.62 80.7 22.6 46.8
Table-Medium | 0.62 95.7 36.1 63.9

Table 5: Precision of child, parent edges created by
OptDAC-ExploreEM. Please refer to Section for
details.

tra clusters is quite low around 30%. This indicates that
the task of detecting new classes and adding them at right
positions in the ontology is a challenging task, and it gets
even more challenging with the complexity and degree of
incompleteness of the input ontology.

Even though the newly created clusters are not perfect, we
observed that these hierarchical exploratory learning meth-
ods improve seed class F1 on all four entity classification
datasets (refer to Table . Thus, these techniques help re-
duce semantic drift of seeded classes by filtering out those
datapoints that do not belong to any of the existing classes.

6. RELATED WORK

Here we propose a novel hierarchical SSL method that
is robust when the unlabeled data contains unanticipated
classes i.e. classes other than those present in the class hi-
erarchy given as input. To the best of our knowledge this
specific problem is relatively less explored, even though in

Everything

Location_1 Food_1

State/Province_1 — Vegetables

Country — Condiments

Beverage_1
— State/Province_2

|

Location_2

State/Province_3

Animal

Mammal_1 Beverage_2

Mammal_2

Figure 4: An example extended ontology applying our OptDAC-ExploreEM method on the Table-Small
dataset. The seeded classes are bold-faced, whereas the newly added classes are in Blue and are not bold-

faced. Please refer to Section for details.

real-world settings, there can be unanticipated (and hence
unseeded) classes in any large-scale hierarchical SSL task.

There has also been some work in unsupervised hierar-
chical clustering |17} 23] [5] that can discover cluster/topic
hierarchies given a large unlabeled dataset, however they do
not make use of any supervision that might be available.
Exploratory learning differs in that we learn the number
of clusters as well as centroids for those clusters jointly in
a single run of the EM algorithm, while using the avail-
able supervision for seed clusters. Apart from standard
K-Means, our EM framework can also be used with other
clustering/classification algorithms like Naive Bayes and von
Mises-Fisher, and we specifically evaluate the performance
difference on the seeded classes.

There has been a lot of research done in the area of su-
pervised hierarchical classification [6] [16] 24]. These meth-
ods assume that the class hierarchy is complete and there
is enough training data to learn classifiers for each node in
the class hierarchy. On the other hand we considered the
situation where only part of the ontology is known upfront
with very few seed examples for each of the seed class. Fur-
ther our method can be easily extended to cases where class
constraints are more complicated than the examples consid-
ered in this chapter, e.g. overlapping classes and mutual
exclusion constraints.

Another related research area is constructing web-scale
knowledge bases [8, [I] by doing information extraction from
various data-sources. NELL internally uses Coupled semi-
supervised learning [§] that takes into account subclass and
mutual exclusion constraints among classes to filter extrac-
tion patterns and instances at the end of each bootstrapping
iteration. The ontology (class hierarchy) is not explicitly
used in the prediction process. l.e. it does flat classification
with class constraints applied as post-processing in between
two iterations of bootstrapping. Our approach on the other
hand does collective hierarchical classification.

There has also been some work to extend existing on-
tologies. Mohamed et al. [I9] propose a co-clustering based
two step approach to discover new relations between two
already existing classes in the knowledge base. These new
relations are named using centroid features of the interme-
diate clusters. This method is focused on relation discov-
ery between known classes. Snow et al. [22] discover new
WordNet synsets by using evidence from multiple sources,
however their approach is focused on discovering new isA
relations, and not meant for building hierarchical classifiers

for the learnt hierarchy. Pal et al. [20] proposed a technique
based on Indian Buffet Process that could learn with existing
feature hierarchies as well as extend them based on struc-
ture discovered from unlabeled data. Their method relies
only on the containment relationships and the hierarchies
they experimented with are domain specific e.g. restaurants
domain.

Reisinger and Pasca [2I] addressed the same problem as
ours, working with the Wordnet hierarchy. Their fixed-
structure and sense selective approaches use the Wordnet hi-
erarchy directly and annotate existing concepts with generic
property fields (attributes). On the other hand, Nested Chi-
nese Restaurant Process (nCRP) approach is hierarchical
extension of LDA to infer arbitrary fixed-depth tree struc-
tures from data. nCRP generates its own annotated hierar-
chy whose concept nodes do not necessarily correspond to
Wordnet concepts. Our method is in the middle of these
two approaches, as it uses the existing class hierarchy with
small amount of training data and extends it dynamically
as new clusters of datapoints are discovered.

Another set of techniques focus on completely unsuper-
vised information extraction and ontology discovery [15] (4]
21, [10]. Though very effective, these approaches are not
making use of the valuable information hidden in the ex-
isting knowledge bases. Our approach is relatively novel in
the sense that it is in between semi-supervised and unsuper-
vised learning, where some part of ontology is known, and
this knowledge is used to discover the missing parts of the
ontology along with populating it with new data instances.

To define the similarity among two entities we use bag
of word features about co-occurrences of text patterns with
the noun-phrases. There can be more effective approaches
of document representation like the lower dimensional con-
tinuous Skip-gram features, proposed by Mikolov et al. [18].
Their technique learns low dimensional vectors that poten-
tially embed semantics of noun-phrases.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the Hierarchical Exploratory
EM approach that can take an incomplete class ontology as
input, along with a few seed examples of each class, to popu-
late new instances of seeded classes and extend the ontology
with newly discovered classes. Experiments with subsets of
NELL ontology and and text, semi-structured HTML table
datasets derived from the ClueWeb09 corpus show encour-

aging results in terms of seed class F1 scores. We will make
our hierarchical entity classification datasets publicly avail-
able to encourage future research in this area.

Our proposed hierarchical exploratory EM method,
named OptDAC-ExploreEM performs better than flat clas-
sification and hierarchical semi-supervised EM methods at
all levels of hierarchy, especially as we go further down
the hierarchy. Experiments show that OptDAC-ExploreEM
outperforms its semi-supervised variant on average by 13%
in terms of seed class F1 scores. It also outperforms both
previously proposed exploratory learning approaches FLAT-
ExploreEM and DAC-ExploreEM in terms of seed class F1
on average by 10% and 7% respectively.

In future, we would like to apply our method on datasets
with non-tree structured class hierarchies. We briefly dis-
cussed how our proposed OptDAC-ExploreEM method can
be used for this task. Further, our experiments focused on
an information extraction task of classifying entities into a
knowledge base class hierarchy. However, our techniques
can also be applied to other tasks like document classifi-
cation into topic hierarchies on datasets like Reuters, and
classifying images into a class hierarchy for datasets like Im-
ageNet.

References

[1] Freebase. http://freebase.com.

[2] AIMMS. The MOSEK toolkit.

[3] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised
clustering by seeding. In In Proceedings of 19th Inter-
national Conference on Machine Learning (ICML-2002.
Citeseer, 2002.

[4] D. M. Blei, T. L. Griffiths, and M. I. Jordan. The nested
chinese restaurant process and bayesian nonparamet-
ric inference of topic hierarchies. Journal of the ACM
(JACM), 57(2):7, 2010.

[5] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B.
Tenenbaum. Hierarchical topic models and the nested
chinese restaurant process. Advances in neural infor-
mation processing systems, 16:17, 2004.

[6] L. Cai and T. Hofmann. Hierarchical document cate-
gorization with support vector machines. In Proceed-
ings of the thirteenth ACM international conference on
Information and knowledge management, pages 78-87.
ACM, 2004.

[7] J. Callan. The clueweb09 dataset. http://boston.1ti.
cs.cmu.edu/Data/clueweb09/.

[8] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hr-
uschka Jr, and T. M. Mitchell. Coupled semi-supervised
learning for information extraction. In Proceedings of
the third ACM international conference on Web search
and data mining, pages 101-110. ACM, 2010.

[9] B. Dalvi and W. W. Cohen. Multi-view hierarchical
semi-supervised learning by optimal assignment of sets
of labels to instances. 2014.

[10] B. Dalvi, W. W. Cohen, and J. Callan. Websets: Ex-
tracting sets of entities from the web using unsuper-
vised information extraction. In Proceedings of the
Fifth ACM International Conference on Web Search
and Data Mining, WSDM ’12, pages 243-252, New
York, NY, USA, 2012. ACM.

[11] B. Dalvi, W. W. Cohen, and J. Callan. Classifying en-

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

tities into an incomplete ontology. In Proceedings of the
2013 workshop on Automated knowledge base construc-
tion, pages 31-36. ACM, 2013.

B. Dalvi, W. W. Cohen, and J. Callan. Exploratory
learning. In Machine Learning and Knowledge Discov-
ery in Databases, pages 128—143. Springer, 2013.

B. Dalvi, E. Minkov, P. P. Talukdar, and W. W. Co-
hen. Automatic gloss finding for a knowledge base
using ontological constraints. In Proceedings of the
Eighth ACM International Conference on Web Search
and Data Mining, WSDM ’15, pages 369-378, New
York, NY, USA, 2015. ACM.

N. Friedman. The bayesian structural em algorithm.
In Proceedings of the Fourteenth conference on Uncer-
tainty in artificial intelligence, pages 129-138. Morgan
Kaufmann Publishers Inc., 1998.

Z. Ghahramani, M. I. Jordan, and R. P. Adams. Tree-
structured stick breaking for hierarchical data. In
Advances in Neural Information Processing Systems,
pages 19-27, 2010.

S. Gopal, Y. Yang, B. Bai, and A. Niculescu-Mizil.
Bayesian models for large-scale hierarchical classifica-
tion. In Advances in Neural Information Processing
Systems, pages 2411-2419, 2012.

C. D. Manning, P. Raghavan, and H. Schtze. Introduc-
tion to information retrieval. In Cambridge University
Press, 2008.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in Neu-
ral Information Processing Systems, pages 3111-3119,
2013.

T. P. Mohamed, E. R. Hruschka, Jr., and T. M.
Mitchell. Discovering relations between noun cate-
gories. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’11,
pages 1447-1455, Stroudsburg, PA, USA, 2011. Associ-
ation for Computational Linguistics.

A. Pal, N. Dalvi, and K. Bellare. Discovering hierar-
chical structure for sources and entities. In Twenty-
Seventh AAAI Conference on Artificial Intelligence,
2013.

J. Reisinger and M. Pagca. Latent variable models of
concept-attribute attachment. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume
2-Volume 2, pages 620-628. Association for Computa-
tional Linguistics, 2009.

R. Snow, D. Jurafsky, and A. Y. Ng. Semantic taxon-
omy induction from heterogenous evidence. In Proceed-
ings of the 21st International Conference on Computa-
tional Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages 801—
808. Association for Computational Linguistics, 2006.
P. Willett. Recent trends in hierarchic document clus-
tering: a critical review. Information Processing €
Management, 24(5):577-597, 1988.

L. Xiao, D. Zhou, and M. Wu. Hierarchical classifica-
tion via orthogonal transfer. In Proceedings of the 28th
international conference on machine learning (ICML-
11), pages 801-808, 2011.

http://boston.lti.cs.cmu.edu/Data/clueweb09/
http://boston.lti.cs.cmu.edu/Data/clueweb09/

	Introduction
	Our Approach
	Problem Definition
	Flat Exploratory EM
	Hierarchical Exploratory EM

	Variants of Hierarchical Exploratory EM
	Divide and Conquer (DAC-ExploreEM)
	Optimized Divide and Conquer (OptDAC-ExploreEM)

	Datasets and Experimental Methodology
	Datasets
	Methods
	Methodology

	Experimental Results
	Do ontological constraints help?
	Is Exploratory learning better than semi-supervised learning for seed classes?
	What is the effect of varying the number of labeled examples?
	How do the methods compare in terms of runtime?
	Evaluation of extended cluster hierarchies

	Related Work
	Conclusions and Future Work

