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Abstract

With greater pressures of providing high-quality care at lower cost due to a changing financial and 

policy environment, the ability to understand variations in care delivery and associated outcomes 

and act upon this understanding is of critical importance. Building on prior work in visualizing 

health-care event sequences and in collaboration with our clinical partner, we describe our process 

in developing a multiple, coordinated visualization system that helps identify and analyze care 

processes and their conformance to existing care guidelines. We demonstrate our system using 

data of 5,784 pediatric emergency department visits over a 13-month period for which asthma was 

the primary diagnosis.
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1. INTRODUCTION

Visualizing healthcare event sequences derived from clinical and administrative claims data 

has been a topic of growing interest to information visualization researchers [20, 6]. 

Conceptualizing sequential healthcare activities as “careflow” has become widespread in 

visualization research [14] and healthcare systems engineering research [12]. A key 

motivation behind this body of research is to understand how care is delivered to an 

individual or a group of patients, with the aim to identify common care delivery patterns, 

bottlenecks, and best practices [4]. With greater pressures of providing high-quality care at 

lower cost due to a changing financial and policy environments, the ability to understand 

variations in care and associated outcomes and act upon this understanding is of critical 

importance [21].

[18] provide a comprehensive overview to different interactive information visualization 

approaches for exploring and querying electronic health records of individual as well as 

collection of patients. Exemplary visualization systems at the individual patient level include 

LifeLines [16], KHOSH-PAD [7], and Midgaard [2]; at the cohort level examples include 

Lifelines2 [22], Similan [25], LifeFlow [24], Outflow [23], and VisCareTrails [11]. 

However, there are still many open challenges in visualizing time-oriented healthcare data, 

including the scalable analysis of patient cohorts and variations in care [1]. Recently, visual 

analytics approach is being actively applied to comparison between actual care process and 

guideline care process for a single patient [5] or a patient cohort [8].

Our research builds on and integrates many different aspects of prior and focuses on the 

design and development of a multiple coordinated visualization system that helps identify 

and analyze variation of care processes and their conformance to existing care guidelines. 

Our use context is pediatric asthma care in emergency departments. This paper describes our 

journey in designing and implementing our system in collaboration with our clinical partner. 

We conclude with implications and next steps.

2. DATA

Our dataset includes all pediatric ED visits over a 13-month period for which asthma was 

the primary diagnosis. For each of these 5,784 visits we obtained information regarding 

administrative events, clinical respiratory test events, laboratory test events and medication 

administration events with their date/timestamps. We also received detailed demographic, 

charge, and provider-related information for each visit. A summary of the data is provided in 

Table 1. For this study we focused only on the visualization of laboratory and medication-

related events for patients grouped based on laboratory tests or medications. We ignored 

administrative events since they are performed for almost all patients. The data was received 

as comma separated value (csv) files split into several tables as a relational database. The 

visit.csv file contained 5,785 visit observations and had 143 attributes, including 

demographic information and administrative timestamps. The medications.csv and 

labresult.csv files contained information regarding medication and lab-related date/

timestamps, respectively.
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3. DESIGN REQUIREMENTS

We conducted in-depth field studies and interviews with seven clinicians, health 

informaticians, and care quality improvements managers with significant work experience to 

derive design requirements for a care process visualization tool. All participants had 

significant decision support experience and basic knowledge of data visualization 

techniques. Cumulatively, this group of practitioners provided a significant level of expertise 

needed to inform the design of our system. The results of our field study led to the 

identification of a number of core requirements that drove our system development.

• Provide a performance summary. All participants emphasized the need for a 

single page summary dashboard of key performance metrics. One clinician noted 

that “this summary should help provide an overview to everything that matters 
about that patient population.”

• Enable interactive specification of a patient population. Three participants 

suggested that the ability to specify a patient population based on clinical and 

demographic characteristics for analysis was important. They also suggested that 

it would be good to save these customized patient populations for subsequent 

analysis.

• Provide multiple, coordinated visualizations. Five of the participants 

encouraged us to develop multiple, coordinated visualizations that provided 

complementary insights into the same underlying dataset. As one quality 

improvement manager commented “it is important to see the data from different 
perspectives to gain triangulated insights.”

• Enable comparisons between patient populations. Six participants encouraged 

us to develop visualizations that would compare the care processes of patient 

populations.

• Provide data in table view. Interestingly, despite the perceived value of 

visualizations, all participants also wanted to see the raw data in a sortable table 

format, partly because they were compatible with spreadsheets formats.

4. SYSTEM

Based on this user and task analysis, we developed a web-based visualization system that 

enabled clinicians and quality managers to explore care processes and their conformance to 

guidelines. The initial version of the system provided a single graph-based visualization 

using a semantic substrate approach [3]. While most users felt the visualization was intuitive 

and user-friendly, it lacked the ability to deeply analyze and compare care processes of 

patient populations because it focused on visualizing individual careflows and comparing 

two careflows from separate two individuals [10]. We thus decided to fundamentally 

redesign our system incorporating the knowledge we gained building and evaluating the first 

version.

The system interface (see Figure 1) is divided into two regions. At the top is the navigation 

bar that allows the clinicians to switch between visualizations and access the performance 
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summary page. A menu icon at the top left allows a user to see, on-demand, what patient 

population has been selected and what filters have been applied. The bottom frame is 

dedicated to the display of visualizations. Within each visualizations, there are tabs that 

allow switching between subvisualizations.

4.1 Visualizations and Interactions

4.1.1 Summary Charts and Tables—The summary chart page provides three patient 

cohort descriptors and interactive histograms to represent the distribution of six key 

performance variables (see Figure 1). The patient cohort descriptors include the total number 

of patients, the number of providers for these patients, and an overall disposition index. The 

key performance variables include acuity, change in CRS (clinical respiratory score), 

disposition (Admit, Discharge, ICU (intensive care unit), OR (operating room), Transfer), 

the length of stay (in minutes), number of medication/lab activities, and total charges ($). We 

used cross-filters to enable users to brush over one chart and see the corresponding changes 

appear in the other performance charts (see Figure 2).

The main dashboard affords to show comparison between two selected cohorts. Figure 3 

demonstrates a concrete example of such comparison between patients with beginning 

CRS>3 (Cohort A; blue) and patients with beginning CRS<3 (Cohort B; orange). Clinically 

speaking, Cohort A is sicker than Cohort B. We use blue and orange colors to distinguish 

between the two cohorts. Six visualizations of key metrics show stacked charts. Inspection 

of the six panels of stacked charts already validates some intuitions and provides additional 

insights about the selected cohorts. The acuity level of Cohort A is actually lower than that 

of Cohort B, which is counter-intuitive and potentially revealing fundamental differences 

between acuity and CRS measures. Cohort A experiences larger drop in CRS than Cohort B 

as there is little room for improving CRS for patients in Cohort B. The discharge-to-

admission ratio is much higher for Cohort B, while the length of stay per ED visit episode is 

much longer for Cohort A. Patients in Cohort B receive less medications and lab tests, thus 

are billed less amount of total charges.

The table view in Figure 4 complements the summary charts by providing in-depth 

inspection into the data on three different levels of aggregation. At the patient level, users are 

able to browse individual patients and their clinical conditions and charges. The provider-

level summary table shown in Figure 4 provides performance summary of each care 

provider. In this view, the average of three key performance metrics are displayed: the 

change in CRS, total charges, and the disposition types. Lastly, the activity summary table 

lists averages of the metrics computed per activity. Search box on the top right allows for 

quick identification of the data points of interest.

4.1.2 Treemap—The treemap representation captures the hierarchical distribution of 

medications and laboratory tests (see Figure 5). The treemap is zoomable and provides 

breadcrumb information to allow users to navigate back quickly. Cells can be sized and 

color-encoded by different variables. These variables include the number of occurrences of 

the activity, the number of patients, the average charge, the average change in clinical 
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respiratory scores, and the average acuity level. Cell color scales are chosen corresponding 

to the scale of the selected variable.

4.1.3 Scatterplot—The scatterplot allows users to specify two variables of interest and 

plot the associated data points in x–y space (see Figure 6). Users can select two variables 

using the dropdown menus at the top. Given the possible data density for some patient 

populations, we provide users the ability to zoom and pan across the data. Data points are 

color-encoded using the corresponding cohort color. In this case, we select the number of 

activities as x-axis and the length of stay as y-axis. We clearly see an overall positive 

correlation with some variations between the two variables as expected. We also observe a 

few outliers that may warrant further case-by-case examination to gain insights for process 

improvement.

4.1.4 Sankey Diagram—The Sankey diagrams are suited to display flows between 

interconnected networked processes [17, 19]. Figure 7 shows the Sankey diagram of 

frequent care subprocesses computed by the PrefixSpan algorithm [13]. The algorithm takes 

in the threshold value as a parameter. Subprocesses experienced by at least a certain portion 

of the patients in a cohort are returned by the algorithm as frequent subprocesses. The level 

of abstraction and granularity is another input dimension in our Sankey diagram. In the case 

shown in Figure 7, we use 5% of the cohort as the threshold and treat activities in the same 

activity group as one object. Our implementation of the Sankey diagram takes into account 

only the order of the subprocesses not continuous time interval between activities, which is 

shown in the regularly placed and vertically aligned nodes in the figure.

When two cohorts—Cohort A (CRS>3) and Cohort B (CRS<3)—are selected as in Figure 7, 

we extract frequent subsequences for four distinct groups: (1) only in Cohort A, (2) only in 

Cohort B, (3) both in Cohort A and B, and (4) exclusively in Cohort A and B. Overall, 

clinicians are interested in learning which subprocesses are associated with a certain cohort 

of patients. Groups 1 and 2 are straightforward to understand. Using the set notation, those 

subprocesses are from A\B and B\A. Group 3 represents the intersection between the two 

cohorts, i.e., A ∩ B. Lastly, Group 4 means the union of exclusive subprocesses, i.e., (A\B) 

∪ (B\A).

The extracted frequent subprocesses are merged into a Sankey diagram as shown in the 

figure in [15]. A typical Sankey diagram consists of multiple layers placed horizontally. 

Layers represent the order of activities in each frequent subprocess. Blocks (or rectangles) in 

each layer represent care activities. Blue and red blocks correspond to activity types: 

medication and lab test result, respectively. Green blocks denote concurrently occurring 

activities. Block size is proportional to the number of patients who go through the care 

activity and each flow is also scaled by the number of patients following a certain path. 

Hovering over a block or a flow triggers a pop-up box displaying the detailed information 

about the item.

Each care activity is assigned a unique identifying number such as 8004, 8062, or 19. For 

example, activity 8004 (medications classified as Albuterol) is the most frequent starting 

point among the frequent care subprocesses. Major portions of the patients who receive 
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activity 8004 keep receiving 8004 followed by another 8004 or receive 19 or 8081. As such, 

the Sankey diagram is useful to quickly identify major flow elements in complex 

interconnected patterns.

4.1.5 Conformance Flowchart—Conformance computation requires a preset pathway 

guideline for care process developed based on the actual clinical practice. The Children’s 

Healthcare of Atlanta (CHOA) developed such a pathway guideline based on a few clinical 

severity measures. The CRS is the main factor that prescribes which type of care process a 

patient must receive. We convert the original pathway guideline into a decision tree. 

Diamond boxes denote branch nodes based on certain criteria. White rectangular boxes 

check whether a certain medication or lab test is given to patients. Gray rectangular boxes 

are terminal nodes where final compliance scores are computed. For each patient, we 

compute compliance score as the number of conforming activities divided by the total 

number of activities. Alternatively, the compliance score can be defined simply as the ratio 

of patients who receive the care strictly following the pathway guideline to the total number 

of patients. We implement zooming and panning functionalities into the conformance 

flowchart so as to possibly accommodate large guideline flowchart.

To illustrate, the first diamond box divides patients by their age. Those with age less than 18 

months are not the targets of the pathway guideline and are thus excluded from compliance 

score computation. Next, depending on the first CRS measurement, patients receive different 

sets of medications and treatments. In our particular case, required medications are additive 

from low to high severity. The lowest bracket (CRS 0–2) should receive only albuterol; the 

next lowest bracket (CRS 3–5) should receive albuterol and dexamethasone; the second 

highest bracket (CRS 6–8) should receive albuterol, dexamethasone, and ipratropium; the 

most severe group should receive all three medications and magnesium sulfate. These types 

of conformance checks based on CRS repeats up to three times. Patients receiving non-

conforming medications or lab tests are collected at one of the intermediate gray rectangular 

boxes.

4.2 System Usage

One of the key design considerations of our revised tool was to keep the overall workflow 

simple. A user begins by selecting one of three options to start the analysis: create/modify a 

patient cohort, analyze a patient cohort, or compare a patient cohort.

4.2.1 Creating and Modifying Patient Cohorts—Users frequently want to analyze a 

specific group of patients. To facilitate this, we provide an interactive visual functionality to 

create and modify patient cohorts based on demographic (age, gender), process (length of 

stay, number activities), clinical (acuity, initial CRS), health outcome (change in CRS, total 

charge, disposition), and financial payment characteristics (payor, financial class). By using 

small cross-linked, range-selectable charts to depict the distribution of each of these 

characteristics, a user is able to dynamically observe how the patient population changes 

following certain selections and hone in on a population of interest. After a desired patient 

group is selected, users can save it for future use. A sortable list of all patient cohorts, 

including their name and brief description, is provided for quick access or modification. Our 
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implementation of cohort selection mechanism focuses on using traditional visual elements 

such as histogram in order for clinicians to quickly comprehend cohort characteristics. There 

is a recent study that focuses on visualizing filtering logic and process employing advanced 

visual elements such as bar charts embedded in a treemap [9].

4.2.2 Analyzing Care Processes of a Patient Cohort—A user selects either a 

predefined/created cohort from a dropdown menu in the navigation bar. The entry in the 

dropdown menu includes the cohort name and the number of patients in the cohort in 

parenthesis (e.g. Female with Acuity >2 (1,083)). The user first sees the summary page for 

an overall performance overview and can navigate to the other visualizations using the 

navigation bar at the top.

4.2.3 Comparing Care Processes of Patient Cohorts—Similar to the analysis of a 

single patient cohort, a user selects two patient groups from two dropdown menus. The two 

patient groups and the corresponding data points in all visualizations are color-differentiated 

(Cohort 1: blue; Cohort 2: orange). We explored different ways of encoding the data, but 

color-differentiation resulted in the best usability and effectiveness following an informal 

evaluation. In the treemap view, we provide one treemap for each cohort. We considered 

many different ways to either integrate data into a single treemap, but it proved to be less 

effective. We also considered placing treemaps side-by-side, but due to space constraints and 

desire to maintain appropriate representation rations, we ultimately decided to “stack” the 

two treemaps. Each treemap is zoomable and cell size and color can be chosen from a 

dropdown menu. Hovering over each cell provides details about that activity, including 

number of times it was performed on number of patients. In the scatterplot, we integrate the 

different patient cohort data points into a single chart. Moreover, in addition to using 

different colors, we also used different shapes to encode the two groups. Patient cohort 1 

thus was encoded using blue, round markers, while cohort 2 was encoded using orange, 

diamond markers. We explored different visual encodings (size, shape), but these proved to 

be most effective. Given that data points could overlap, we applied some transparency to 

each marker. A bit more involved was the visualization design of two patient cohort 

careflows using Sankey diagrams. We contemplated many different designs, including the 

integration of two patient cohorts into one Sankey diagram. This however made the 

diagrams virtually unreadable and very cluttered. Following deep discussions with our 

clinical partners, we opted to use a tabbed approach for denoting different careflows. The 

tabs correspond to the cohorts as follows: Cohort1, Cohort2, careflows present in both 

Cohort1 and Cohort2, and careflows present in both Cohort1 and Cohort2 with a difference 

factor. By providing these options, we allowed users to deeply explore which careflows were 

unique in each cohort, where they overlapped, and which were most common.

5. PRELIMINARY RESULTS

A meticulous user study for the target user group is necessary for a visual analytics system 

because lack of validation with real users makes it hard to estimate the real value of such 

systems. We are planning to conduct a formal, broad value-based evaluation of our system 

with clinicians and care quality managers. The objective is to assess whether the system 

provides novel insights, supports routine tasks, and enables confidence in the underlying 
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data. We are also planning to examine the scalability of our system using an expanded 

pediatric emergency department dataset from broader patient population as well as other 

hospitals.

Preliminary results and evaluation with our clinical collaborators, however, suggest that out 

multiple coordinated process visualizations provide important insights into the underlying 

pediatric asthma care processes in the ED. The new simplified user interface with the 

navigation bar at the top (rather than at the side) and cross-linked performance charts struck 

a nice response with the participants. Practitioners particularly liked the ability to see the 

variation in care processes and their corresponding mapping to the guidelines. However, it 

was also clear from the response that clinicians also wanted the ability to perform deep 

queries along with general descriptive analytics, including the ability to explore questions 

such as “given a specific activity what are all possible prior process paths that could have 

lead to it?” This suggests the need for visual query based system. We aim to incorporate 

some of these more advanced features into future versions of our system. Particularly 

regarding the conformance flowchart, we plan to implement multiple views for different 

stakeholders in the care processes including not only patients and clinicians but also hospital 

administrators because they may have different perspectives on defining what good outcome 

is. Lastly, we plan to enhance semantic zooming functionalities in order for the system to be 

able to handle a larger patient data set than the current one.

Acknowledgments

This research was supported in part by Children’s Health-care of Atlanta, the Institute of People & Technology, and 
the Tennenbaum Institute. We would like to thank Prof. Nicoleta Serban, Dr. Burton Lesnick, Dr. Jim Bost, and Dr. 
Beth Schissel for feedback on the system and paper. This research is supported by the National Science Foundation 
Graduate Research Fellowship Program under Grant No. DGE-1148903. This research is also supported by grant 
U54EB020404 awarded by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) through 
funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov).

References

1. Aigner W, Federico P, Gschwandtner T, Miksch S, Rind A. Challenges of time-oriented data in 
visual analytics for healthcare. IEEE VisWeek Workshop on Visual Analytics in Healthcare. 2012:4.

2. Bade, R., Schlechtweg, S., Miksch, S. Proceedings of the SIGCHI conference on Human factors in 
computing systems. ACM; 2004. Connecting time-oriented data and information to a coherent 
interactive visualization; p. 105-112.

3. Basole RC, Braunstein ML, Kumar V, Park H, Kahng M, Chau DHP, Tamersoy A, Hirsh DA, 
Serban N, Bost J, et al. Understanding variations in pediatric asthma care processes in the 
emergency department using visual analytics. Journal of the American Medical Informatics 
Association. 2015; 22(2):318–323. [PubMed: 25656514] 

4. Basole RC, Braunstein ML, Sun J. Data and analytics challenges for a learning healthcare system. 
Journal of Data and Information Quality (JDIQ). 2015; 6(2–3):10.

5. Bodesinsky, P., Federico, P., Miksch, S. Proceedings of the 13th International Conference on 
Knowledge Management and Knowledge Technologies. ACM; 2013. Visual analysis of compliance 
with clinical guidelines; p. 12

6. Caban JJ, Gotz D. Visual analytics in healthcare–opportunities and research challenges. Journal of 
the American Medical Informatics Association. 2015; 22(2):260–262. [PubMed: 25814539] 

7. Combi, C., Portoni, L., Pinciroli, F. Artificial intelligence in medicine, pages. Springer; 1999. 
Visualizing temporal clinical data on the www; p. 301-311.

Basole et al. Page 8

Proc 2015 Workshop Vis Anal Healthc (2015). Author manuscript; available in PMC 2017 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Federico P, Unger J, Amor-Amorós A, Sacchi L, Klimov D, Miksch S. Gnaeus: utilizing clinical 
guidelines for knowledge-assisted visualisation of ehr cohorts. EuroVis Workshop on Visual 
Analytics (EuroVA 2015). 2015

9. Krause J, Perer A, Stavropoulos H. Supporting iterative cohort construction with visual temporal 
queries. IEEE Transactions on Visualization and Computer Graphics (VAST), Preprint. 2015

10. Kumar V, Park H, Basole RC, Braunstein M, Kahng M, Chau DH, Tamersoy A, Hirsh DA, Serban 
N, Bost J, et al. Exploring clinical care processes using visual and data analytics: challenges and 
opportunities. Proceedings of the 20th ACM SIGKDD conference on knowledge discovery and 
data mining workshop on data science for social good. 2014

11. Lins L, Heilbrun M, Freire J, Silva C. Viscaretrails: Visualizing trails in the electronic health record 
with timed word trees, a pancreas cancer use case. Proc IEEE Visual Analytics in Health Care 
(VAHC) Workshop. 2011

12. Park H, Clear T, Rouse WB, Basole RC, Braunstein ML, Brigham KL, Cunningham L. Multilevel 
simulations of health delivery systems: A prospective tool for policy, strategy, planning, and 
management. Service Science. 2012; 4(3):253–268.

13. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, MC. icccn. IEEE; 2001. 
Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth; p. 0215

14. Perer, A., Gotz, D. CHI’13 Extended Abstracts on Human Factors in Computing Systems. ACM; 
2013. Data-driven exploration of care plans for patients; p. 439-444.

15. Perer, A., Wang, F. Proceedings of the 19th international conference on Intelligent User Interfaces. 
ACM; 2014. Frequence: Interactive mining and visualization of temporal frequent event 
sequences; p. 153-162.

16. Plaisant, C., Milash, B., Rose, A., Widoff, S., Shneiderman, B. Proceedings of the SIGCHI 
conference on Human factors in computing systems. ACM; 1996. Lifelines: visualizing personal 
histories; p. 221-227.

17. Riehmann, P., Hanfler, M., Froehlich, B. Information Visualization, 2005. INFOVIS 2005. IEEE 
Symposium on. IEEE; 2005. Interactive sankey diagrams; p. 233-240.

18. Rind A, Wang TD, Wolfgang A, Miksch S, Wongsuphasawat K, Plaisant C, Shneiderman B. 
Interactive information visualization to explore and query electronic health records. Foundations 
and Trends in Human-Computer Interaction. 2011; 5(3):207–298.

19. Schmidt M. The sankey diagram in energy and material flow management. Journal of industrial 
ecology. 2008; 12(1):82–94.

20. Shneiderman B, Plaisant C, Hesse BW. Improving healthcare with interactive visualization. 
Computer. 2013; 46(5):58–66.

21. Smith, M., Saunders, R., Stuckhardt, L., McGinnis, JM., et al. Best care at lower cost: the path to 
continuously learning health care in America. National Academies Press; 2013. 

22. Wang, TD., Plaisant, C., Quinn, AJ., Stanchak, R., Murphy, S., Shneiderman, B. Proceedings of the 
SIGCHI conference on Human factors in computing systems. ACM; 2008. Aligning temporal data 
by sentinel events: discovering patterns in electronic health records; p. 457-466.

23. Wongsuphasawat K, Gotz D. Outflow: Visualizing patient flow by symptoms and outcome. IEEE 
VisWeek Workshop on Visual Analytics in Healthcare, Providence, Rhode Island, USA. 2011

24. Wongsuphasawat, K., Guerra Gómez, JA., Plaisant, C., Wang, TD., Taieb-Maimon, M., 
Shneiderman, B. Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems. ACM; 2011. Lifeflow: visualizing an overview of event sequences; p. 1747-1756.

25. Wongsuphasawat, K., Shneiderman, B. Visual Analytics Science and Technology, 2009. VAST 
2009. IEEE Symposium on, pages. IEEE; 2009. Finding comparable temporal categorical records: 
A similarity measure with an interactive visualization; p. 27-34.

Basole et al. Page 9

Proc 2015 Workshop Vis Anal Healthc (2015). Author manuscript; available in PMC 2017 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CCS Concepts

• Human-centered computing → Visual analytics; Information visualization; 

Visualization systems and tools;

• Social and professional topics → Personal health records;

• Applied computing → Health informatics;
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Figure 1. 
System interface and dashboard of six key performance metrics for the selected cohort. In 

this example, we are summarizing performance metrics for a cohort of 5,778 patients, who 

were seen by 130 unique providers, and has a disposition index of 32. At the top is the 

navigation bar that allows users to click to a different visualization or switch to the cohort 

comparison mode.
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Figure 2. 
Screenshot showing cross filter applied to the patient population.
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Figure 3. 
Two cohort comparison.
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Figure 4. 
Provider-level performance summary.
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Figure 5. 
Activity treemap.
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Figure 6. 
Scatterplot of two selected variables.
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Figure 7. 
Sankey diagram of frequent subprocesses.
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Figure 8. 
Conformance evaluation flowchart.
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Table 1

Descriptive Summary of Patient Population Data (n=5,784)

Gender Male 3575 (61.8%)

Female 2209 (38.2%)

Age 0–18 months 562 (9.7%)

18–36 months 1048 (18.1%)

3–6 years 1682 (29.1%)

>6 years 2492 (43.1%)

Acuity ESI 1 3 (0.1%)

ESI 2 1516 (26.2%)

ESI 3 2913 (50.4%)

ESI 4 1283 (22.2%)

ESI 5 62 (1.1%)

Unknown 7 (0.1%)

Disposition Discharge 3,995 (69.1%)

Admit to Ward 1,598 (27.6%)

Admit to ICU 140 (2.4%)

Admit to OR 47 (0.8%)

Transfer 4 (0.1%)
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