Tomography: lowering management overhead for
distributed component-based applications

Wilfried Daniels, José Proenca, Nelson Matthys, Wouter Joosen, Danny Hughes

iMinds-DistriNet, KU Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium
{firstname.lasthame}@cs.kuleuven.be

ABSTRACT

This paper introduces the concept of tomography, a mech-
anism to lower management overhead for component-based
IoT applications. Previous research has shown the advan-
tages of component-based software engineering, wherein ap-
plications are built and reconfigured at runtime through the
composition of components. While this approach promotes
code-reuse and dynamic reconfiguration, the introspection
and reconfiguration of distributed applications is cumber-
some and inefficient. Tomography addresses this problem by
reimagining the visitor design pattern for distributed compo-
nent based compositions. We evaluate the performance of
this approach in a case-study of discovering/introspecting
and reconfiguring a real-world IoT application. We show
that in comparison to classic management operations, to-
mography reduces both the number of explicit queries and
the volume of network messages. This significantly reduces
management effort and energy consumption.

1. INTRODUCTION

IoT applications are known to be hard to build and maintain.
Typical IoT applications are run on a large scale infrastruc-
ture of extremely resource constrained embedded systems,
which are often deployed in hard to reach locations like flood
plains [1] or volcanoes [2]. Because of this, IoT systems
call for remote management and reconfiguration. A promis-
ing solution for this is reflective component-based middle-
ware [3, 4, 5]. Components are small units of functionality
with clearly defined interfaces and parameters, which can be
deployed and managed remotely. Applications are built by
binding components together in a composition. These mech-
anisms allow for software evolution [6] and adaptation [7] af-
ter deployment, while at the same time promoting software
reuse through the combination of generic components.

Reflective component models introduce a per component
meta-model, which is causally connected to the implemen-
tation of the component. The meta-model exposes elements
of the component—such as interfaces and parameters that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

M4IoT 2015 December 07-11, 2015, Vancouver, BC, Canada.

@2015 ACM. ISBN 978-1-4503-3731-1/15/12...$15.00

DOI: http://dx.doi.org/10.1145/2836127.2836128

influence component behaviour—that can either be intro-
spected (querying of meta-model) or reconfigured (modify-
ing the meta-model). The introspection and reconfiguration
of the meta-model is an important tool to monitor and en-
act change in a component composition. However, the per-
component nature of the meta-model implies a large message
passing overhead and high management complexity when in-
trospecting or reconfiguring a distributed component com-
position, which spans many nodes as in the IoT.

This paper proposes the concept of tomography, a new ap-
proach to efficiently introspect and reconfigure component-
compositions and thus distributed applications. Tomogra-
phy is inspired by the visitor design pattern from object-
oriented programming. The visitor pattern is a structured
way of performing an operation on an object hierarchy by
having a visiting object traverse the hierarchy [8]. Tomogra-
phy applies this concept to distributed component composi-
tions, exploiting existing communication flows for efficiency.

Tomography is based on the notion of probes that can be in-
jected into a component composition, flowing along the same
path as the application data. While traversing the compo-
nent composition, the probe can either query or modify the
meta-model of individual components as it traverses them.
We evaluate the benefits of tomography in a real-world IoT
case-study: a Smart Lab composed of 12 sensor nodes. Our
evaluation shows that tomography greatly reduces the num-
ber of commands that developers must issue and also the
number of messages that are transmitted.

The main contributions are twofold. Firstly, we introduce a
notion of region of a distributed component-based applica-
tion based on selected entry points for visiting the region.
Secondly, we introduce an approach to inspect and recon-
figure distributed regions while traversing them, dubbed to-
mography. This new approach can reduce the number of re-
mote messages for inspection and reconfiguration, and can
alleviate the effort of managing regions with dynamic topolo-
gies and potentially across third party networks.

The remainder of this paper is structured as follows. Sec-
tion 2 provides background of traditional reflective opera-
tions in component-based middleware and its shortcomings.
Section 3 outlines the principles of tomography. Section 4
evaluates this framework in a real-world case-study scenario.
Section 5 discusses related work. Section 6 concludes and
discusses directions for future work.

RFID Checker | ! Coffee Manager 0
- webservice —O - webservice]
-ACL C 1| . timeout |
| N,
PN AT) |
7 S —
p— RFID Reader)| Coffee Control :
READER | — —{/| - UARTChannel - interval ' D
- baudrate C, N - actuatorPin C,
A I
RFID check \ \ 4 Reflective
region operations
Manager
- Coffee control 9 RFID coffee control
- = region S region

Figure 1: Example of a composition of components.

2. REFLECTIVE MIDDLEWARE

Reflection is a way for software systems to introspect and
reconfigure themselves at runtime [9]. In the context of
IoT, previous work [10, 7, 11] has shown that reflective
component-based middleware is a viable way to ensure flexi-
bility and adaptability of running deployments, while at the
same time providing a way to monitor application configu-
rations. In this paper we build our ideas on top of LooClI [3],
a reflective middleware for the IoT, although this approach
can be applied to other reflective component-based systems.

Figure 1 shows a typical component composition, used in
a real-world IoT smart lab deployment, accessible online at
http://smartlab.looci.org. An extended version of this
application is used later in our evaluation. This example ap-
plication authorises users to operate a coffee machine through
an RFID tag. White boxes denote software components,
while grey boxes denote physical nodes. Components pub-
lish values via their provided interfaces (—O), and receive
values via their required interfaces (—). Components also
have key-value pairs of properties that can be used to pa-
rameterise their behaviour.

In the distributed component composition shown in Fig-
ure 1, node Nz is equipped with RFID hardware, and is
running an RFID Reader software component. This compo-
nent transmits swiped IDs to a remote RFID Checker com-
ponent residing on resource rich back-end node Ni, which
authorises or denies access based on an access control list
(ACL). Additionally, access attempts are logged and view-
able on a web platform. The coffee machine is physically
connected to node N3, where the Coffee Control component
controls its state. The Coffee Control component is con-
nected to the back-end Coffee Manager component, which
exposes control over it on a webpage. Lastly, RFID Checker
and Coffee Manager are bound in the back-end, so an au-
thorised RFID swipe enables the coffee machine. Deployed
components have a node-local identifier, denoted in Figure 1

Each component has a local meta-model that is causally con-
nected to the underlying implementation, consisting of im-
mutable (i.e. component type, provided and required inter-
faces) and mutable (i.e. bindings to and from other compo-
nents, parameters, status) meta-data. Reflection allows the
per-component meta-model of components to be remotely
instrospected and reconfigured by a Manager entity. These
interactions are visualised in Figure 1 by the thicker bidi-

// introspection operations

N; .getProperty (C,ACL)

N3 .getWiresFrom(C1)

// reconfiguration operations

N3 .setProperty(C7,interval=30s)
N5 .wireTo(C1, N1, rfidEvent)
.wireFrom(Ns,C1,C1, rfidEvent)

B

// introspection: properties of RFID coffee control app
Ny .getProperties(C1)
N; .getProperties(C1)
.getProperties(C3)
N3 .getProperties(C1)
// reconfiguration: deactivate RFID check region
N> .deactivateComponent (C')
.deactivateComponent (C)

=

B

Listing 1: Example of reflective operations.

rectional arrows. Reconfiguration can either be structural,
by connecting and disconnecting bindings, or behavioural by
changing component parameters. Listing 1 exemplifies the
usage of reflective operations.

Based on our experience, the same reflective operation often
has to be performed over a group of connected components
in an application. In our IoT application in Figure 1, for ex-
ample, we distinguish 3 regions that group distributed com-
ponents that are often queried together. The last 2 blocks of
operations in Listing 1 exemplify operations made to groups
of components in our smart lab deployment: to collect prop-
erties of all components of a region, and to deactivate com-
ponents of another region.

Our example exposes the two main shortcomings of reflec-
tion in component-based systems. Firstly, remote reflection
requires that many messages are sent over the network in
order to introspect or reconfigure sets of components. In
the context of IoT applications, these networks are typically
extremely low power and every packet sent imposes a large
energy overhead. Previous research has shown that radio
transmissions are the primary source of energy consumption
on sensor nodes [6]. Secondly, the manager has a too many
responsibilities: keeping track of every component in each
region, and querying individually every component of a re-
gion for every region-wide query. This becomes impractical
with large and dynamic regions.

3. TOMOGRAPHY

Tomography is used to inspect or modify a region of a com-
ponent-based application, i.e., a set of connected compo-
nents. This is achieved by a generalisation of the visitor
pattern for distributed systems. A probe is broadcasted to a
set of starting components, which search for the desired re-
gion by traversing the components using the dataflow order.
It is also possible to traverse the components in the opposite
direction, called upstream tomography, but in the rest of this
paper we will use the dataflow order.

This section begins by defining regions of IoT applications
and explaining how they are specified by a manager. It
then describes what queries can be performed to inspect and
modify connectors, and how these queries are propagated.

http://smartlab.looci.org

Query |Mgr Addr
RFID-R data
— | RFID-Cdata |
RFID Checker i [Coffee Manager
- webservice - webservice
-ACL C, - timeout CJ .,
Query |Mgr Addr
uery [Mgr Addr | "7 [RFID-R data |
! Rrxynlngdata (5] _RFID-C data
| | Coffee-M data
e RFID Reader Coffee Control
READER ||— | - UARTChannel - interval c —U
- baudrate] Nz - actuatorPin i Na
Mgr Addr
[Query [Mgr Addr | e
Query [Mgr Addr RFID-R data
feemmeeneeey Manager |« RFID-C data
Elilefelr Coffee-M data
Coffee-C data
Probe Probe O) Probe
E Probe injection collection forwarding

Figure 2: Sending and collecting a probe.

3.1 Regions of components

A region is formally a set of connected components. It is
specified by: (i) a set of starting components, and (i) a
(possibly empty) set of ending components. Starting com-
ponents mark the beginning of the region, which includes
all components traversed by following the dataflow direc-
tion until either an ending component or to a component
without outgoing interfaces. The example in Figure 1 con-
tains 3 different regions, represented by 3 dashed rectangles.
The RFID Check region, for example, consists of the two
components on the left side, and it is specified by indicating
that RFID Reader is a starting point and RFID Checker is
an ending point of this region. For both of the other two
regions in the figure it is enough to specify only the starting
point. A finer control of regions is possible by marking
interfaces, not components, as starting and ending points,
which we do not explore for simplicity.

3.2 Specifying regions

The Manager component is responsible for specifying re-
gions. It starts by identifying the boundaries of a region
(starting and ending components) and assigning a unique
ID to that region. It then sends a reconfiguration request to
the nodes with the selected boundary components to mark
them as being starting and/or ending components of the re-
gion with the assigned ID. Finally, the Manager stores the
region ID and the nodes where the starting components are
deployed. This ID and reference nodes are enough for the
manager to inspect and reconfigure the full region, explained
in more detailed in the following subsection.

Our approach to mark boundaries of regions instead of mark-
ing components belonging to regions has two main advan-
tages: compactness, as in general less data is needed to spec-
ify a region; and flexibility, as it becomes easier to adapt
regions to newly added components or removed components
without large changes to the marking data. Furthermore,
the number of messages required to inspect all nodes of a
region is typically smaller than when using more naive ap-
proaches that query all involved nodes.

3.3 Using tomography

The extra information about regions allows the precise defi-
nition of scope for inspection or modification of components.
For example, the last two blocks of operations in Listing 1

'/ introspection: get properties of coffee control app
coffeeControl.getComponentProperties()

/ reconfiguration: deactivate RFID check app
rfidCheck.deactivateComponents ()

Listing 2: Tomography for reflective operations.

can be written as in Listing 2. The first sends a query for a
list of all properties of the components in the RFID coffee
control region, and the second sends a request to deactivate
all components in the RFID check region. In both cases, the
manager only sends the query or request to the nodes with
starting components, which is here node N,.

More generally, a tomography sends a query to all compo-
nents in a region requiring only the starting components to
be known in advance, and not the all components of that
region. The result of this query is returned back to the
manager by every component in an ending point of the re-
gion — either a component marked as ending component, or
a component with no provided interfaces. The sending of
queries is managed by our tomography supported middle-
ware, as illustrated in Figure 2 for our coffee application.
The manager wraps the desired query in a probe that is
sent (injected) to the starting component RFID Reader. This
probe contains initially the query and the return address of
the manager, and is forwarded by each component in the
region until it reaches a dead-end, at which point the probe
is collected by the manager. Upon receipt in the meta-space
of a component the query is executed, meaning that the
inspection operation is applied, its result is appended to the
probe, and the reconfiguration operations are executed. The
general case with multiple starting points exist and where
probes are split during their traversal is explained in detail
in the following subsection.

3.4 Probe propagation

This subsection provides more technical details on how the
probes are propagated from the starting points until the
manager. These probes have to be split when traversing
a component with multiple provided interfaces and when
multiple starting points exist, and the probes must stop the
traversal when reaching a component already traversed by
a probe with the same query (merge of probes).

Splitting probes. When a probe is split into n probes,
its header is extended with a new pair containing: (1) the
identifier of the component that created the split (or Root if
it was the manager), and (2) the number n of splits. This
is illustrated in Figure 3. This information is needed by the
manager to know when all the probes are collected. Upon
collecting a probe, the extra header will describe when was
the probe split and in how many probes, allowing it to clearly
conclude if there is any split probe missing.

Merging probes. Each probe also includes an unique
transaction ID. During the traversal of the probe, each com-
ponent is marked as being visited by that ID. Hence, if a
visited component receives a (split) probe with the same
ID, it will simply send it back to the manager without exe-
cuting its query. Figure 4 illustrates this process. In Step 1
the manager sends split probes to the 2 entry points Comp 1
and Comp2, who execute its query, are marked as visited,

Comp 4 Comp 5

Probe
............... injection
ROOT | 2 Pr Probe
Eomp;. gzr collection
omp. r
Probe
Manager header
T

Figure 3: Splitting probes, extending headers of
probes to tell the manager when to stop waiting.

Comp 1 Comp 2 Comp 1 Comp 2
9 ¢ o 0
[Comp 3 O—[Comp 4 ‘ Comp3 K()+ Comp 4
[Probe 1 [Probe 2
@)

Manager : Manager
—
Step 1 Step 2
Probe Unvisited
injection Probe component
Probe forwarding Visited
collection component

Figure 4: Merging of probes, by marking compo-
nents as visited.

and forward it to Comp 3 and Comp4. In Step 2 the probes
are propagated further, and component Comp 3 receives the
same probe again from Comp 4, consequently returning the
probe to the manager without any action.

4. EVALUATION

A preliminary evaluation is done by comparing classic reflec-
tive operations with our tomography approach for inspect-
ing and reconfiguring a region of components. The cost of
querying a region is measured by counting the number of
messages sent over the low-power network (Section 4.1), the
cost of setting up a region is measured by the number of mes-
sages sent to create a region (Section 4.2), and the cost of
managing a region is based on how easy it is for the manager
to perform queries and to maintain the required knowledge
about regions (Section 4.3). We apply these measurements
to our real-world Smart Lab deployment in Section 4.4.

4.1 Number of messages

We claim that, in general, the number of messages required
to query a region defined by its starting and ending points
is smaller than when the manager contains a list of all com-
ponents. For example, the query illustrated in Figure 2 uses
4 messages between nodes: a message from the manager to
node N2, 2 messages between the 3 nodes, and a message
from N3 to the manager. A more naive approach where
the manager queries all 3 nodes independently would use 8

o (i) —~(zo-—0{z)

. Merge S

Split

n

=]
a
o

Figure 5: Evaluation scenarios to count messages.

messages: 4 to perform the query and 4 to collect the result.

We make our claim more precise by analysing 3 regions with
different topologies in Figure 5: a chain of n components, a
split of n components, and a merge of n components. With-
out tomography, querying all components in all these scenar-
ios requires around n 2 messages ((n+1)#*2 for the split and
merge cases). Using tomography, the chain scenario reduces
this number to n+ 1 messages, the split scenario uses a sim-
ilar number of messages ((n*2)+1), and the merge scenario
increases this number to n * 3 messages. Summarising, the
number of messages is reduced in half with chaining, is not
affected with splitting, and is increased by n with merging.

Our experience indicates that chaining is more commonly
found in IoT applications than splitting or merging. Indeed,
all the examples presented so far exchange a smaller number
of messages with tomography than without it. Our larger
deployment, described later in Section 4.4, has a region that
benefits from tomography only when using upstream tomog-
raphy, i.e., when traversing components in the oposite di-
rection of dataflow. Furthermore, simple optimisations can
avoid the increased number of messages in the merge case.
For example, one could allow nodes to wait for probes that
could be merged, sending the combined probe to the rest of
the chain instead of replying to the manager. This would
require extra annotations to nodes and probes, increasing
the complexity of modifying bindings within regions with-
out breaking the traversal process of regions.

4.2 Setting up

Setting up a region means updating the nodes with informa-
tion that describes the region. For tomography this means
marking starting and ending components of a region by send-
ing request over the low-power network to their deployment
nodes to mark them as such. This is a fixed cost that has
to be paid before a region can be queried. Without to-
mography, no components have to be marked and the setup
consists of storing a list of all the components of the region
and the nodes where they reside locally on the manager. In
this case, there is no overhead on the network.

For tomography, the number of messages required to setup a
region depends on its number of boundary nodes. In the best
case it is enough to mark a single component as a starting
component to define a whole region; this is the case for 2
out of the 3 regions in our example in Figure 1, and for
the chain and split scenarios in Figure 5. In the worse case
all components have to be tagged as being starting and/or
ending components, producing as many messages as there
are components in the region.

4.3 Region management

The biggest advantage of our approach is that, after setting
up the regions, the Manager can more easily introspect these
with tomography than without it. This claim is supported
by 2 performanance indicators: (i) the complexity to query
regions, and (ii) the amount of data stored by the manager.

Querying regions. As illustrated in Listing 1 (example
without tomography) and Listing 2 (example with tomogra-
phy), querying explicitly a region with tomography requires
less instructions than querying each component individu-
ally. The exception for this scenario is when the manager
only needs to query part of a region—e.g., all RFID readers
in the coffee application—, in which cases it may be more
performant to query the desired components individually.

Recalling regions. In order to query a region the man-
ager must know how to reach it. Using tomography, the
manager needs to store information about every node with
a start component for each region. This means N regions
times ns node addresses with starting components (in aver-
age) per region. Without tomography, the manager needs to
store information about every node and component in each
region. This means NN regions times n. pairs of components
and node addresses (in average) per region. The size of this
management information is always strictly smaller with to-
mography, since it does not store component information
(only nodes), and only nodes with starting components.

4.4 Smart Lab case-study

This case-study looks at how tomography performs in com-
parison to classic reflection in a real world case-study, using
the 3 previously discussed metrics as performance indicators.
Both approaches are benchmarked by introspecting and re-
configuring the component composition shown in Figure 6,
which is a subset of a Smart Lab deployment in our research
facility. This component composition offers 3 services: (i) a
Motion detection service using data from 6 embedded nodes
equipped with motion sensors around the lab, (ii) a Screen
control service, which allows either remote or local control
of screens used for presentations, and (iii) a Coffee control
service, which was used as a running example throughout
this paper and authorises access to a coffee machine through
RFID. The component composition has 3 regions grouping
the components each of the 3 applications are composed of,
denoted by dashed lines in Figure 6.

Message overhead. The number of messages used to
inspect and reconfigure regions in our example are presented
in Table 1. In most cases tomography requires less messages
to be sent over the low-power network when compared to
classic reflection. The exception is the Motion detect region
that is less efficient because of the 6-way merge, following
our discussion in Section 4.1. This can be improved by
traversing the region upstream, which we call Motion Detect
up in the table, turning the merge into a split.

Setup. For tomography, only the starting points need
to be tagged at setup time. Assuming we do an upstream
tomography for Motion detect, setting up all regions in our
scenario would cost 3 messages. In case we traverse Motion
detect downstream, the set-up cost is 8 messages due to the
multiple start points of that region.

Management overhead. Tomography greatly simpli-
fies the specification of queries over groups of components

Tomography Reflection

Region Intr. Recf. Intr. Recf. Gain
RFID Coffee 4 3 8 4 42%
Motion Detect 19 13 16 8 -33%
Motion Detect up 14 8 16 8 9%
Screen Control 3 2 6 3 44%
All components 20 12 30 15 29%

Table 1: Message passing overhead

(Section 4.3). In our case-study a total of 15 queries are
required when using standard per-component reflection to
query all components, tomography only requires 1 query.

Summarising, tomography imposes a minimal set-up cost
and outperforms classic reflective operations both in terms
of message passing overhead and management overhead.

5. RELATED WORK

Existing approaches to manage groups of components or
nodes in low-power networked systems have been proposed
in the literature. This section compares our approach with
the notion of abstract regions to group nodes, proposed by
Welsh et al. [12], and the notion of component frameworks to
structure groups of components, proposed by Parlavantzas
and Coulson [13].

Abstract regions [12] are a family of spatial operators that
capture local communication within regions of a network,
defined based on properties of the nodes. These operators al-
leviate development overheads for distributed sensing appli-
cations, used to address nodes, to share data in local regions,
and to reduce the amount of shared data. Hence abstract
regions allow programmers to specify complex distributed
sensing applications over regions of nodes using higher-level
abstractions than the ones provided at the network level.
Both abstract regions and our tomography-based regions try
to solve the complexities of distributed embedded software
development. The major difference is that abstract regions
are defined at the level of computational nodes, and regions
are based on properties of these nodes, while tomography are
defined at the level of components. Therefore tomography is
used to reason about the configuration of component-based
applications, and how these components are coordinated,
while abstract regions are design to help developing dis-
tributed applications with lower-level abstraction than com-
ponents. Tomography has a more flexible way to specify
regions that does not rely on properties of nodes, and focus
instead in reducing the overhead of managing components.

Component frameworks (CFs) [13] provide a minimal and

abstract component model with mechanisms to combine groups

of components (component frameworks) into larger ones.
These CFs expose easy-to-use facilities to perform recon-
figurations at runtime. Components are primitive building
blocks of CF's that support general reconfiguration patterns,
and the hierarchal construction of CFs preserves these re-
configurations interfaces, effectively supporting reconfigura-
tion that scale up to large systems. Tomography, unlike
CF's, decouples the building of component-based applica-
tions from the designing of regions for reconfigurations. It
gives the flexibility of building regions at runtime of an ex-
isting application based on a simple set of rules, instead of
using these regions as building blocks for larger (and recon-

Coffee Control
- interval
- actuatorPin G,

- webservice
- timeout

Coffee Manager

-
Screen Manager
- webservice

p— RFID Reader
READER - UARTChannel
- baudrate

- webservice
-ACL

RFID Checker

- timeLock C2
r
'y
1

Motion Reporte
- webservice C

Motion Agg.

- interval

#= == Screen control
e region

- timeout

Motion Det.

Motion detect MOtiOf/l gett.
i - sampleRate

reglon ((- listenPin

RFID Coffee

region

- sampleRate

- listenPin

Figure 6: Smart Lab case-study component composition.

figurable) systems. Consequently, the application developer
does not decide on the scope of regions for reconfiguration,
and only the application manager creates (flexible) regions
that can be reconfigured as a group. The idea of building re-
gions based on other existing regions could also be explored
in our boundary-based regions, which we consider to be out
of the scope of this paper.

6. CONCLUSIONS AND FUTURE WORK

This paper introduced tomography, an approach to lower
overheads for component-based IoT applications. Tomog-
raphy provides a way specify regions of connected compo-
nents and to introspect and reconfigure these based on a
distributed variation of the visitor design pattern.

An initial evaluation based on a real-world scenario has
shown promising results. Tomography outperforms classic
reflection both in terms of message and management over-
heads, while only imposing a minimal set-up cost.

As future work, we plan to provide a prototype for embed-
ded devices build on top of the LooCI middleware to investi-
gate the performance of tomography on extremely resource
contrained devices. Furthermore, we believe that while this
initial evaluation is very positive, more improvements can be
made to both the granularity of regions and the efficiency of
region traversal by storing more information locally.

7. ACKNOWLEDGEMENTS

This research is partially funded by the Portuguese FCT
grant SFRH/BPD/91908/2012, the Research Fund KU Leu-
ven, the Agency for Innovation by Science and Technology
in Flanders (IWT) and iMinds in the context of EMD.

8. REFERENCES

[1] D. Hughes, P. Greenwood, G. S. Blair, G. Coulson,
P. Grace, F. Pappenberger, P. Smith, and K. J.
Beven, “An experiment with reflective middleware to
support grid-based flood monitoring,” Concurrency
and Computation: Practice and Ezperience, vol. 20,
no. 11, pp. 1303-1316, 2008.

[2] K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees, “Deploying a wireless sensor
network on an active volcano,” in IEEFE Internet
Computing, 2006, pp. 18-25.

[3] D. Hughes, K. Thoelen, J. Maerien, N. Matthys,
J. Del Cid, W. Horre, C. Huygens, S. Michiels, and
W. Joosen, “LooCI: The loosely-coupled component

[4]

[5]

(6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

infrastructure,” in proceeding of NCA, 2012, pp.
236-243.

G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia,
K. Lee, J. Ueyama, and T. Sivaharan, “A generic
component model for building systems software,”
ACM Trans. Comput. Syst., vol. 26, no. 1, pp. 1-42,
Mar. 2008.

A. Taherkordi, F. Loiret, A. Abdolrazaghi, R. Rouvoy,
Q. Le-Trung, and F. Eliassen, “Programming sensor
networks using remora component model,” in
proceedings of DCOSS, ser. LNCS. Springer Berlin
Heidelberg, 2010, vol. 6131, pp. 45-62.

D. Hughes, E. Canete, W. Daniels, R. G. Sankar,

J. Meneghello, N. Matthys, J. Maerien, S. Michiels,
C. Huygens, W. Joosen, M. Wijnants, W. Lamotte,
E. Hulsmans, B. Lannoo, and I. Moerman, “Energy
aware software evolution for wireless sensor networks,”
in WOWMOM. 1EEE, 2013, pp. 1-9.

P. Grace, D. Hughes, B. Porter, G. S. Blair,

G. Coulson, and F. Taiani, “Experiences with open
overlays: a middleware approach to network
heterogeneity,” in EuroSys. ACM, 2008, pp. 123—-136.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional, 1994.

B. C. Smith, “Procedural reflection in programming
languages,” Ph.D. dissertation, MIT, 1982.

D. Hughes, P. Greenwood, G. S. Blair, G. Coulson,
P. Grace, F. Pappenberger, P. Smith, and K. J.
Beven, “An experiment with reflective middleware to
support grid-based flood monitoring,” Concurrency
and Computation: Practice and Experience, vol. 20,
no. 11, pp. 1303-1316, 2008.

G. S. Blair, G. Coulson, P. Robin, and

M. Papathomas, “An architecture for next generation
middleware,” in Proceedings of the IFIP International
Conference on Distributed Systems Platforms and
Open Distributed Processing, ser. Middleware ’98.
London, UK, UK: Springer-Verlag, 1998, pp. 191-206.
M. Welsh and G. Mainland, “Programming sensor
networks using abstract regions,” in proceedings of
NSDI. USENIX Association, 2004.

N. Parlavantzas and G. Coulson, “Designing and
constructing modifiable middleware using component
frameworks,” IET Software, no. 4, pp. 113-126, 2007.

	Introduction
	Reflective middleware
	Tomography
	Regions of components
	Specifying regions
	Using tomography
	Probe propagation

	Evaluation
	Number of messages
	Setting up
	Region management
	Smart Lab case-study

	Related work
	Conclusions and future work
	Acknowledgements
	References

