
Modelling the ARMv8 Architecture, Operationally:
Concurrency and ISA

Shaked Flur1 Kathryn E. Gray1 Christopher Pulte1 Susmit Sarkar2 Ali Sezgin1 Luc Maranget3

Will Deacon4 Peter Sewell1
1 University of Cambridge, first.last@cl.cam.ac.uk 2 University of St Andrews, ss265@st-andrews.ac.uk

3 INRIA, luc.maranget@inria.fr 4 ARM Ltd., will.deacon@arm.com

Abstract

In this paper we develop semantics for key aspects of the ARMv8
multiprocessor architecture: the concurrency model and much of
the 64-bit application-level instruction set (ISA). Our goal is to
clarify what the range of architecturally allowable behaviour is, and
thereby to support future work on formal verification, analysis, and
testing of concurrent ARM software and hardware.

Establishing such models with high confidence is intrinsically
difficult: it involves capturing the vendor’s architectural intent, as-
pects of which (especially for concurrency) have not previously
been precisely defined. We therefore first develop a concurrency
model with a microarchitectural flavour, abstracting from many
hardware implementation concerns but still close to hardware-
designer intuition. This means it can be discussed in detail with
ARM architects. We then develop a more abstract model, better
suited for use as an architectural specification, which we prove
sound w.r.t. the first.

The instruction semantics involves further difficulties, handling
the mass of detail and the subtle intensional information required to
interface to the concurrency model. We have a novel ISA descrip-
tion language, with a lightweight dependent type system, letting
us do both with a rather direct represention of the ARM reference
manual instruction descriptions.

We build a tool from the combined semantics that lets one ex-
plore, either interactively or exhaustively, the full range of archi-
tecturally allowed behaviour, for litmus tests and (small) ELF ex-
ecutables. We prove correctness of some optimisations needed for
tool performance.

We validate the models by discussion with ARM staff, and
by comparison against ARM hardware behaviour, for ISA single-
instruction tests and concurrent litmus tests.

1. Introduction

The ARM architecture is the specification of a wide range of pro-
cessors: cores designed by ARM that are integrated into devices
produced by many other vendors, and cores designed ab initio by
ARM architecture partners, such as Nvidia and Qualcomm. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

POPL ’16, January 20–22, 2016, St. Petersburg, FL, United States.
Copyright c© 2016 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

architecture defines the properties on which software can rely on,
identifying an envelope of behaviour that all these processors are
supposed to conform to. It is thus a central interface in the industry,
between those hardware vendors and software developers. It is also
a desirable target for software verification and analysis: software
that is verified w.r.t. the architecture should run correctly on any of
those processors (modulo any hardware errata, of course).

However, exactly what behaviour is and is not allowed by the ar-
chitecture is not always clear, especially when it comes to the con-
currency behaviour of ARM multiprocessors. The architecture aims
to be rather loose, to not over-constrain the hardware microarchi-
tectural design choices of all those different vendors, and to permit
optimised implementations with high performance and low power
consumption. To this end, it adopts a relaxed memory model, allow-
ing some effects of out-of-order and non-multi-copy-atomic imple-
mentations to be programmer-visible. But it describes that in prose,
which, as one might expect, leaves many open questions.

Our goal in this paper is to clarify this situation, developing
mathematically rigorous models that capture the ARM architec-
tural intent. But establishing such models with high confidence is
intrinsically difficult, as the vendor intent has not previously been
made this precise, either in public documents or internally. Black-
box testing of processor implementations is useful here, comparing
their behaviour against that allowed by models for a variety of con-
current test programs [3, 4, 8, 20, 21, 23], but it can only go so far;
one really needs to discuss the model in detail with the architects
(those with the authority to define what the architecture allows).
This means it must be accessible to them, and that suggests our
strategy: we first develop a concurrency model with a microarchi-
tectural flavour, abstracting from many hardware implementation
concerns but still close to hardware-designer intuition, so that it
can be clearly (albeit necessarily informally) related to the proces-
sor designs they have in mind, and be tested against their exten-
sional behaviour. In this flowing model read requests, writes, and
barriers flow explicitly through a hierarchical storage subsystem.
We then develop a more abstract model, better suited for use as
an architectural specification and programmer’s model, which we
prove sound w.r.t. that. This partial-order propagation (or POP)
model abstracts from the storage-subsystem hierarchy to give a
model in which all hardware threads are symmetrical. Both mod-
els have been discussed in detail with senior ARM staff, resolving
many subtle questions about the architecture.

The concurrency semantics alone is not enough to understand
or reason about concurrent code; one also needs semantics for the
instruction set architecture (the ISA). The ARM architecture de-
scribes the sequential behaviour of the ISA reasonably precisely,
in a proprietary pseudocode language; the problems here are (1)
dealing with the mass of detail involved, and (2) integrating these

first.last@cl.cam.ac.uk
ss265@st-andrews.ac.uk
luc.maranget@inria.fr
will.deacon@arm.com

sequential descriptions into the concurrent semantics. One cannot
simply treat each instruction as an atomic transaction, or interleave
their pseudocode. Previous work on relaxed-memory semantics has
not really addressed this issue, either avoiding it entirely or defin-
ing semantics for a small ad hoc fragment of the ISA. Here we
use a novel ISA description language, with a lightweight depen-
dent type system, that lets us use a rather direct represention of the
ARM reference manual instruction descriptions. We model all the
application-level ISA except for floating-point and vector instruc-
tions, and we validate this part of the semantics against hardware
for a suite of automatically generated single-instruction tests.

Our models are defined in executable higher-order logic, in
Lem [18], and we use Lem to generate executable OCaml code
to make a tool allowing one to explore, either interactively or
exhaustively, the behaviour of concurrent litmus tests or (small)
conventional ELF binaries. For performance the tool relies on the
fact that certain transitions commute, to reduce the combinatorial
blow-up; we prove that those properties hold.

Our focus throughout is on the ARMv8 version of the archi-
tecture, which introduced support for 64-bit execution. Example
ARMv8 cores and processors include the ARM-designed Cortex-
A53 and A57 cores, in the AMD Opteron A1100, the Qual-
comm Snapdragon 810, and the Samsung Exynos Octa 5433 SoCs;
together with architecture-partner-designed processors such the
Nvidia Denver core, used in the Tegra K1. The Apple A7 and A8 (in
iPhones and iPads since the iPhone 5S) also appear to be ARMv8-
compatible.

ARMv8 also added several new concurrency primitives, in-
cluding the ARM load-acquire and store-release instructions, and
weaker barrier instructions than the ARMv7 DMB full barrier. It
includes both a 64-bit and 32-bit instruction set; we deal with the
former, the A64 of AArch64, and all those concurrency primitives.

To summarise our contribution, we:

• give an abstract-microarchitectural model, the Flowing model,
for ARMv8 concurrency, validated both by black-box testing
and discussions with ARM staff (§2,3,6,12);

• give a more abstract model, the POP model (§4,7);
• integrate the above with an ISA semantics for all the

application-level non-FP/SIMD ARMv8 instruction set (§5);
• prove that POP does indeed abstract Flowing (§8);
• prove that various model transitions commute (§9);
• develop a tool that allows one to explore, either interactively or

exhaustively, the behaviour of concurrent litmus tests or (small)
conventional ELF binaries (§10); and

• demonstrate this on an example of the Linux ARMv8 spinlock
code (§11).

We begin with an informal description of the main ideas under-
lying the Flowing model, and the concurrency phenomena it has to
deal with (§2,3).

There has been extensive recent work on hardware memory
models, e.g. for x86 [19], IBM Power [21, 22], and ARMv7 [4].
The Power and ARM concurrency architectures are broadly simi-
lar, both being relaxed non-multi-copy atomic models that respect
only certain program-order relations, and which have cumulative
memory barrier instructions. But they differ in many important as-
pects: they have different memory barrier and synchronisation in-
structions1, and the associated microarchitectures are quite differ-
ent. That is important for us here: that Power model [21, 22] does
not correspond well to ARM implementations, and so cannot serve

1 The Power sync and ARM DMB are broadly similar, but there is no ARM
counterpart of the Power lwsync, and there is no Power counterpart of the
ARMv8 DMB ST and DMB LD barriers or of the ARMv8 load-acquire and
store-release instructions.

as a basis for the discussion with ARM architects that is needed for
solid validation that it matches their intent.

For example, in typical Power microarchitectures (as we under-
stand them) memory writes and read-requests propagate via sep-
arate structures, and the Power sync memory barrier implemen-
tation involves an acknowledgement being sent back to the orig-
inating hardware thread when the barrier has been processed by
each other thread. That Power model, largely based on discussions
with an IBM architect as it was, explicitly modelled those sync-
acknowledgements. But ARM microarchitectures may keep mem-
ory writes and read-requests in the same structures, with the ARM
DMB memory barrier achieving similar extensional effects to sync

quite differently, by keeping pairs of barrier-separated accesses or-
dered within those, rather than with global acknowledgements. It
is this ordering that our flowing model captures. We shall see other
more subtle differences below, all of which are important for inten-
sional discussion with the vendors, and some of which give rise to
programmer-observable effects.

The other closely related work is the ARMv7 model of Alglave
et al. [4], which differs in other important respects from what
we do here. Most importantly, it is aiming to be considerably
more abstract than either of the two models we present, without
the microarchitectural flavour that enables us to establish a clear
relationship between them and the architects’ intent. That level of
abstraction is thus good for simplicity but bad for validation, and
the validation of that model relies heavily on black-box testing.
In an ideal world (but one which we leave for future work) we
would have both the low-level microarchitectural flowing model
as we describe here, validated both by discussion and testing, and
a proof (via our POP model) that such an abstract model is indeed
sound w.r.t. the architectural intent. The models differ also in their
mathematical style: following Sarkar et al. [21, 22], we adopt an
operational style, which again is good for the correspondence with
architect intuition, while [4] is axiomatic. The latter is faster for
exhaustively checking the results of small litmus tests, while the
former allows one to incrementally explore single executions of
larger programs. Finally, we cover ARMv8 rather than ARMv7,
and integrate with semantics for a large part of the instruction set.

We envisage a stack as below, where the black edges, in this
paper, enable a range of semantics and verification activities above
this solid foundation, such as the gray edges showing a possible
C/C++11 concurrency implementation result above ARM:

C/C++11 model

An axiomatic architectural model

POP operational (architectural) model

Flowing operational (abstract-microarchictecture) model

ARM implementations
by multiple vendors

prove correctness of C/C++11
atomics compilation scheme

prove soundness

prove soundness

establish confidence by
• discussion with ARM architects
• testing against ARM implementations

Looking down, the flowing model can also be used for testing and
verification of aspects of real hardware, taking us closer towards a
production top-to-bottom verified stack.

2. Introduction to the Flowing model

Modern high-end processors are astonishingly complex. The
pipeline of an ARM Cortex-A57 core can have up to 128 in-

Figure 1. ARM Cortex-A72 Core Block Diagram (source: ARM)

structions in flight simultaneously [6], with each instruction bro-
ken down into micro-operations that are dispatched to multiple
arithmetic, branch, floating-point, and load/store execution units.
Shadow registers and register renaming are used to prevent the
number of architected registers being a bottleneck. A very high-
level view of a Cortex-A72 core showing some of this is in Fig. 1,
and there are multiple levels of cache and interconnect in addition
to that, some shared between cores or clusters thereof.

A detailed microarchitectural description does not make a good
programmers model, or a usable basis for semantics and reason-
ing about concurrent software. However, much microarchitectural
detail is, by design, not observable to programmers (except via per-
formance properties); there are only some aspects that give rise to
behaviour that concurrent contexts can observe, notably the out-of-
order execution that the pipeline permits (including shadow regis-
ters), and the lack of multi-copy-atomicity that the cache protocol,
cache hierarachy and interconnect might exhibit. Our task here is
to invent a new abstraction, just concrete enough to model those
aspects, and just concrete enough to let hardware designers and ar-
chitects relate it to the range of actual microarchitectures they have
in mind, but otherwise as simple as possible. This model can be
validated by discussion and by testing against hardware. Note that
we are not defining a specific microarchitecture, but rather a model
with a microarchitectural flavour that is architecturally complete,
allowing the full envelope of behaviour that the architects intend.
Then we can build higher-level models, proving them sound with
respect to that abstract-microarchitectural one, to use for reasoning.

We build this new abstraction, the flowing model, in three parts.
The instruction semantics defines the behaviour of each instruction
in isolation, giving, for each, a clause of an AST type denoting
the machine-code instructions, a decode function that maps 32-bit
bitvectors into that type, and a clause of an execute function that
gives imperative pseudocode for the instruction. Fig. 2 shows these
for the ADD instruction (eliding the body of its decode function).
We elaborate on this ISA model and the language used for it in §5.
We interpret the bodies of the decode and execute functions with
an operational semantics for our ISA description language; the
steps of that semantics are essentially abstract micro-operations,
abstracting from the actual hardware micro-operations performed
by the arithmetic units etc. Even what one might think is a simple
instruction like ADD is surprisingly intricate when one handles all
the details; one execution involves 80 instruction-semantics steps.

The thread subsystem, analogous but different in detail to that of
the IBM POWER model of Sarkar et al. [21], models the execution
of instructions in a single core (or hardware thread) by allowing
out-of-order execution, respecting various inter-instruction depen-

typedef ast =

forall Int ’R, ’R IN {32, 64}, (*register size*)

Int ’D, ’D IN {8,16,32,64}. (*data size*)

| ...

| AddSubImmediate of

(reg_idx,reg_idx,[:’R:],boolean,boolean,bit[’R])

function forall Int ’R, ’R IN {32,64},

Int ’D, ’D IN {8,16,32,64}.

decodeAddSubtractImmediate

([sf]:[op]:[S]:0b10001:shift:(bit[12]) imm12:Rn:Rd)

: ast<’R,’D> effect pure =

...

function clause execute (AddSubImmediate(d,n,

datasize,sub_op,setflags,imm)) = {

(bit[’R]) operand1 :=

if n == 31 then rSP() else rX(n);

(bit[’R]) operand2 := imm;

(bit) carry_in := 0; (*ARM:uninitialized*)

if sub_op then {

operand2 := NOT(operand2);

carry_in := 1;

}

else

carry_in := 0;

let (result,nzcv) =

(AddWithCarry(operand1,operand2,carry_in)) in {

if setflags then

wPSTATE_NZCV() := nzcv;

if (d == 31 & ~(setflags)) then

wSP() := result

else

wX(d) := result;

}

}

Figure 2. Instruction semantics for ADD/ADDS/SUB/SUBS

dencies as necessary. This abstracts from the out-of-order dispatch
and control logic, the register renaming, the load/store queues, and
the local (L1) cache of the core, modelling all that with a simple
tree of instruction instances:

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Some of these (boxed) may be finished, while others may be exe-
cuting out-of-order or speculatively, after a conditional branch (the
forks) which is not yet resolved. The ISA model generates events,
principally: register-read, register-write, memory-read, memory-
write and barrier, which are used by the thread-subsystem; some
involve instruction-state continuations, e.g. to record an instruction
state which is awaiting the result of a memory read.

The last part of the model is the storage subsystem, which
receives memory read, write and barrier requests from the thread
and replies to read-requests with read-responses containing the
write(s) to be read from. The storage subsystem abstracts from
the interconnect and shared cache levels in the microarchitecture.
The flowing-model instruction semantics and thread subsystem
will be reused in our more abstract POP model, while the storage
subsystem will be replaced by a more abstract model.

Given all the complexity of real microarchitectures it is interest-
ing to note that the ARM architects have a much simpler abstrac-
tion in mind when they discuss the validity of different behaviour:
they can often reason about the architecture and the hypothetical
behaviour of hardware without needing to unpack details of cache
protocols and suchlike. The basic idea of our Flowing model is to
try to formalize this abstraction, keeping it as familiar to them as

much as possible. In the rest of this section we introduce it, via two
motivating examples.

Lack of multi-copy atomicity The ARM architecture is not multi-
copy atomic [8]: a write by one hardware thread can become visible
to some other threads before becoming visible to all of them. This
is observable to the programmer in concurrent litmus tests such as
WRC+addrs:

Test WRC+addrs: Allowed

Thread 0

a: Wx=1 b: Rx=1

Thread 1

c: Wy=1

d: Ry=1

Thread 2

e: Rx=0

rf
addr

rf
addrrf

Here a message x=1 is written by Thread 0 and read by a Thread 1
which then raises a flag y=1. That in turn is read by Thread 2 which
then tries to read the message. To prevent local reordering on the
second two threads, both of their second accesses are made address-
dependent on the results of their first reads. This is not enough to
prevent the unwanted behavior shown, in which Thread 2 reads
from the initial state of x, not the value 1 of the message (a).

The diagram shows a particular execution, not a program: a
graph over memory read and memory write events. A read event
b:R[x]=1 represents a memory read from the address of x of value
1. Similarly a:W[x]=1 represents a memory write. All variables
are disjoint and initialized to 0. The rf edges indicate reads-from
relations between writes and reads (the rf edge from a red dot
indicates a read from the initial memory value).

Microarchitecturally, this behaviour can arise from multi-level
cache and core clustering. Two cores that share a cache level that
is not shared with a third core can observe each other’s memory
accesses before the third core does. ARM architects reason about
the behaviour of this by abstracting it to a tree-shaped topology of
queues in which requests “flow”, starting from the entry point of the
issuing thread through join points until they reach main memory.
On their way to main memory some requests might bypass others
subject to reordering conditions. In this abstraction, read requests
do not need to travel all the way to main memory to get satisfied:
if a read request encounters a write to the same address, a read
response can be immediately sent to the issuing thread of the
read request. This abstraction is the inspiration behind the Flowing
storage subsystem.

For example, a particular processor might have a topology as
below, with the pairs of threads 0,1, and 2,3, each sharing a queue
which is not shared with the rest (many other topologies are possi-
ble, especially with more cores). At a certain point in the computa-
tion, the write (a) might have propagated down past one join point,
with the read request (b) still above that point.

memory (x=0;y=0)

Thread 0 Thread 1

b:R[x]

a:W[x]=1

Thread 2 Thread 3

Later the read request (b) can flow down another step, and then
perhaps be satisfied directly from (a). That will resolve the address
dependency to write (c), which could be committed and flow to the
same point:

memory (x=0;y=0)

Thread 0 Thread 1

c:W[y]=1

a:W[x]=1

Thread 2 Thread 3

Then, as (c) and (a) are to different addresses (and not separated
by a barrier), they can be reordered , and (c) could flow past the
next point where it can satisfy Thread 2’s first read. In turn that
resolves the Thread 2 address dependency to its read of x, and that
can flow down and be satisfied from the intial x=0 value in main
memory before (a) passes the bottom join point.

The abstraction used in this description has pros and cons. It
is reasonably simple and easy to understand, and to relate to hi-
erarchical microarchitectures. But the asymmetry between hard-
ware threads is uncomfortable from an architectural point of view
(programmers will typically not know the assignment of software
threads to particular hardware threads, and should not write code
where the correctness depends on that assignment); it is exactly
that asymmetry that our POP model will abstract from.

It is interesting to note also that the ARM implementations that
we have tested to date do not actually exhibit observable non-multi-
copy-atomic behaviour, even though the architecture intentionally
and unambiguously permits it (to allow freedom for future imple-
mentations). This limits the extent to which a model can be vali-
dated by black-box testing alone; it also means, as usual for a loose
specification, that it is important to reason about software w.r.t. the
architecture rather than w.r.t. current implementations, at least if it
is intended to be portable to future implementations.

Contrasting again with Power, there such non-multi-copy-
atomic behaviour can be understood in a different way, from the
cache protocol alone acting in a symmetric topology [15, §12]. In
this sense the Flowing model is not a good intensional representa-
tion of Power microarchitectures, and there are litmus tests that are
observable on Power implementations that Flowing does not allow.
But the POP model permits those, and it is a plausible basis for a
good common model.

Out-of-order execution Turning to the thread model that we use
for both Flowing and POP, ARM and Power implementations dif-
fer in just how much out-of-order execution they exhibit. The
MP+dmb.sy+fri-rfi-ctrlisb litmus test below is a message-passing
test where the writes of Thread 0 are maintained in order by a
dmb sy barrier and the reads c and f of Thread 1 are separated
by another write to y (which is coherence after the write to y in
Thread 0, indicated by co edge), a read of y, a branch, and an isb
(indicated by a ctrlisb edge); the question is whether the added in-
structions create enough order to prevent the read of x reading from
the initial state 0.

Test MP+dmb.sy+fri-rfi-ctrlisb: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

d: W[y]=2

Thread 1

e: R[y]=2

f: R[x]=0

rf

co

po

rf

rf

dmb sy

ctrlisb

MP+dmb.sy+fri-rfi-ctrlisb ARM
Thread 0 Thread 1

MOV X0,#1 LDR X0,[X5]
STR X0,[X2] MOV X1,#2
DMB SY STR X1,[X5]
MOV X1,#1 LDR X2,[X5]
STR X1,[X3] CMP X2,X2

B.NE LC00
LC00:
ISB
LDR X3,[X4]

Initial state: 0:X2=x ∧ 0:X3=y ∧ 1:X4=x
∧ 1:X5=y

Allowed: y=2 ∧ 1:X0=1 ∧ 1:X2=2
∧ 1:X3=0

The PLDI11 Power model [21] forbids this behaviour as the read
c, the write d, the read e, the isync (the Power analogous to isb)
and the read f all have to commit in program order. The read c

can be committed only after it has been satisfied (by the write
b) which means the write b has propagated to Thread 1. Write
b can propagate to Thread 1 only after the lwsync (the Power
lightweight memory barrier, weaker than dmb sy) and the write a
have propagated to Thread 1. Therefore, when the read f is satisfied
it can only be from the write a (or coherence-after write).

In testing, the above is observed on some ARM ma-
chines (see [4, Table VI] and [15, §10.6]). ARM architects give
two distinct explanations for this behaviour. In the first explana-
tion the microarchitecture handles reads in two distinct steps, with
a read request being issued and then satisfied. In this example, af-
ter the read c has been issued the microarchitecture can guarantee
its coherence order even though it has not been satisfied yet, by
keeping read requests and writes to the same address ordered in the
flowing hierarchy, and continue by committing the program-order–
following write to the same address d. This enables e to be com-
mitted, which resolves the control dependency and allows f to be
issued and satisfied with the initial value (0), before c was satisfied.

The second explanation is that the write d is independent of
the read c in every respect except coherence. This relation prevents
d from being committed but it does not prevent the thread from
forwarding d to the po-following read e which in turn can be
committed before d (as the address and value of d are fixed).

Our flowing model incorporates both of these mechanisms.

3. Flowing model design issues

We now discuss a selection of further issues in the flowing design.

3.1 Coherence

Relaxed-memory processors exhibit much programmer-observable
reordering of memory actions, but they typically do aim to guar-
antee some coherence property: with loads and stores to a single
location appearing to execute in a global linear order.

The PLDI11 Power model [21] guaranteed this in the storage
subsystem by fiat, by maintaining a partial order of the coherence
commitments between writes made so far, and in the thread seman-
tics by allowing writes (to the same address) to be committed, and
reads (to the same address) to be satisfied, only in program order.

Here the flowing storage subsystem can easily maintain writes
and read requests to the same address in-order as they flow down
the hierarchy, but the thread semantics has to be more liberal to
match the architects’ intent, and this is further complicated by the
need to restart reads.

Write-write coherence Simply committing writes to the same
address in program order would exclude the LB+data+data-wsi
litmus test below, which the ARM architects intend to be allowed
(to date, we have not observed this behaviour in testing). We resolve
this in the model by allowing writes to be committed out of order,
and only passing a write to the storage when no other program-
order-after write to the same address has been committed. This
means we can commit and pass to the storage system the write
e:W[x]=2 before the data dependency in Thread 1 is resolved, and
only later commit d:W[x]=1, without ever passing it to the storage
subsystem. In hardware, the two writes might be merged together.

Test LB+data+data-wsi: Allowed

Thread 0

a: Rx=2

b: Wy=1

c: Ry=1

Thread 1

d: Wx=1

e: Wx=2

data
rf

data
rf

co

LB+data+data-wsi ARM
Thread 0 Thread 1

LDR X0,[X2] LDR X0,[X4]
EOR X1,X0,X0 EOR X1,X0,X0
ADD X1,X1,#1 ADD X1,X1,#1
STR X1,[X3] STR X1,[X3]

MOV X2,#2
STR X2,[X3]

Initial state: 0:X2=x ∧ 0:X3=y ∧ 1:X3=x
∧ 1:X4=y

Allowed: x=2 ∧ 0:X0=2 ∧ 1:X0=1

If the dependency from the read c to the write d was an address
dependency the behaviour would be forbidden by the architecture,
as resolving the address of the write d might raise an exception,
in which case the write e must not be visible to other threads. The
models therefore distinguish between the two cases by allowing
a write to be committed only after all po-previous addresses have
been determined.

Read-read coherence The RSW (read-from-same-write) litmus
test challenges the coherence order of reads. The model allows it in
the same way as hardware, by allowing read e to be issued before
the address dependency from c to d is resolved, and therefore
before the read d to the same address is issued. After e is satisfied
by the storage subsystem with the initial value, read request f
can be issued and satisfied with the initial value as well. Only at
that point can the instructions of Thread 0 commit in order and
the writes and the barrier flow all the way into memory. In turn,
Thread 1 issues read c and the storage satisfies it with the write b
that just flowed into memory. This resolves the address dependency
and allows read d to be issued and satisfied from the initial state.

Test RSW: Allowed

Thread 0

a: Wz=1

b: Wy=2

c: Ry=2

Thread 1

d: Rx=0

e: Rx=0

f: Rz=0

dmb/sync
rf

addr

po

addr

rf

rf

rf

RSW ARM
Thread 0 Thread 1

MOV X1,#1 LDR X1,[X7]
STR X1,[X8] AND X9,X1,#0
DMB SY LDR X3,[X9,X6]
MOV X2,#2 LDR X4,[X6]
STR X2,[X7] AND X10,X4,#0

LDR X2,[X10,X8]
Initial state: 0:X7=y ∧ 0:X8=z ∧ 1:X6=x

∧ 1:X7=y ∧ 1:X8=z
Allowed: 1:X1=2 ∧ 1:X2=0

Notice that there is no coherence violation between the reads d and
e as both of them read from the same write. If read d was to read
from a different write than e, then e would have had to be restarted
as the write e read from might be co-before the write d read from.

It is thus because the model allows issuing reads out of order
that the model must also perform read restarts. In fact the model
also allows reads to be issued out of order with write commitments.
Coherence is then maintained by restarting uncommitted reads in
two situations. When a read r is satisfied by a write w, if exists a
po-previous read that was issued after r (i.e. the reads were issued
out of order), and has already been satisfied by a write that is
different than w, and w was not forwarded to r then r is restarted;
otherwise all po-following reads to the same address that have been
issued before r and have already been satisfied are restarted, except
for reads that have been satisfied by w and reads that have been
satisfied by forwarding a write that is po-after r. When a write w
is committed we restart all po-following reads to the same address
that have been satisfied by a different write that is not po-after w,
together with all po-following reads to the same address that have
been issued and not satisfied yet.

When a read is restarted all its dataflow dependents are also
restarted, and the storage subsystem removes any read request
issued for the read.

The restart of reads on write commitment guarantees write-read
coherence. Finally read-write coherence is maintained by requiring
that when a write w is committed all po-previous reads to the same
address have been issued and can not be restarted.

The MP+dmb.sy+pos-fri-rfi-ctrlisb litmus test, which is ob-
served on ARM hardware, is explained by ARM architects by al-
lowing the write e to be committed before the reads c and d are
satisfied.

Test MP+dmb.sy+pos-fri-rfi-ctrlisb: Allowed

Thread 0

a: Wx=1

b: Wy=1

c: Ry=1

d: Ry=1

e: Wy=2

Thread 1

f: Ry=2

g: Rx=0

dmb sy
rf

rf

co

po

po

rf

ctrlisbrf

MP+dmb.sy+pos-fri-rfi-ctrlisb ARM
Thread 0 Thread 1

MOV X0,#1 LDR X0,[X6]
STR X0,[X2] LDR X1,[X6]
DMB SY MOV X2,#2
MOV X1,#1 STR X2,[X6]
STR X1,[X3] LDR X3,[X6]

CMP X3,X3
B.NE LC00
LC00:
ISB
LDR X4,[X5]

Initial state: 0:X2=x ∧ 0:X3=y ∧ 1:X5=x
∧ 1:X6=y

Allowed: y=2 ∧ 1:X0=1 ∧ 1:X1=1
∧ 1:X3=2 ∧ 1:X4=0

But to do so the model must guarantee read d will not be restarted
when c is satisfied. To do so and maintain read-read coherence, the
model allows write e to be committed only if the reads have been
issued in order, and refrains from restarting reads that are satisfied
out of order if they were issued in program order. Hence the model
keeps track of the order in which reads are issued (again following
hardware).

3.2 New ARMv8 memory barriers

AArch64 introduces a new variant of the dmb barrier, dmb ld. The
regular dmb barrier, now required to be written as dmb sy, orders
arbitrary memory actions that occur before and after it, and also has
a cumulativity property, e.g. ordering writes that the barrier thread
reads from before the dmb w.r.t. writes that it performs after.

In contrast, the new dmb ld orders pairs of loads with loads and
stores, and dmb st (also in ARMv7) orders pairs of stores only.

Discussions with ARM architects reveals their intention behind
these barriers is weaker than one might imagine from the reference
manual. In particular, they are intended to enforce ordering only
between accesses by the same thread, and so a dmb st does not
have a similar cumulativity property.

3.3 Load-acquire/store-release

Another addition in AArch64 are the load-acquire and store-release
instructions. Despite their names these are intended to be used to
implement the C11 sequentially consistent load and store, and the
reference manual says that store-release is multi-copy-atomic when
read by load-acquire (a strong property that conventional release-
acquire semantics does not imply).

One might expect these two instructions to behave like two
halves of a dmb sy, where the store-release enforces cumulative
order with po-previous instructions and load-acquire enforces order
with po-later instructions. But this is not enough to guarantee the
multi-copy atomicity of a dmb sy. The weakness stems from the
fact that reads can be satisfied before their effects are visible to all
threads. In the Flowing model one can imagine a read request from
a load-acquire being satisfied by a write from a store-release when
the two requests are adjacent in some (non root) queue. Before
the read satisfaction the load/store pair behaves like a dmb sy,

preventing any instruction to be reordered with them. But after
the read is satisfied, half of the implicit dmb sy disappears, and
instructions can be reordered with the write, breaking its multi-
copy atomicity.

A slightly stronger semantics is to prevent a read from a load-
acquire from being satisfied by a write from store-release in a queue
(i.e. load-acquire can be satisfied from a store-release only when
both reach the memory). This solution was suggested by the ARM
architects and seems to be consistent with current implementations
of the architecture. This solution is stronger then what implied by
the ARM reference manual and we suspect some vendors might
want to take advantage of that weakness.

3.4 Dependencies

Some load-load and load-store dependencies create ordering. The
current ARM reference manual [7, §B2.7.4] makes a distinction
between ‘true’ and ‘false’ data dependencies from loads to stores,
with the intuition being that for a ‘false’ dependency the value
read does not extensionally affect the value stored. Making this
precise in a satisfactory way is problematic, as too liberal a notion
of ‘false’ dependency (allowing more hardware optimisation) can
also make it impractical to compute whether a trace is admitted by
the architecture or not. This question is currently under discusssion
with ARM, after we drew it to their attention, and it is possible the
semantics will be strengthened to not distinguish between the two
kinds; our model follows that proposal at present.

3.5 Branch prediction

Control dependencies from a load to another load are not in general
respected, as hardware can speculatively reach and satisfy the sec-
ond load early. For a computed branch, in principle the branch pre-
diction hardware might guess an arbitrary address (or at least an ar-
bitrary executable-code-page address); there seems to be no reason-
able way to limit it, and one can construct litmus tests that observe
it. Mathematically that is no problem, but to make the tool based
on our model usable in practice, we have to approximate here, oth-
erwise the nondeterminism (picking addresses that turn out to be
incorrect) would be prohibitive.

A detailed prose description of the Flowing thread and storage
subsystem is given in §6.

4. Introduction to the POP Model

We now show how the POP model abstracts from the hierarchical
storage subsystem structure of the Flowing model, to give a better
programming model (and to combine the best of both worlds from
the pros and cons of the flowing abstraction listed in §2).

The purpose of the queues in the Flowing storage subsystem
is to maintain order between requests, relaxing it subject to the re-
ordering condition. The topology, on the other hand, determines the
order in which a request becomes visible to the threads. Consider
for example the write a:W[x]=1 in the first storage subsystem state
diagram of §2 for WRC+addrs. It is visible to threads 0 and 1, as
a read request from each of these threads can potentially flow and
encounter a, but it is not visible to threads 2 and 3, as a read re-
quest issued by those would flow all the way to memory without
encountering a. In the POP model we make these two notions ex-
plicit. Instead of the queues enforcing an implicit order we record
an order (as a graph) over all requests, and instead of letting a fixed
topology determine the order in which a request becomes visible,
we record for each thread a set of requests that have become visible
to it, and we allow requests to be added to these sets (subject to
conditions over its place in the order).

Notice that unlike the PLDI11 storage coherence order, that is
only over writes, and only relates writes to the same address, the

POP storage model records an order over all requests (writes, reads
and barriers) and it relates requests with different addresses. In ad-
dition, POP records propagation sets (which do not add ordering)
as opposed to the PLDI11 propagation queues (which play a signif-
icant role in ordering). Moreover, in the PLDI11 model, when an
event is propagated to a new thread, it takes its place in the head
of the propagation queue, while in the POP model, requests that
propagated to a new thread can do so from the middle of the or-
der. Further, in the PLDI11 model the storage subsystem receives a
read request from a thread and replies to it with a read response in
an atomic transition, while in POP the storage subsystem receives
the request and and replies to it in two distinct transitions. Finally,
as mentioned in the introduction, the Power sync memory barrier
requires an acknowledgement to be passed from the storage subsys-
tem to the issuing thread, while the POP model maintain memory-
barrier-induced ordering without such acknowledgements.

4.1 Example: POP simulating Flowing

Consider the MP+dmb.sy+addr litmus test. Thread 1 issues the
read c and it enters the storage subsystem. As we need the write
b to satisfy that read Thread 0 commits the write a, the dmb sy,
and the write b in program order (as required by the dmb sy). In
flowing these requests will enter the storage subsystem, into the
queue associated with Thread 0, in the order they were committed
by the thread, and the reorder-condition will prevent them from
reordering. In the POP storage subsystem each of these requests
will be recorded as ordered after the previously accepted requests.

Test MP+dmb.sy+addr: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb sy
rf

addr

rf

MP+dmb+addr ARM
Thread 0 Thread 1

MOV X0,#1 LDR X0,[X4]
STR X0,[X2] EOR X1,X0,X0
DMB SY LDR X2,[X1,X3]
MOV X1,#1
STR X1,[X3]
Initial state: 0:X2=x ∧ 0:X3=y ∧ 1:X3=x

∧ 1:X4=y
Forbidden: 1:X0=1 ∧ 1:X2=0

The Flowing storage must now flow the write b to the root
queue before the read c gets there. But before it can do that it must
flow the dmb sy and write a as none of them can be reordered
with each other. The POP storage subsystem must propagate the
write b to Thread 1 before propagating the read c to Thread 0 in
order for c to be satisfied by b. But before it can do that it must
propagate the dmb sy and write a, as they are ordered before b.
When the dmb sy is propagated to Thread 1 it is ordered before c
as the reorder-condition prevents it from reordering with c that has
already propagated to Thread 1, by transitivity this also orders a
before c.

Back in the Flowing storage subsystem, c can now flow to
the root queue and get satisfied by b which resolves the address
dependency and allow Thread 1 to issue d, which can not be
satisfied by the initial value because a is already in the root queue.
And in the POP storage subsystem c can now propagate to Thread 0
to be satisfied by b, which resolves the address dependency and
allows Thread 1 to issue d. This gets ordered with the dmb sy
and a when it enters the storage subsystem as they have already
propagated to Thread 1, and therefore d can not be satisfied from
the initial state.

A detailed prose description of the POP storage subsystem is
given in §7. In the next section we describe the ISA model.

5. ISA Model

Handling the instruction semantics raises two problems, as noted
in the introduction: the mass of detail involved, and its semantic
integration with the concurrent semantics. We address both with a
domain-specific language for ISA description, Sail.

The ARM reference manual (or ARM ARM) [7] has 224
application-level non-FP/SIMD instructions, counting subsections
of Chapter C6 A64 Base Instruction Descriptions (each of which
defines one instruction, sometimes with several variants). Of these
224, we support all except 21 (and aspects of 4 more), relating to
exceptions, debug, system-mode, and load-non-temporal-pair.

Fig. 2 shows excerpts of this. At the top is a clause of an in-
struction AST datatype (ast), with constructor AddSubImmediate,
covering four ADD and SUB instructions. Then there is
a decoding function decodeAddSubtractImmediate that
pattern-matches a 32-bit vector and constructs an element
of that ast type (the body of this function is elided). For
example, the ARM assembly instruction ADD X1, X2, #1

would be assembled to 0x91000441, which is decoded to
AddSubImmediate(1,2,64,0,0,ExtendType_UXTB,1). Finally
there is a clause of the execute function that defines the behaviour
of these instructions.

Hardware vendors differ widely in the level of detail and rigor
of their instruction descriptions. The ARM ARM is relatively good
in these respects: the pseudocode used is reasonably complete and
close to something that could be executed, as least for sequential
code (Shi et al. build a simulator based on pseudocode extracted
from an ARMv7 pdf [24]). We therefore want to follow it closely,
both to avoid introducing errors and to keep our definitions readable
by engineers who are already familiar with the ARM ARM. Sail
is designed with this in mind, and our instruction descriptions
can often be line-for-line identical to those of the ARM ARM.
Looking again at Fig. 2, the body of the Sail execute clause differs
from the ARM ARM text [7, §C6.6.4, ADD (immediate)] only in
minor details: the type annotations and concrete syntax for let.
Both languages are imperative, with mutable local variables and
primitives for register and memory reads and writes, and typed bit
vectors.

For Sail, we developed a type system expressive enough to type-
check such code without requiring excessive type annotation or par-
tiality. The ISA description manipulates bitvectors of differing sizes
and start-indices, which we support with dependent types over Int.
For example, Fig. 2 includes a variable ’R of kind Int, bounded to
be either 32 or 64, to accommodate those two flavours of instruc-
tions; the code involves bitvector types bit[’R] of that length and
also a singleton type [:’R:] (really, an integer range type from ’R

to ’R). This instruction happens not to index into a vector; in those
that do, the indices use such range types (not necessarily single-
tons). Type inference and checking involve polynomial equations
and inequalities, undecidable in general but not a problem in prac-
tice, as the constraints that actually arise here are relatively simple.
Sail also provides implicit type coercions between numbers, vec-
tors, individual bits, and registers, again keeping the specification
readable. A simple effect system tracks the presence of memory
and register operations, identifying pure code. The language has
first-order functions and pattern-matching, including vector con-
catenation patterns (as used in decodeAddSubtractImmediate).
We have also used Sail for related work on IBM Power ISA seman-
tics (Power uses a broadly similar but different and less rigorous
pseudocode); it is expressive enough for both.

The dynamic semantics of Sail is where we see the integra-
tion with the concurrency thread-subsystem semantics: unlike a se-
quential or sequentially consistent system, we cannot simply use
a state-monad semantics that updates a global register and mem-
ory state. Instead, the Sail semantics (expressed as an interpreter
in Lem) makes register and memory requests to the thread seman-
tics, providing a continuation of the instruction state. It also has to
announce to the thread semantics the point at which the address
of a memory write becomes available – an example where we dif-
fer from the ARM ARM pseudocode as written there, adding extra

information. The thread semantics further needs to know the regis-
ter footprint of an instruction and intra-instruction register dataflow
information (e.g. the register reads that may feed into a memory
address); the Sail interpreter calculates these with an exhaustive
symbolic taint-tracking execution.

There has been a great deal of previous work using domain-
specific IDLs and proof assistants to describe instruction behaviour,
for many different purposes. On the formal and semantics side, this
includes the ARMv7 model by Fox [10] in his L3 language, that by
Goel et al. [11] for x86 in ACL2, work on automatically generating
compiler components, e.g. [9], and the assembly language and
machine-code models used by verified compilation work, e.g. [5,
12–14, 17, 25] With the exception of CompCertTSO [25], which
was w.r.t. the much simpler x86-TSO model, none of these address
concurrency. A few, notably those of Fox and Goel, are rather
complete in their coverage of the sequential ISA, but many include
just enough for the purpose at hand (simplifying the problems of
scale), and are not concerned with engineer-accessibility.

6. The Flowing Model in Detail

In this section and the next, we describe the storage and thread state
subsystems that comprise the Flowing and POP models in more
detail. For each of the state machines we describe its state vari-
ables, and then the enabling condition for each transition and its
effect on the state of the machine. We also describe how the sub-
systems interface with each other. We include this here principally
to demonstrate that the models, while moderately intricate, are not
unmanageably so: it has proved entirely feasible to discuss the rules
in depth at this level of detail with our ARM colleagues.

To save space, we elide dmb ld, dmb st, load-acquire, store-
release, load-exclusive and store-exclusive; a full version that in-
cludes those is in the supplementary material.

6.1 The Storage Subsystem/Thread Interface

The model is expressed in terms of read, write, and barrier requests.
Read and write requests include the kind of the memory access
(e.g. exclusive, release, acquire), the ID of the issuing thread and
the memory access address. Write requests also include a value.
Barrier requests include the issuing thread ID.

When we refer to a write or read request without mentioning the
kind of request we mean the request can be of any kind.

The storage subsystem and a thread subsystem can exchange
messages through synchronous transitions:

• a write request can be passed to the storage by a thread
Commit instruction (write) transition coupled with a storage
Accept request transition;

• a (memory) barrier request can be passed to the storage by a
thread Commit instruction (barrier) transition coupled with a
storage Accept request transition;

• a read request can be passed to the storage by a
thread Issue read request transition coupled with a storage
Accept request transition; and

• a read response can be returned from the storage
to a thread by a storage Satisfy read from segment or
Satisfy read from memory transition coupled with a thread
Satisfy memory read from storage response transition.

In addition to the above, when a load instruction is restarted in
the thread subsystem, all its read-requests are removed from the
storage subsystem.

6.2 Storage Subsystem States

The flowing storage subsystem state comprises:

• thread_ids is the set of thread IDs that exist in the system.

• topology is a data structure describing how the segments are
connected to each other.

• thread_to_segment is a map from thread IDs to segments, asso-
ciating each thread with its leaf segment.

• buffers is a map from segments to list of requests associating
each segment with the requests queued in that segment.

• reordered is a set of request pairs that have been reordered
w.r.t. each other.

• memory is a map from memory addresses to the most recent
write request to that address to reach memory.

6.3 Storage Subsystem Transitions

Accept request A request r from thread r.tid can be accepted if:

1. r has not been accepted before (i.e. r is not in buffers);
2. r.tid is in thread_ids ;

Action: add r to the top of buffers (thread_to_segment(r.tid)) .

Flow request A request r can flow from segment s1 to s2 if:

1. r is at the bottom of buffers (s1);
2. s1 is a child of s2 in topology;

Action:
1. remove r from buffers (s1);
2. add r to the top of buffers (s2); and
3. remove from reordered any pair that contains r.

Reorder requests Two requests r_new, r_old that appear consec-
utively in buffers (s) (r_new nearer the top) can be reordered if:

1. r_new, r_old do not appear in reordered (i.e. they have not been
reordered (in segment s) with each other before (preventing live
lock);

2. r_new and r_old satisfy the reorder condition (§6.4).

Action:
1. switch the positions of r_new and r_old in buffers (s);
2. record the reordering of r_new and r_old (by adding the pair

(r_new, r_old) to reordered).

Satisfy read from segment Two requests, r_read, r_write , can
generate a read response to thread r_read.tid if:

1. r_read is a read request;
2. r_write is a write request;
3. r_read, r_write appear consecutively in buffers (s) for some

segment s, with r_read closer to the top (newer);
4. r_read and r_write are to the same address;

Action:
1. send a read response to thread r_read.tid , with value

r_write.value and for request r_read; and
2. remove r_read.

Satisfy read from memory A read request r_read from thread
r_read.tid can generate a read response to thread r_read.tid if:

1. r_read is at the bottom of buffers (s), where s is the root
segment in topology.

Action:
1. send a read response to thread r_read.tid , with the value stored

in memory for the address r_read.addr for request r_read; and
2. remove r_read.

Flow write to memory The write request r_write can be stored
into memory if: r_write is at the bottom of buffers (s), where s is
the root segment in topology. Action:
1. update memory to map the address r_write.addr to r_write ;
2. remove r_write .

Flow barrier to memory A barrier request r_barr can be dis-
carded if: r_barr is at the bottom of buffers (s), where s is the
root segment in topology. Action:
1. remove r_barr.

6.4 Auxiliary Definitions For Storage Subsystem

Reorder condition Two requests r_new and r_old are said to
meet the reorder condition if:

1. neither one of r_new, r_old is a dmb sy;
2. if both r_new and r_old are memory access requests, they are

to different addresses;

6.5 Thread States

The state of a single hardware thread consists of:

• thread_id : a unique identifier of the thread.
• register_data : general information about the available regis-

ters, including name, bit width, initial bit index and direction.
• initial_register_state : the initial values for each register.
• initial_fetch_address : the initial fetch address for this thread.
• instruction_tree : a data structure holding the instructions that

have been fetched.
• read_issuing_order : a queue of read requests in the order they

were issued to the storage subsystem.

6.6 Thread Transitions

Fetch instruction An instruction i can be fetched, following its
program-order predecessor i_prev and from address loc, if:

1. loc is a possible next fetch address for i_prev according to the
ISA model; and

2. i is the instruction of the program at loc.

The possible next fetch addresses allow speculation past calculated
jumps and conditional branches; they are defined as:

1. for a non-branch/jump instruction, the successor instruction
address;

2. for a jump to constant address, that address;
3. for a conditional branch, the possible addresses for a jump2

together with the successor; and
4. for a jump to an address which is not yet fully determined (i.e.,

where there is an uncommitted instruction with a dataflow path
to the address), any address. This is (necessarily) approximated
in our implementation, c.f. §3.5.

Action: construct an initialized instruction instance and add it to
instruction_tree . This is an internal action of the thread, not

involving the storage subsystem, as we assume a fixed program
rather than modelling fetches with reads; we do not model self-
modifying code.

Issue read request A pending read request in the instruction
semantics of an in-flight instruction i can be issued by making a
read-request to the storage subsystem if:

1. the address to read is determined (i.e., any other reads with
dataflow path to the address have been satisfied, though not
necessarily committed, and any arithmetic on such a path com-
pleted);

2. all po-previous dmb sy and isb instructions are committed;

Action:
1. send a read-request to the storage subsystem;
2. update read_issuing_order to note that the read was issued last.

2 In AArch64, all the conditional branch instructions have a constant ad-
dress.

Satisfy memory read from storage response A read response for
instruction r with write w can always be received. Action: as in
the Satisfy memory read by forwarding an in-flight write directly to
reading instruction transition below.

Satisfy memory read by forwarding an in-flight write directly to
reading instruction A pending memory write w from an in-flight
instruction can be forwarded directly to a load of an instruction r
if all the conditions of Satisfy memory read from storage subsystem
response are met and:

1. w is an uncommitted write to the same address that is po-before
r;

2. the value to read is determined (i.e., any other reads with
dataflow path to the value of w have been satisfied, though not
necessarily committed, and any arithmetic on such a path com-
pleted);

Action:

1. if there exists a po-previous load instruction r’ that read from
a different write but one to the same address as w, and w is not
po-after r’ restart r; else

2. for every in-flight instruction r’ that is po-after r and has read
from a write to the same address as r that is not w and not po-
successor of r, restart r’ and its data flow dependents;

3. update the internal state of the reading instruction;
4. note that w has been read from by r.

Commit instruction An in-flight instruction i can be committed
if:

1. i’s ISA semantics has no pending internal action or computa-
tion;

2. all instructions with dataflow dependency to i (instructions with
register outputs feeding to i’s register inputs) are committed;

3. all po-previous conditional branches are committed;
4. if i is a memory access instruction:

(a) all po-previous dmb sy and isb instructions are committed.
(b) if i is a load instruction:

i. let s be the store instruction to the same address as i that
appears last in program order before i .
A. if s was forwarded to i , its data must be fully deter-

mined (i.e., instructions feeding input registers are
committed), otherwise s must be committed;

B. All memory access instructions po-between s and i
must have a fully determined address (i.e., instruc-
tions feeding their address-computation registers are
committed);

C. All load instructions to the same address as i po-
between s and i must be committed;

(c) if i is a store instruction:
i. the address of all po-previous memory accesses is fully

determined (i.e., all po-previous instructions with ad-
dress dependency to any instruction that is po-before i
are committed); .

ii. all po-previous instructions that read from the same ad-
dress have either issued a read request or already been
satisfied, and cannot be restarted (see §6.7);

5. if i is a barrier instruction (of any kind):
(a) all po-previous barriers (of any kind) are committed;
(b) if i is dmb sy, all po-previous memory access instructions

are committed;
(c) if i is isb , all po-previous instructions with address depen-

dencies to any instruction that is po-before i are committed
(i.e., the address of all po-previous memory accesses is fully
determined);

Action:
1. if i is a store instruction,

(a) restart any in-flight loads (and their dataflow dependants)
that:

i. are po-after i and have read from the same address, but
from a different write and where the read could not have
been by forwarding an in-flight write that is po-after i ;
or

ii. have issued a read request that has not been satisfied yet;
(b) if there is no committed po-following write to the same

address, send a write request to the storage subsystem.
2. if i is a branch instruction, abort any untaken speculative path of

execution, i.e., any instruction instances that are not reachable
by the branch taken;

6.7 Auxiliary Definitions For Thread Subsystem

Restart condition To determine if instruction i might be restarted
we use the following recursive condition: i is an in-flight instruc-
tion and one of the following holds,

1. exists an in-flight write instruction w such that applying the
action of the Commit instruction transition to w will result in
the restart of i ;

2. exists an in-flight read instruction r such that applying the ac-
tion of the Satisfy memory read from storage subsystem re-
sponse transition to r will result in the restart of i (even if r
is already satisfied);

3. i has issued a read request that has not been satisfied yet, and
there exists a load instruction po-before i that has issued a read
request to the same address (maybe already satisfied) after i ;

4. exists an in-flight instruction i ’ that might be restarted and
• the output register of i ’ feeds an input register of i .

7. The POP Model

7.1 The Storage Subsystem/Thread Interface

When we refer to a write or read request without mentioning the
kind of request we mean the request can be of any kind.

The storage subsystem and a thread subsystem can exchange
messages through synchronous transitions:

• a write request can be passed to the storage by a thread
Commit instruction (write) transition coupled with a storage
Accept request (read/write/barrier request) transition;

• a (memory) barrier request can be passed to the storage by a
thread Commit instruction (barrier) transition coupled with a
storage Accept request (read/write/barrier request) transition;

• a read request can be passed to the storage by a
thread Issue read request transition coupled with a storage
Accept request (read/write/barrier request) transition; and

• a read response can be passed from the storage to a thread by a
storage Send read-response to thread transition coupled with a
thread Satisfy memory read from storage response transition.

In addition to the above, when a load instruction is restarted in
the thread subsystem, all its read-requests are removed from the
storage subsystem.

7.2 Storage Subsystem State

The POP storage subsystem state has the following components:

• thread_ids is the set of thread IDs that exist in the system.
• requests_seen is a set of requests (memory read/write requests

and barrier requests) that were seen by the subsystem.
• order_constraints is a set of pairs of requests from

requests_seen . The pair (r_old,r_new) indicates that r_old is

before r_new (r_old and r_new might be to different addresses
and might even be of different kinds).

• requests_propagated_to is a map from thread IDs to subsets of
requests_seen , associating with each thread the set of requests
that has propagated (potentially visible) to it.

7.3 Storage Subsystem Transitions

The POP storage subsystem transitions are as follows:

Accept request (read/write/barrier request) A request r_new
from thread r_new.tid can be accepted if:

1. r_new has not been accepted before (i.e., r_new is not in
requests_seen);

2. r_new.tid is in thread_ids ;

Action:
1. add r_new to requests_seen ;
2. add r_new to requests_propagated_to (r_new.tid);
3. update order_constraints to note that r_new is after every

request r_old that has propagated to thread r_new.tid , and
r_new and r_old do not meet the flowing reorder condition (see
Reorder condition);

Propagate request to another thread The storage subsystem can
propagate request r (by thread tid) to another thread tid ’ if:

1. r has been seen before (i.e., r is in requests_seen);
2. r has not yet been propagated to thread tid ’;
3. all requests that have been propagated to thread tid and are

before r in order_constraints have already been propagated to
thread tid ’;

Action:
1. add r to requests_propagated_to (tid ’) ;
2. update order_constraints to note that r is before every request

r_new that has propagated to thread tid ’ but not to thread tid ,
where r_new and r do not meet the flowing reorder condition
(see Reorder condition);

Send read-response to thread The storage subsystem can send
a read-response for read request r_read to thread r_read.tid con-
taining the write request r_write if:

1. r_write and r_read are to the same address;
2. r_write and r_read have been propagated to (exactly) the same

threads;
3. r_write is order_constraints -before r_read;
4. any request that is order_constraints -between r_write and

r_read must be fully-propagated (§7.4) and must be to a dif-
ferent address;

Action:

1. send thread r_read.tid a read-response for r_read containing
r_write ;

2. remove r_read;
3. remove from order_constraints pairs that satisfy the flowing

reorder condition, and apply transitive closure to the result.

7.4 Auxiliary Definitions For Storage Subsystem

Fully propagated Request r is said to be fully-propagated if it
has been propagated to all threads and so has every request that is
order_constraints -before it.

Removing read request When a read request is removed from the
storage, due to restart of the instruction in the thread subsystem or
satisfaction, first order_constraints is restricted to exclude the re-
quest, it is then further restricted by applying the reorder condition
to each pair of ordered requests and removing pairs that can be re-
ordered, finally the transitive closure of the result is calculated.

8. POP abstracts flowing

We now show that the POP model does indeed abstract the Flowing
model, as intended. The detailed proof is included in the supple-
mentary material; here we outline the statement of the theorem and
the overall structure of the proof. A Flowing trace is a sequence

(tss0,flo0), a1, (tss1,flo1), . . . , an, (tssn,flon)

where each tssi denotes a thread subsystem state, floi denotes a
Flowing storage subsystem state and for each i ∈ [1, n] the transi-
tion ai is enabled at the Flowing system state f = (tssi−1,floi−1)

and when taken leads to f ′ = (tssi,floi), written as f
ai

−→F f ′.
We define the dual notion for POP traces with a POP system state
(tss, pop), where pop is a POP storage subsystem state. We say
that a Flowing trace trF is equivalent to a POP trace trP if the last
system state in each trace has identical thread subsystem states.

We prove that POP soundly relaxes Flowing by establishing a
simulation relation from Flowing to POP which for a given Flowing
trace generates an equivalent POP trace. Since the thread subsystem
state has full information about the execution of the instructions,
equivalence of traces implies identical program behaviour.

Theorem 1 (POP relaxes Flowing). Let trF be a Flowing trace
ending at Flowing system state (tss,flo). Then there exists a POP
trace trP which ends at POP system state (tss ′, pop) such that
tss = tss ′.

Our proof relies on a simulation relation σ and a transition map
µ : AF 7→ A∗

P . The simulation relation is such that whenever
(f, p) ∈ σ, f and p have identical thread subsystem states. Besides
the simulation relation, we also define a function µ : AF 7→ A∗

P

which maps a Flowing transition into a (possibly empty) sequence
of POP transitions. We then show inductively that for any Flowing
system state f and POP system state p, if (f, p) ∈ σ and there is
a Flowing transition f

a
−→F f ′, then there is a POP system state p′

such that p
µ(a)
−−−→P

∗ p′ and (f ′, p′) ∈ σ.

9. Commutativities

Exploring all architecurally allowed outcomes of concurrent test
programs is computationally expensive. In any state of the model
multiple transitions might be enabled, and any possible trace of
these transitions might produce a new outcome. From the definition
of the model, however, it is clear that the order in which the
abstract machine takes certain transitions does not matter: certain
thread-internal transitions can be reordered and the outcome will
be the same. We proved this for particular kinds of transitions
and implemented an optimisation of the tool we describe below
that uses this result to improve the performance of exhaustively
exploring the possible behaviours of concurrent programs.

The property we proved is the following: assume transition t
takes the abstract machine from state s0 to s, and transition t′ from
s0 to s′. Then for particular types of transitions t the model only
needs to explore the traces starting with t, because in s transition t′

is enabled again and either

• in s′, transition t is enabled and taking t in s′ produces the same
state as taking t′ in s; or

• taking transition t′ in state s results in s′.

Theorem 2. Let t, t′ ∈ enumerate-transitions-of-system s0 and
assume t is a thread-internal transition, an instruction-finish tran-
sition, a register read or write transition, a potential-memory-write
transition, or a fetch transition, and neither t nor t′ are fetch tran-

sitions directly po-after a branch. Then

(t ∈ enumerate-transitions-of-system s
′
∧ (1)

t
′
∈ enumerate-transitions-of-system s ∧

state-after-transition s
′
t = state-after-transition s t

′) ∨

(t′ ∈ enumerate-transitions-of-system s ∧ (2)

system-state-after-transition s t
′ = s

′)

The proof (appended in supplementary material) is by case analysis
on the transition kinds of t and t′. The reason the second clause
in the statement above is needed is that t might be enabled by an
instruction i that can be subject to restart, for example by a storage
read response transition t′, or part of a speculatively executed
branch that might be aborted when the branch is resolved. In these
cases, when taking transition t the instruction i makes progress
which is “overwritten” when taking transition t′.

10. Exploration tool

We have built a tool that lets one explore, interactively or exhaus-
tively, all the executions admitted by the model for small test pro-
grams, either litmus tests or conventional ARMv8 ELF executables.
The core of the tool is OCaml code automatically generated by the
Lem compiler from the model definition (giving reasonable confi-
dence that it is executing the model as specified), to which we add
a driver and user interface code.

The exhaustive mode of the tool takes a litmus test as an in-
put and produces a list of all the observable final states (using a
memoised search), together with an example trace for each one; it
also evaluates the litmus test final-state assertion. We use this on a
cluster and a large server machine for bulk litmus test and ISA test
validation.

The interactive mode lets the user make the nondeterministic
choices between the available transitions at each state (or follow
a previously identified sequence of choices). The user can also
choose to let the tool eagerly take all the ISA internal transitions
of each instruction and only prompt the user for the thread and
storage subsystem transitions, or, further, to eagerly take transitions
which are known to commute with others (§9), leaving the user
only the choices that affect memory behaviour. At each point the
tool displays the abstract state of the model, including the storage
subsystem state, the tree of instruction instances for each hardware
thread, and the Sail instruction state (the remaining Sail code and
local variable environment) for each instruction. The delta from
one state to the next is highlighted and the tool supports arbitrary
‘undo’, for ease of exploration. The tool provides both a command-
line and web interface, using js_of_ocaml to compile to JavaScript
that can run standalone in a browser.

All this will be made publicly available. If the paper is accepted,
we intend to submit the semantics and tool to the POPL 2016
Artifact Evaluation process.

In small sequential tests the tool currently has a performance
of the order of 90 IPS: a test adding up the numbers from 0 to 20
(an ELF binary compiled with GCC from a C program with a for

loop), involving 212 instruction instances, takes 2.4 seconds to run
using the flowing model, 25.5 seconds in the POP model. Many
optimisations are possible; for example, the POP model currently
keeps all writes, but “sufficiently old” writes could be discarded
(though the performance gain of doing such optimisations must be
balanced against the cost of making the model less clear).

Exhaustive exploration of concurrent tests is intrinsically chal-
lenging due to the combinatorial explosion: using the POP model
to compute all possible outcomes of the MP+dmb+addr litmus test
without the commutativity optimisation of §9 takes 8 hours 35 min-
utes on an Intel Core i5 machine with 16GB RAM, 12 hours 23

minutes using the flowing model. Using the commutativity prop-
erty to avoid exploring equivalent traces improves the run time for
this test to 4 seconds with POP and 5.5 seconds with flowing.

11. Example

One of the benefits of our model and tool is to make it possi-
ble to explore the behaviour of intricate concurrent code with re-
spect to the full envelope of behaviour allowed by the architecture,
not just test it on particular implementations. Previous such tools
have been useful both for Linux kernel developers [16] and ARM
hardware engineers [personal communication], but were limited in
many ways: to a concurrency model that was not well-validated
w.r.t. ARM (and in fact did not match the intent in some respects),
to a tiny fragment of the ISA, and to ARMv7; we have now relaxed
all these.

We demonstrate this for an ARMv8 spinlock implementation
taken from the Linux kernel. The example uses two threads, each
running a small critical section wrapped with lock and unlock
functions. It assumes an initial state with register X0 holding the
address of a lock, register X4 the address of a shared memory
object, and register X5 (accessed as a half register with W5) a
thread id.

lock: LDAXR W1, [X0]

ADD W2, W1, #16, LSL #12

STXR W3, W2, [X0]

CBNZ W3, lock

EOR W2, W1, W1, ROR #16

CBZ W2, out

spin: LDAXRH W3, [X0]

EOR W2, W3, W1, LSR #16

CBNZ W2, spin

out: RET

unlock:

LDRH W1, [X0]

ADD W1, W1, #1

STLRH W1, [X0]

RET

// T0 critical section

BL lock

STR W5, [X4]

LDR W5, [X4]

CBNZ W5, error

BL unlock

The sample critical section for Thread 0 is above; that for
Thread 1 differs in taking the branch to error on loading 1 from
the shared memory object (with a CBZ). If it does, then Thread 1
has been allowed into the critical section before Thread 0 has
released the lock. The spinlock uses several AVMv8 release/acquire
instructions, some exclusive (load-linked/store-conditional pairs),
namely LDAXR, load-acquire exclusive register, LDAXRH, load-
acquire halfword, STXR, store exclusive register, and STLRH,
store-release halfword. We explored this example interactively in
both the flowing and POP models, with both 32- bit and 64-bit
instructions. In neither model were we able to exit the spin section
of the lock code while the opposite thread had not passed the unlock
section once the STXR had been executed. This was true whether
the store had propagated to main memory or the opposite thread.

We then injected an error into this implementation, replacing
STXR with a plain STR. In the resulting program, we found an
execution trace in which the write of the store claiming the lock in
Thread 0 does not propagate quickly to Thread 1, and so Thread 1
is also able to also claim the lock and enter its critical section, at
which point the critical section of Thread 0 loads a 1 into W5 and
the CBNZ instruction branches to error. Finding this error required
that the store on Thread 0 remained local for some time, which may
or may not happen in an actual execution on hardware but which we
could quickly see as an architectural possibility during exploration.

12. Experimental Validation

Single-instruction tests For the validation of the sequential ISA
semantics we wrote a tool for automatically generating ARM as-
sembly tests that compare hardware and model behaviour for in-
dividual instructions. Each of the tests first initialises registers and

memory to particular values, then logs the relevant CPU and mem-
ory state before and after running the instruction that is tested.

The tests are generated largely automatically based on informa-
tion derived from the instruction descriptions in the ARM reference
manual. The manual describes the encoding of the instructions and
instruction fields using tables of the legal bit patterns; the instruc-
tion’s pseudo code explains how the instruction’s parameters are
used by the instruction: some instruction fields encode immediate
values, others mode strings or bits that switch between different
variants of the same instruction. Based on this the tool generates
tests by selecting random immediate values and all legal combi-
nations of mode strings and bits to test, as much as possible, all
behaviours of the instruction.

The test programs are statically linked Linux ELF binaries pro-
duced by GCC, that can be executed using our tool.

The tool generates around 8400 tests, all of which pass with-
out mismatches. The tests are generated unformly for almost all
instructions; branches and loads/stores need some additional setup.

Litmus tests For experimental validation of the concurrency
semantics, we use a library of litmus tests developed in previous
work on Power and ARM [2, 4, 21, 22], including both hand-
written tests and tests autogenerated by the diy tool of Alglave
and Maranget [1], adapted to ARMv8. We use the the litmus

tool [3] to make an ARM executable that is then run on different
ARM devices. The executable runs millions (sometimes billions) of
iterations of the test, trying to excite the cores to produce interesting
behaviour, the outcome of which is a list of observed final states.

For each litmus test we then compare the final states observed
on hardware with the final states reported by the exhaustive explo-
ration of the model. In addition, we compare the results of exhaus-
tive exploration between Flowing and POP. The exhaustive explo-
ration of Flowing gives results for 2489 litmus tests and of POP for
2530, out of 4832; the remainder exceed time or memory limits.

The experimental comparison between Flowing and POP shows
no difference between the models. One can devise exotic litmus
tests on which the models will behave differently, exploiting the
Flowing observable topology (e.g. 4xIRIW+addrs, combining mul-
tiple instances of the IRIW+addrs litmus test), but these are too big
for our tool’s exhaustive enumeration. (we checked by hand that
that test is allowed by POP and proved it is forbidden by Flowing).

The comparison with hardware shows all the observable be-
haviour on hardware is allowed by the models (i.e. models are
sound). As expected, some behaviours that are allowed by the mod-
els are not observed on current hardware.

In the supplementary material we give two tables (for ARMv7
and ARMv8) with a small sample of our experimental results,
for the litmus tests cited by name in this paper (including results
for Snapdragon 810, Denver, and A8X processors). The models
are sound with respect to this data; indeed, the tested hardware
is often less relaxed than the models and architectural intent. The
data also illustrates how much hardware behaviour varies from one
implementation to another, further emphasising the importance of
a precise understanding of the architectural envelope.

13. Conclusion

Well-validated semantic models for mainstream processor architec-
tures are an important and technically challenging problem in them-
selves, and they are also an essential prerequisite for higher-level
semantics and verification, of fine-grained concurrent algorithms,
operating systems code, compilers, high-level-language concur-
rency models, and much more.

In this paper we have taken important steps towards this for
the ARMv8 architecture, combining concurrency models, both mi-
croarchitectural and more abstract, with a complete application-

level non-FP/SIMD ISA semantics. The former are validated by
discussion with ARM and by black-box litmus testing; the latter
by the close correspondence with the ARM ARM and by single-
instruction testing. Our models will be made available for use by
others, in their Sail and Lem source and as command-line and web-
interface executable tools. We have also (in an initial experiment)
used Lem to generate Isabelle/HOL definitions of all the model ex-
cept the Sail interpreter, to support mechanised reasoning.

Much future work is possible, of course. In the short term, more
validation is always desirable, here especially for the exclusive
operations and for mixed-size accesses (we have not touched on
the latter in this paper; our model covers them but they have not
been well-tested). For work on concurrent algorithms and verified
compilation, our coverage should be sufficient, but for some OS
code one would also need semantics for exceptions, interrupts, and
virtual memory, including all their interactions with concurrency.

Acknowledgments

We thank Graeme Barnes and Richard Grisenthwaite for discus-
sions about the ARM architecture. This work was partly funded
by the EPSRC Programme Grant REMS: Rigorous Engineering for
Mainstream Systems, EP/K008528/1.

References

[1] J. Alglave and L. Maranget. The diy tool. http://diy.inria.fr/.

[2] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak
memory models. In Proc. CAV, 2010.

[3] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus: run-
ning tests against hardware. In Proceedings of TACAS 2011: the

17th international conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 41–44, Berlin, Heidel-
berg, 2011. Springer-Verlag. ISBN 978-3-642-19834-2. URL
http://dl.acm.org/citation.cfm?id=1987389.1987395.

[4] J. Alglave, L. Maranget, and M. Tautschnig. Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Memory. ACM

TOPLAS, 36(2):7:1–7:74, July 2014. ISSN 0164-0925. .

[5] R. M. Amadio, N. Ayache, F. Bobot, J. Boender, B. Campbell, I. Gar-
nier, A. Madet, J. McKinna, D. P. Mulligan, M. Piccolo, R. Pollack,
Y. Régis-Gianas, C. S. Coen, I. Stark, and P. Tranquilli. Certified com-
plexity (cerco). In Foundational and Practical Aspects of Resource

Analysis - Third International Workshop, FOPARA 2013, Bertinoro,

Italy, August 29-31, 2013, Revised Selected Papers, pages 1–18, 2013.
. URL http://dx.doi.org/10.1007/978-3-319-12466-7_1.

[6] ARM. Cortex-a57 processor. www.arm.com/products/processors/
cortex-a/cortex-a57-processor.php, Accessed 2015/07/06.

[7] ARM Architecture Reference Manual (ARMv8, for ARMv8-A architec-

ture profile). ARM Ltd., 2014.

[8] W. W. Collier. Reasoning about parallel architectures. Pren-
tice Hall, Englewood Cliffs, 1992. ISBN 0-13-767187-3. URL
http://opac.inria.fr/record=b1105256.

[9] J. a. Dias and N. Ramsey. Automatically generating instruction
selectors using declarative machine descriptions. In Proceedings

of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL ’10, pages 403–416, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-479-9. . URL
http://doi.acm.org/10.1145/1706299.1706346.

[10] A. C. J. Fox. Directions in ISA specification. In Interactive Theorem

Proving – Third International Conference, ITP 2012, Princeton, NJ,

USA, August 13-15, 2012. Proceedings, pages 338–344, 2012. . URL
http://dx.doi.org/10.1007/978-3-642-32347-8_23.

[11] S. Goel, W. A. Hunt, M. Kaufmann, and S. Ghosh. Simulation and
formal verification of x86 machine-code programs that make sys-
tem calls. In Proceedings of the 14th Conference on Formal Meth-

ods in Computer-Aided Design, FMCAD ’14, pages 18:91–18:98,
Austin, TX, 2014. FMCAD Inc. ISBN 978-0-9835678-4-4. URL
http://dl.acm.org/citation.cfm?id=2682923.2682944.

[12] A. Kennedy, N. Benton, J. B. Jensen, and P.-E. Dagand. Coq: The
world’s best macro assembler? In Proceedings of the 15th Symposium

on Principles and Practice of Declarative Programming, PPDP ’13,
pages 13–24, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2154-9. . URL http://doi.acm.org/10.1145/2505879.2505897.

[13] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. Cakeml:
A verified implementation of ml. In Proceedings of the 41st

ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’14, pages 179–191, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2544-8. . URL
http://doi.acm.org/10.1145/2535838.2535841.

[14] X. Leroy. A formally verified compiler back-end. Jour-

nal of Automated Reasoning, 43(4):363–446, 2009. URL
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf.

[15] L. Maranget, S. Sarkar, and P. Sewell. A tutorial introduction to the
ARM and POWER relaxed memory models. Draft available from
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf,
2012.

[16] P. McKenney. Validating memory barriers and atomic
instructions. Linux Weekly News article, Dec. 2011.
https://lwn.net/Articles/470681/.

[17] G. Morrisett, G. Tan, J. Tassarotti, J. Tristan, and E. Gan. Rocksalt:
better, faster, stronger SFI for the x86. In ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’12,

Beijing, China - June 11 - 16, 2012, pages 395–404, 2012. . URL
http://doi.acm.org/10.1145/2254064.2254111.

[18] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell.
Lem: reusable engineering of real-world semantics. In Proceed-

ings of ICFP 2014: the 19th ACM SIGPLAN International Confer-

ence on Functional Programming, pages 175–188, 2014. . URL
http://doi.acm.org/10.1145/2628136.2628143.

[19] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. In Proceedings of TPHOLs 2009: Theorem Proving in Higher

Order Logics, LNCS 5674, pages 391–407, 2009.

[20] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge,
T. Braibant, M. Myreen, and J. Alglave. The semantics of x86-
CC multiprocessor machine code. In Proceedings of POPL 2009:

the 36th annual ACM SIGPLAN-SIGACT symposium on Principles

of Programming Languages, pages 379–391, Jan. 2009. . URL
http://doi.acm.org/10.1145/1594834.1480929.

[21] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams.
Understanding POWER multiprocessors. In Proceedings of PLDI

2011: the 32nd ACM SIGPLAN conference on Programming Lan-

guage Design and Implementation, pages 175–186, 2011. . URL
http://doi.acm.org/10.1145/1993498.1993520.

[22] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell,
L. Maranget, J. Alglave, and D. Williams. Synchronising
C/C++ and POWER. In Proceedings of PLDI 2012, the 33rd

ACM SIGPLAN conference on Programming Language Design

and Implementation (Beijing), pages 311–322, 2012. . URL
http://doi.acm.org/10.1145/2254064.2254102.

[23] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O. Myreen.
x86-TSO: A rigorous and usable programmer’s model for x86 mul-
tiprocessors. Communications of the ACM, 53(7):89–97, July 2010.
(Research Highlights).

[24] X. Shi, J.-F. Monin, F. Tuong, and F. Blanqui. First steps towards
the certification of an ARM simulator using Compcert. In J.-P.
Jouannaud and Z. Shao, editors, Certified Programs and Proofs, vol-
ume 7086 of Lecture Notes in Computer Science, pages 346–361.
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-25378-2. . URL
http://dx.doi.org/10.1007/978-3-642-25379-9_25.

[25] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3):22:1–22:50, June 2013. ISSN 0004-5411.
. URL http://doi.acm.org/10.1145/2487241.2487248.

http://diy.inria.fr/
http://dl.acm.org/citation.cfm?id=1987389.1987395
http://dx.doi.org/10.1007/978-3-319-12466-7_1
www.arm.com/products/processors/
cortex-a/cortex-a57-processor.php
http://opac.inria.fr/record=b1105256
http://doi.acm.org/10.1145/1706299.1706346
http://dx.doi.org/10.1007/978-3-642-32347-8_23
http://dl.acm.org/citation.cfm?id=2682923.2682944
http://doi.acm.org/10.1145/2505879.2505897
http://doi.acm.org/10.1145/2535838.2535841
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://lwn.net/Articles/470681/
http://doi.acm.org/10.1145/2254064.2254111
http://doi.acm.org/10.1145/2628136.2628143
http://doi.acm.org/10.1145/1594834.1480929
http://doi.acm.org/10.1145/1993498.1993520
http://doi.acm.org/10.1145/2254064.2254102
http://dx.doi.org/10.1007/978-3-642-25379-9_25
http://doi.acm.org/10.1145/2487241.2487248

	Introduction
	Introduction to the Flowing model
	Flowing model design issues
	Coherence
	New ARMv8 memory barriers
	Load-acquire/store-release
	Dependencies
	Branch prediction

	Introduction to the POP Model
	Example: POP simulating Flowing

	ISA Model
	The Flowing Model in Detail
	The Storage Subsystem/Thread Interface
	Storage Subsystem States
	Storage Subsystem Transitions
	Auxiliary Definitions For Storage Subsystem
	Thread States
	Thread Transitions
	Auxiliary Definitions For Thread Subsystem

	The POP Model
	The Storage Subsystem/Thread Interface
	Storage Subsystem State
	Storage Subsystem Transitions
	Auxiliary Definitions For Storage Subsystem

	POP abstracts flowing
	Commutativities
	Exploration tool
	Example
	Experimental Validation
	Conclusion

