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ABSTRACT
The programming language Python is widely used to create
rapidly compact software. However, compared to low-level
programming languages like C or Fortran low performance
is preventing its use for HPC applications. Efficient paral-
lel programming of multi-core systems and graphic cards
is generally a complex task. Python with add-ons might
provide a simple approach to program those systems. This
paper evaluates the performance of Python implementations
with different libraries and compares it to implementations
in C or Fortran. As a test case from the field of computa-
tional fluid dynamics (CFD) a part of a rotor simulation code
was selected. Fortran versions of this code were available
for use on single-core, multi-core and graphic-card systems.
For all these computer systems, multiple compact versions
of the code were implemented in Python with different li-
braries. For performance analysis of the rotor simulation
kernel, a performance model was developed. This model was
then employed to assess the performance reached with the
different implementations. Performance tests showed that
an implementation with Python syntax is six times slower
than Fortran on single-core systems. The performance on
multi-core systems and graphic cards is about a tenth of
the Fortran implementations. A higher performance was
achieved by a hybrid implementation in C and Python using
Cython. The latter reached about half of the performance
of the Fortran implementation.
∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PyHPC2015, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-4010-6/15/11. . . $15.00
DOI: http://dx.doi.org/10.1145/2835857.2835859

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming; D.2.8 [Software Engineer-
ing]: Metrics—performance measures; D.3.2 [Programming
languages]: Language Classifications—Very high-level lan-
guages

General Terms
Performance

1. INTRODUCTION
The programming language Python is widely used nowadays.
In the field of scientific software Python allows simple pro-
gramming of prototypes similar to the interactive platform
MATLAB of MathWorks [14].

In the list of the 500 fastest computer systems of the world
from June 2015 we find 90 systems which exploit GPU
(Graphics Processing Unit) or Xeon Phi accelerators [28];
four of them are among the top ten. Since multi-core archi-
tectures and GPUs with high numbers of processing elements
are available for everyone today the development of parallel
programs with high performance becomes increasingly more
important. Efficient parallel programming for multi-core
architectures and GPUs is generally difficult. It requires a
high percentage of parallelism in the problem to be solved,
good load balance and minimal data exchange between par-
allel processes, efficient process synchronization as well as
appropriate performance modelling and testing.

In fluid engineering and material science, e.g., computer sim-
ulations replace physical experiments in an increasing extent.
Simulations make it possible to check theories which can not
be tested experimentally since appropriate experiments are
too expensive, too difficult, too slow or too dangerous or since
the quantity of interest can not be measured. Simulation
codes must exploit modern computer hardware efficiently in
order to achieve short execution times.

For efficient parallel programming, we desire a programming
language which is productive and allows high performance.
Productivity requires a high abstraction level which usually
involves a high overhead which degrades performance [29].
Low-level programming languages like C or Fortran, on the
other hand, allow machine-oriented programming and thus
make highly efficient codes possible, but code development
is time-consuming and error-prone. Since performance is the
main criterion in the HPC (High Performance Computing)



area low-level languages are widely used here. Python offers
a high abstraction level, but only achieves low performance
without additional libraries. Appropriate additional libraries
facilitate acceleration of performance critical parts of Python
code distinctly without globally loosing a high level software
design.

In this paper we discuss parallel programming of numerical
algorithms from computational fluid dynamics (CFD) with
Python and add-on libraries. Our objective is to achieve a
performance of Python implementations close to comparable
C or Fortran implementations on modern computer hardware
with multi-core processors and GPU accelerators. For this
investigation we use a complex application kernel from rotor
simulation which can not exploit existing fast building blocks
such as BLAS routines [3].

2. BACKGROUND OF THE ROTOR SIMU-
LATION TEST CASE

The code “Freewake” is part of the rotor simulation system
S4 of the department “Rotorcraft” of DLR’s Institute of
Flight Systems. Freewake simulates three-dimensional flows
around an actively controlled rotor of a helicopter [2].

Freewake was developed in Fortran between 1994 and 1996.
The principal method bases on experimental data from the
HART program [27]. Color and thickness of the pipes illus-
trated in Figure 1 represent strength and diameter of vortices
in the wake of the rotor.

Figure 1: Visualization of the modeled vortex movement
behind a helicopter rotor in fast forward flight.

During the forward motion of a helicopter a very non-symmetric
flow behavior is generated. The flow behavior causes some
of the main problems of rotorcrafts: high loundness, strong
vibrations, high energy consumption and flight stability prob-
lems. The characteristic noises of a helicopter arise when a
rotor blade meets an air vortex [4]. Opposite to traditional
CFD simulations, which compute the flow equation for each
cell close to the rotor, Freewake applies a two-dimensional
grid in a three-dimensional space in order to represent vor-
tices. In each time step, the induced velocity of all vortex
elements on all grid nodes is computed by the Biot-Savart
law [1]. Depending on the distance between vortex element
and grid node different formulae are used.

Originally, Freewake was developed for massively parallel sys-
tems with distributed memory. Communication between par-
allel processes is realized by MPI (Message Passing Interface)
[15]. In the last years, Freewake was adapted to multi-core
CPU and GPU exploitation. For performance investiga-
tions, this paper uses a Freewake benchmark kernel which
determines the induced velocities with a simplified formula.

3. PYTHON LIBRARIES FOR SOLVING SCI-
ENTIFIC PROBLEMS

This section introduces the Python project Cython as well as
the Python libraries NumPy, Numba and “Python Bindings
for Global Array Toolkit” and discusses their appropriateness
for efficient parallel programming.

3.1 Cython
The open source project Cython provides a Python code
compiler and an extended Python programming language
[7]. The language extensions allow calls to C functions and
the use of C variable types and attributes. Python code is
translated into C code and compiled by a C compiler [6].
Since the generated C code does not contain Python calls any
more Cython circumvents the problem with Python’s GIL
(Global Interpreter Lock)1 and the compiled code can be
executed fully in parallel. For shared memory parallelization,
Cython offers simple use of OpenMP [26].

3.2 NumPy
The Python library NumPy supports efficient use of large
N -dimensional arrays and provides routines for solving linear
algebra problems and for applying Fourier transforms, e.g.,
as well as tools for integration of C, C++ and Fortran code
[21]. The combination of Python with NumPy allows simi-
larly comfortable programming as with Matlab. As a rule,
execution times of NumPy functions are distinctly faster
than standard Python functions since NumPy exploits C
implementations for compute intensive methods.

3.3 Numba
Numba is an open source compiling environment for Python
and NumPy which generates optimized machine code [17].
As illustrated in Figure 2, Numba applies the LLVM compiler
for machine code generation [16]. Numba supports OpenMP,
OpenCL [25] and CUDA [22].

Figure 2: Compilation of Python functions with Numba.

For optimized machine code generation, Numba follows the
strategy to process the original Python code as possible with-
out changes. Nevertheless, code annotations may support
the optimization process. Annotations, e.g., allow selective
1GIL inhibits really parallel execution of Python threads.



compilation of Python functions with Numba and specify
target hardware like single- or multi-core CPUs.

NumbaPro is a commercial extension of Numba developed
by Continuum Analytics [20]. Compared with Numba, Num-
baPro offers additional optimization features for single- and
multi-core CPUs as well as via the CUDA interface for
NVIDIA GPUs. NumbaPro is able to exploit Intel’s “Math
Kernel Library” (MKL) so that BLAS operations with
NumPy arrays are executed in a highly optimized paral-
lel way [11].

3.4 Python Bindings for Global Array Toolkit
The Python Bindings for Global Array Toolkit allows access
to physically distributed data via a shared memory interface
[8]. A distributed array can be handled like an array in a
shared memory system. The Global Arrays represent an
extension of MPI for message exchange between parallel
processors. In the same program, the code developer may
switch between the shared memory interface of the Global
Arrays and the distributed memory interface of MPI.

Figure 3: Data access for Global Arrays

Figure 3 illustrates the access to an array distributed to
several processors via the Global Array interface. Through
the global address space, the marked element can simply be
read by ga.get(a,(3,2)). With MPI a message would have to
be explicitly exchanged between processors 1 and 0 if the
marked element has to be used on processor 0.

4. PYTHON IMPLEMENTATIONS OF THE
ROTOR SIMULATION KERNEL

This section describes the implementation of the Freewake
benchmark kernel with standard Python, Cython, NumPy,
Numba and Python Bindings for Global Array Toolkit.

In the Freewake benchmark, the time is measured for simu-
lating the velocities induced by vortices for a rotor rotation
of 1 degree. A grid over the rotor discretizes the vortices.
For each grid node the induced velocities are computed. The
required data per grid node are stored in a 4-dimensional
array. The velocity is composed of the induced velocities
of the longitudinal and lateral vorticies. Thus the runtime
of the algorithm increases quadratically with the number of
grid nodes. There are two possibilities for computing the
induced velocities: The computational function within one

outer loop has an array parameter and operations are per-
formed element-wise on this array, or we add three further
loops into the outer loop and call the function in the most
inner loop with single value parameters.

4.1 Implementation using the Python Standard
Library

Calculations with Python lists are not possible. The reason
is that a list can consist of elements with different data types.
The interpreter can then not determine which operation
shall be performed. However, it is possible to implement
the required operations for lists for which the data type of
the elements is known. For the Freewake benchmark kernel,
computations with whole lists are slower in Python than
adding three inner loops and calling the calculation function
with single values. This consideration results in the loop
structure in the kernel from listing 1.

for iblades in range(numberOfBlades):
for iradial in range(1, dimensionInRadialDirection):

for iazimutal in range(dimensionInAzimualDirectionTotal):
for i1 in range(len(vx[0])):

for i2 in range(len(vx[0][0])):
for i3 in range(len(vx[0][0][0])):

#wilin call 1
for iblades in range(numberOfBlades):

for iradial in range(dimensionInRadialDirection):
for iazimutal in range(1,

↪→ dimensionInAzimualDirectionTotal):
for i1 in range(len(vx[0])):

for i2 in range(len(vx[0][0])):
for i3 in range(len(vx[0][0][0])):

#wilin call 2
for iDir in range(3):

for i in range(numberOfBlades):
for j in range(dimensionInRadialDirection):

for k in range(dimensionInAzimualDirectionTotal):
x[iDir][i][j][k] = x[iDir][i][j][k] + dt * vx[iDir

↪→ ][i][j][k]

Listing 1: Call of the function wilin in Python.

In the first seven lines the induced velocities of the lateral
vortices and in lines eight to 14 the induced velocities of
the longitudinal vortices are computed. After that, the grid
nodes are updated.

def wilin(dax, day, daz, dex, dey, dez, ga, ge, wl, vx, vy, vz):
rcq = 0.1
daq = dax**2 + day**2 + daz**2
deq = dex**2 + dey**2 + dez**2
da = math.sqrt(daq)
de = math.sqrt(deq)
dae = dax * dex + day * dey + daz * dez
sqa = daq - dae
sqe = deq - dae
sq = sqa + sqe
rmq = daq * deq - dae**2
fak = ((da + de) * (da * de - dae) * (ga * sqe + ge * sqa) +

↪→ (ga - ge) * (da - de) * rmq) / (sq * (da * de + eps
↪→ ) * (rmq + rcq * sq))

fak = fak * wl / math.sqrt( sq )
vx = vx + fak * (day * dez - daz * dey)
vy = vy + fak * (daz * dex - dax * dez)
vz = vz + fak * (dax * dey - day * dex)
return vx, vy, vz

Listing 2: Function for the velocity induction in Python.

When first called the function wilin from listing 2 has the
parameters:



• x[:][i1][i2][i3] - x[:][iblades][iradial][iazimutal]

• x[:][i1][i2][i3] - x[:][iblades][iradial - 1][iazimutal]

• transversalVorticity[iblades][iradial][iazimutal]

• transversalVorticity[iblades][iradial - 1][iazimutal]

• transversalVortexLength[numberOfBlades-1]
[dimensionInRadialDirection-1][iazimutal]

• vx[:][i1][i2][i3]

The return values of this function are stored in vx[:][i1][i2][i3].
In the second call the parameters two and four of wilin have
incremented or decremented indices iradial or iazimutal, re-
spectively. Listing 2 shows the function wilin which computes
the induced velocities of the vortex segments.

4.2 Implementation using Cython
Opposite to all other implementations in this paper, Cython
requires variables with types:

cdef <Variablentyp> <Variablenname>

In the Cython implementation of the Freewake kernel, all
arrays are initialized as NumPy arrays (cf. section 4.3) and
then immediately transformed into Cython memory views.
The latter provide efficient access to NumPy arrays, without
Python overhead. For further optimization of the kernel in
Cython, the order of the loops was changed, the return values
were stored in a “struct” and the loop operations parallelized.
The loops with the indices iblades, iradial and iazimutal from
listing 1 were shifted behind the loop with index i3 in order
to make parallel execution of the loops possible. This is
necessary since the velocities are added together in vx over
the loops with indices iblades, iradial and iazimutal. The
return values of the function from listing 5 are written into
a struct. Subsequently, these values have to be stored into
associated positions of the array. With these changes the
loops do not contain any Python objects any more so that the
GIL can be circumvented with the statement nogil and loop
parallelization can be realized with the function prange. The
latter parallelizes loops with OpenMP. Best parallelization
results are achieved if the prange loop is the outermost loop.
This avoids overhead through too frequent thread generation
and termination for prange loop calls. The loop with index
i1 has only four cycles in the test kernel. Since the CPU of
our computer system has six cores optimal performance is
not possible if this loop is parallelized. The loop with index
i2, however, has 12 cycles and achieves best performance
here. Parallelization of several loops is possible, but does not
give better performance due to distinctly increased overhead
for thread generation and termination. Interchange of the
loops with indices i1 and i2 gives a further performance
increase by 20% so that the Cython kernel gets the loop
order in listing 3. For parallel execution of the Cython code
using OpenMP, the Cython compiler and linker require the
argument -fopenmp.

For the parallelization as described above we need to modify
the wilin function so that it does not use any Python objects.
In order to find all statements which generate access to
Python objects Cython offers the option annotate.

for i2 in prange(dimensionInRadialDirection):
for i1 in xrange(numberOfBlades):

for i3 in xrange(dimensionInAzimualDirectionTotal):
for iblades in xrange(numberOfBlades):

for iradial in xrange(1,
↪→ dimensionInRadialDirection):

for iazimutal in xrange(
↪→ dimensionInAzimualDirectionTotal):

Listing 3: Optimized loop order in Cython.

This option also provides information about the execution
time per code line A further optimization option is Cdi-
vision(True) which deactivates Python tests for divisions.
Python tests may slow down code execution by about 35%.
With boundscheck(False) Cython avoids array boundary
checks which further accelerates the code. As C Cython
can not return several function values. This problem was
circumvented by the struct myret from listing 4.
cdef struct myret:

double vz1
double vx1
double vy1

Listing 4: Struct with three doubles as return type in Cython.

The Cython function wilin possesses an input parameter
of type myret and has the return type myret. Listing 5
displays the Cython function wilin in detail. The square root
computation in lines 7, 8 and 15 is performed by C routines
through the import of libc.math.
@cython.cdivision(True)
@cython.boundscheck(False)
cdef myret wilin_mem(double dax, double day, double daz, double

↪→ dex, double dey, double dez, double ga, double ge,
↪→ double wl, double vx1, double vy1, double vz1, myret
↪→ ret)nogil:

cdef double rcq = 0.1
cdef double daq = dax**2 + day**2 + daz**2
cdef double deq = dex**2 + dey**2 + dez**2
cdef double da = sqrt(daq)
cdef double de = sqrt(deq)
cdef double dae = dax*dex + day*dey + daz*dez
cdef double sqa = daq - dae
cdef double sqe = deq - dae
cdef double sq = sqa + sqe
cdef double rmq = daq * deq - dae**2
cdef double fak = ((da + de) * (da*de - dae) * (ga*sqe + ge*

↪→ sqa) + (ga - ge) * (da - de) * rmq) / (sq * (da*de +
↪→ eps) * (rmq + rcq*sq))

cdef double fak2 = fak * wl / sqrt(sq)
ret.vx1 = vx1 + fak2 * (day*dez - daz*dey)
ret.vy1 = vy1 + fak2 * (daz*dex - dax*dez)
ret.vz1 = vz1 + fak2 * (dax*dey - day*dex)
return ret

Listing 5: Function for the velocity induction in Cython.

4.3 Implementation using NumPy
NumPy provides fast array operations for Python. NumPy
arrays can be used rather than standard Python lists in
a Freewake kernel implementation. Listing 6 shows how a
NumPy array is generated. “shape” defines dimension and
size of the array, “dtype” the data type of the array elements.
import numpy as np
x = np.ones(shape = (dim1, dim2, dim3, dim4), dtype = np.float64

↪→ )

Listing 6: Generation of a NumPy array.



Operations on NumPy arrays exploit fast C routines. Good
performance for our kernel implementation can be expected if
the function wilin obtains array parameters. Listing 7 shows
how wilin is called for the exploitation of NumPy arrays.

In the first four lines, the induced velocities of lateral vortices
are computed, in lines five to eight the induced velocities of
longitudinal vortices.

for iblades in xrange(numberOfBlades):
for iradial in xrange(1, dimensionInRadialDirection):

for iazimutal in xrange(dimensionInAzimualDirectionTotal)
↪→ :

#wilin call 1
for iblades in xrange(numberOfBlades):

for iradial in xrange(dimensionInRadialDirection):
for iazimutal in xrange(1,

↪→ dimensionInAzimualDirectionTotal):
#wilin call 2

for iDir in range(3):
for i in range(numberOfBlades):

for j in range(dimensionInRadialDirection):
for k in range(dimensionInAzimualDirectionTotal):

x[iDir][i][j][k] = x[iDir][i][j][k] + dt * vx[iDir
↪→ ][i][j][k]

Listing 7: Call of the wilin function with NumPy.

Afterwards, all grid nodes are updated. This changes the
parameters for wilin.
x[0][i1][i2][i3] - x[0][iblades][iradial][iazimutal] from listing
2 becomes x[0] - x[0, iblades, iradial, iazimutal]. The other
parameters change accordingly. The operations +, *, - and /
are now element-wise operations with NumPy arrays. Each
element of one array is added to, multiplied with, subtracted
from or divided by each element at the same position in
another array.

wilin in the NumPy implementation looks like the standard
Python function from listing 2. Just the NumPy square root
function numpy.sqrt replaces math.sqrt in listing 2.

4.4 Implementation using Numba
With Numba we discuss three optimized kernel versions
for a single core of a CPU, for multi-core CPUs and for
GPUs, respectively. All three versions considered base on
the NumPy implementation.

4.4.1 Single-Core Optimization
Numba tries to execute as much code as possible in the
accelerated “nopython” mode. The generation of NumPy
arrays is not possible in this mode. The Numba single-core
variant annotates the function from listing 2 and the function
which includes the loops from listing 7 with autojit. This
annotation makes Numba compile these functions to machine
code. For calls of functions annotated with autojit, Numba
is able to automatically recognize which data and data types
are handed over.

4.4.2 Multi-Core Optimization
Until version 0.11 Numba included the command “prange”.
This command made loop parallelization possible in a similar
way to Cython with OpenMP. An own thread was started
for each loop cycle, and the threads were distributed to all
availabe CPU cores. From version 0.12 “prange” could not

be used any more due stability and performance problems
as a Numba developer stated [19].

The “parallel” backend of the Vectorize function is another
possibility to parallelize functions. The same operation is
performed in parallel for all elements of a list [18]. However,
the Freewake kernel considered can not be vectorized in
this way since a function vectorized with Numba can only
possess one return value and since the summation of all
velocities is not possible in such a function. Thus multi-core
optimization could not be performed with Numba at the
time of this investigation.

4.4.3 GPU Optimization
With the CUDA JIT annotation, Numba offers a machine-
oriented CUDA entry point. A function annotated in this
way is executed on the GPU of a computer system. Such a
Freewake kernel implementation for GPUs requires the addi-
tional parameters blockdim and griddim. griddim indicates
how many thread blocks shall be started in a grid structure;
blockdim specifies the number of threads to be started per
thread block. Figure 4 displays the thread distribution on a
GPU. Before GPU computations can be performed data from
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Figure 4: Distribution in blocks and Threads on a GPU.

the main memory of the CPU has to be transmitted into the
GPU memory. The command cuda.to_device(vx) tranfers
the variable vx into the memory of the GPU. Subsequently,
the GPU can access and operate on these data. As soon
as the GPU computations are finished the result data can
be transferred back to CPU main memory by vx.to_host().
Figure 5 displays the data transfer between CPU and GPU.
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i1 = cuda.blockIdx.x
i2 = cuda.blockIdx.y
i3 = cuda.threadIdx.x

Listing 8: Identification of CUDA threads.

For each cycle of the loops with indices i1 to i3, a thread is
generated with blocks of dimension blockdim and a block grid
of dimension griddim as illustrated in Figure 4. Listing 8
shows the identification of the threads in our Freewake kernel
implementation. After completion of all cycles of the iblades
loop the threads are synchronized with cuda.syncthreads().
This ensures that all computations have been completed
before result data are transferred to the CPU.

4.5 Parallel Implementation using “Python
Bindings for Global Array Toolkit”

The Freewake kernel implementation using Global Arrays
as well bases on the NumPy implementation. The function
wilin uses the formulation from listing 2. During array ini-
tialization, Global Arrays of same dimension and type as the
corresponding NumPy arrays must be generated additionally.
Listing 9 shows an example.

g_x = ga.create(ga.C_DBL, [dim1, dim2, dim3, dim4])

Listing 9: Generation of an Global Array.

This implementation marks Global Arrays with g_ and local
partial arrays with l_. Computations with local variables
are performed with NumPy arrays. At the end of the ini-
tialization the data from the NumPy arrays are written into
Global Arrays as shown in listing 10.

ga.put(g_x, l_x)

Listing 10: Writing into an Global Array.

This implementation has the disadvantage that some arrays
are duplicated on each compute node. This increases the
memory requirements. The essential Global Array functions
ga.nodeid() and ga.nnodes() determine the current compute
node ID and the number of compute nodes, respectively. The
functions permit execution of commands on certain nodes
only, e.g, timings or outputs. The Global Array Toolkit
automatically cares for even distribution of the Global Arrays
to the compute nodes if the distribution is not specified
particularly. The scope of a Global Array administrated on
a compute node can be requested as shown in listing 11.

lo,hi = ga.distribution(g_x, node)

Listing 11: Determination of the scope of a Global Array
administrated on a certain compute node.

Synchronization of all processes as illustrated in Figure 6 is
possible with the following Global Array Toolkit function:

ga.sync()

Listing 12: Synchronization of all processes.

sync

Figure 6: Process synchronization.

This function ensures finalization of all actions on Global
Arrays.

The parallelization idea in this implementation is that each
process computes the induced velocities only for partial arrays
as illustrated in Figure 7 and finally writes its partial result
into the Global Array. A partitioning of the problem into
smaller partial problems is easily possible for the Freewake
kernel since the partial problems are independent from each
other. With the command

sync

Process 1

Process 3

Process 2

Process 4

Total problem

Figure 7: Distribution scheme of a problem in parallel partial
problems.

l_x = ga.get(g_x,lo,hi)

the locally available Global Array elements are loaded into
a local variable. These elements are then locally processed
and the results finally written from the local array into the
associated positions in the Global Array:
ga.put(g_x, l_x, lo,hi)

The function wilin is similarly called as in the NumPy im-
plementation. Only the first array from the parameter x[0] -
x[0, iblades, iradial, iazimutal], e.g., is replaced by the local
array l_x. The second array refers to the Global Array g_x.
For six cores, the program is started via the MPI framework
as follows:
mpirun -np 6 ./globalArray.py

5. PERFORMANCE ANALYSIS OF THE RO-
TOR SIMULATION KERNEL

5.1 Environment for Performance Tests
The CPU of the computer system used for performance tests
is an Intel Xeon E5645 [9]. The CPU possesses six cores with
a clock rate of 2.4GHz [12] and a shared cache of 12288KB.
The theoretical single precision (SP) peak performance is
57.6GFLOPS, the double precision (DP) peak performance
28.8 GFLOPS. The measured memory bandwidth for a
stream triad benchmark 2 amounts to 19GB/s.
2Addition of two vectors and multiplication of a scalar with
another vector.



The system includes an NVIDIA Tesla C2075 GPU. Its 448
CUDA cores are clocked with 1150MHz. The memory band-
width is 144GB/s [23]. The SP peak performance amounts
to 1030GFLOPS, the DP peak performance 515GFLOPS.

5.2 Roofline Performance Model
The roofline model offers a simple possibility to model perfor-
mance [30]. It provides the upper performance boundary for
an algorithm depending on the ratio of data transfer volume
to number of operations.

In the roofline model, this ratio is denoted “balance”. The
balance of a machine is the ratio of memory bandwidth to
CPU peak performance:

Bm = memory bandwidth [GBytes/s]
peak performance [GFLOP/s] . (1)

The code balance indicates the requirements of an algorithm.
It computes as the ratio of data tranfer volume to number
of floating points operations in the algorithm:

Bc = data traffic [Bytes]
floating point operations [FLOP] . (2)

The data traffic value of an algorithm refers to the limiting
data transport path. The ratio of machine to code balance
gives the maximally achievable factor of the theoretical peak
performance of a CPU or GPU for an algorithm [10]:

l = min
(

1,
Bm

Bc

)
(3)

Thus the maximum performance of our Freewake kernel
amounts to peak performance · l.

5.3 Machine Balance for CPU and GPU
The machine balance is different for CPU and GPU. All our
implementations apply DP arithmetic. Thus the DP peak
performance has to be used for machine balance determina-
tion.

For the computer system used, the CPU machine balance
amounts to

Bm = 19 [GByte/s]
28.8 [GFLOP/s] = 0.6597 . (4)

All codes with a code balance larger than 0.6597 are band-
width limited on this CPU. This means that data can not be
fast enough transfered to the CPU to perform calculations
continously.

The GPU machine balance of the test system gives

Bm = 144 [GByte/s]
515 [GFLOP/s] = 0.2796 . (5)

5.4 Performance Modelling for the Rotor Sim-
ulation Kernel

The Freewake kernel essentially stores its data in six arrays.
Two of these arrays have a size of 3 ·4 ·12 ·144 in our test case,
the remaining four a size of 4 · 12 · 144. The size of additional
data is not relevant for the following considerations. Thus
the kernel uses a data volume of about 2 · (3 · 4 · 12 · 144) ·
8Bytes + 4 · (4 · 12 · 144) · 8Bytes = 552960Bytes.

The function wilin consists of circa 70 operations which
are performed in each loop cycle. The number of loop cy-
cles nLoops depends on the four variables numberOfBlades
(nB), dimensionInRadialDirection (dR), dimensionInAzimu-
talDirection (dA) and numberOfTurns (nT) and can be
determined with (6).

nLoops = nB2 · dR · dA · nT · ((dR − 1) · dA · nT
+dR · (dA · nT − 1)) (6)

Insertion of the values used gives 42 · 12 · 36 · 4 ·
(
(12 − 1) ·

36 · 4 + 12 · (36 · 4 − 1)
)

= 91, 238, 400 loop cycles. 91,238,400
calls of function wilin with circa 70 operations per call give
about 6.5 billion executed operations in total.

With these values, the code balance of the Freewake kernel
can be determined according to (7).

Bc = 550, 000[Bytes]
6, 500, 000, 000[F LOP ] = 0.00008 Bytes

F LOP
. (7)

With the code balance from (7) and the machine balances
for CPU from (4) and for GPU from (5), we obtain the
performance factors of the kernel for CPU and GPU with
(8) and (9), respectively.

lCP U = min
(

1,
0.6597
0.00008

)
= 1 (8)

lGP U = min
(

1,
0.2796
0.00008

)
= 1 (9)

This means the Freewake kernel is able to exploit the com-
putational peak performance of the CPU or the GPU since
its performance is neither limited by the memory bandwidth
of the CPU nor by that of the GPU.

With the number of kernel operations and the peak perfor-
mance values of CPU and GPU, (10) and (11) determine a
minimal runtime of 0.23 s on the CPU and of 0.0126 s on the
GPU, respectively.

TCP U = 6, 500, 000, 000
28, 800, 000, 000 1

s

= 0.23s (10)

TGP U = 6, 500, 000, 000
515, 000, 000, 000 1

s

= 0.0126s (11)

A serial implementation reduces the CPU performance by
a sixth. This gives a minimal serial kernel runtime of 1.35 s
according to 12.

TCP Useriell = 6, 500, 000, 000
4, 800, 000, 000 1

s

= 1.35s (12)

6. PERFORMANCE COMPARISON OF THE
IMPLEMENTATIONS

In this section, we discuss the performance of the Python
implementations developed in comparison with the reference
implementations in Fortran. We examine the performance
on a single core, on the full multi-core CPU and on the GPU
of the test hardware.

6.1 Single-Core Performance
Without additional libraries our standard Python implemen-
tation of the Freewake benchmark takes 638 s on a single core



Implementation Time
Python 638s
NumPy 12.99s
Numba 22.62s
Cython 5.50s
Fortran 2.38s

Table 1: Results of the single-core implementations.

(cf. Table 1). NumPy use accelerates the benchmark run to
12.99 s by execution of efficient C routines in the background.
LLVM compilation of the benchmark with Numba generates
an overhead so that the runtime increases to 22.62 s com-
pared with that of the pure NumPy variant. The Cython
implementation is with 5.5 s circa half as fast as the optimized
Fortran implementation which takes 2.38 s. Figure 8 displays
the GFLOPS rates of all single-core implementations.

Figure 8: GFLOPS of the serial implementations.

Also the Fortran implementation does not come close to
the minimally possible serial time of 1.35 s from (12). The
reason is that the simple performance model in section 5
assumes that only multiplications and additions are executed
in parallel. The Freewake kernel, however, does include
square root operations and divisions in addition. A more
accurate prediction would require a further refined model.

An analysis of the Cython run with the performance anal-
ysis tool Likwid [13] gives that SIMD operations (Single
Instruction Multiple Data) are not exploited. This explains
why the Cython version only reaches half of the performance
of the Fortran version. The NumPy version exploits SIMD
operations, but generates temporary arrays during wilin func-
tion calls. This significantly increases the data volume so
that the cache behavior is negatively effected. The latter
causes a significant performance loss. The JIT conversion of
Numba is a black box so that the developer can not track
which operations are executed. A Likwid analysis of a run
of the Numba version indicates the execution of scalar op-
erations beside SIMD operations. This partially explains
performance losses compared with the NumPy version. The
standard Python implementation applies dynamic data types
which reduce performance drastically.

Implementation Time Speed-Up
Cython 1.03s 5.3

Global Arrays 4.34s 3.7
Fortran 0.440s 5.4

Table 2: Results of the multi-core implementations.

Implementation Time
Numba 0.770s

Fortran + OpenACC 0.086s

Table 3: Results of the GPU implementations.

6.2 Multi-Core Performance
On the multi-core CPU with six cores, a run of our Cython
implementation parallelized with OpenMP took 1.03 s. A
run of the version exploiting Global Arrays was with 4.34 s
circa four times slower. The Fortran kernel is the fastest
variant with 0.44 s (cf. Table 2). As in the serial case, the
parallel Fortran implementation is circa half as fast as the
performance model predicted in (10). For the Cython imple-
mentation, OpenMP parallelization results in a performance
increase from 1.09GFLOPS on one core to 5,78GFLOPS on
six cores (cf. Figure 8 and Figure 9). The performance on six
cores is with 1.38 GFLOPS distinctly lower for the Global Ar-
ray version compared with the Cython version. The Global
Array version, however, maintains the clear syntax of Python
while the Cython version essentially shows C style syntax.
The third column of Table 2 lists speed-ups of the runs on

Figure 9: GFLOPS of the parallel implementations.

six cores compared with single-core runs. While speed-ups
for the Cython and Fortran version are with 5.3 and 5.4
close to the maximum of six, the Global Array version only
achieves a speed-up of 3.7. Main reasons for this are data
duplication and the communication between local arrays and
Global Array (cf. section 4.5).

6.3 GPU Performance
The maximum number of independent threads for execu-
tion of the Freewake kernel on the GPU of the test hard-
ware is given by the product of the values of the variables
numberOfBlades (nB), dimensionInRadialDirection (dR), di-
mensionInAzimutalDirection (dA) and numberOfTurns (nT)



according to (13).

maxThreads = nB ·dR ·dA ·nT = 4 · 12 · 36 · 4 = 6912 (13)

Each of these threads computes the sum of the induced
velocities of all vortex segments for one grid node. This
makes possible to subdivide each thread in circa 6000 further
threads and to add the contributions of all vortex segments as
the last step. On the GPU used, execution of an arithmetic
operation requires 22 clock cycles [5]. In order to avoid this
latency an operation should be available in every clock cycle.
For 488 GPU cores, this requires at least circa 10,000 threads.
This is given through the subdivision of the threads; the
maximum number of threads is then 60002. Numba does not
automatically perform the summation of the contributions in
the end. Thus the code has to be significantly restructured.
The restructuring does not match our goal of an as simple
and as clear as possible implementation in Python. Therefore
we just exploit the 6912 independent threads from (13) in
our Numba inplementation and do not use the capacity of
the GPU completely. A higher thread number than that of
our test problem would give an increased performance on
the GPU.

Our Numba implementation of the Freewake benchmark
achieved a runtime of 0.77 s on the GPU with a performance
of 7.79GFLOPS. This was the shortest execution time we
achieved with a Python implementation. A run of the Fortran
implementation exploiting GPU parallelization with Ope-
nACC [24] took 0.086 s with a performance of 69.77GFLOPS
(cf. Table 3 and Figure 10). While the GPU Numba version
could be fast produced the development of the GPU For-
tran version with OpenACC parallelization was extremely
time-consuming.

Figure 10: GFLOPS of the GPU implementations.

7. CONCLUSION
This investigation confirms that standard Python implemen-
tations without additional libraries as a rule achieve distinctly
less compute performance than implementations in low-level
programming languages like C or Fortran. For the CFD
benchmark considered here, the standard Python version
merely achieved three-thousandths of the performance of
the Fortran version on a single CPU core. NumPy exploita-
tion could increase performance to a sixth of that of Fortran,
Cython exploitation to half of the Fortran performance. How-

ever, Cython does not maintain the clear syntax of Python,
but rather supports C style programming.

On multi-core systems with shared memory, the Cython
with OpenMP implementation again achieves half of the
performance of the parallel Fortran version. The only parallel
implementation examined which maintains a clear Python
syntax exploits Global Arrays and reaches a tenth of the
Fortran version performance.

The Numba implementation for GPUs is faster than all CPU
Python implementations in this investigation. However, the
Numba implementation performance is far from the optimum;
the performance of the Fortran with OpenACC version is
about 10 times higher on the GPU.

We conclude that Python programs for complex applica-
tion kernels as a rule can not achieve the performance of
corresponding programs in low-level languages on parallel
hardware. However, moderate and in many cases satisfactory
performance can be reached if appropriate Python libraries
are exploited. In this investigaton, all parallel Python ver-
sions showed satisfactory speed-ups on a shared-memory
multi-core system. On the other hand, development of the
parallel Python kernels was considerably faster than that of
the parallel Fortran kernels. This is a clear plus in parallel
code productivity for Python and matters particularly if large
complex application codes and not only small benchmark
kernels have to be developed. We definitively recommend
Python for parallel prototype development. If the runtime
of a parallel application is not too critical and performance
losses do not harm too much software development with
Python plus extensions for parallel programming is a real
option. From our investigation, we prefer Python with Global
Arrays for parallel programming on multi-core systems since
it provides an appropriate high programming level. Cython
with parallel constructs promises higher performance, but
the syntax is essentially C style.

In our investigation, Numba offered simple access to GPU
performance. With Numba, CFD kernel development for
GPUs was significantly faster than with Fortran and Ope-
nACC. Parallelization via OpenACC directives should be
easy, but requires to pay attention to several intricacies. For
example, not all Fortran, C or C++ language features are
applicable within an OpenACC region. Numba is a simple op-
tion for kernel acceleration by GPU usage. The programming
style is clear and structured. However, GPU performance of
a Numba kernel can be far from optimum.

We expect that the community behind NumPy, Numba,
Cython and Global Array projects, e.g., will actively fur-
ther develop their solutions so that parallel programming
with Python will become increasingly more efficient on mod-
ern parallel hardware. Together with the clear productivity
advantage of parallel Python programming to parallel pro-
gramming in low-level languages, this would justify a more
general use of Python with parallel extensions in the HPC
area.
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