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Abstract 

A Perfect Zero-Knowledge interactive proof system 
convinces a verifier that a string is in a language 
without revealing any additional knowledge in an 
information-theoretic sense. We show that for any 
language that has a perfect zero-knowledge proof sy5 

tern, its complement has a short interactive proto- 
col. This result implies that there are not any perfect 
zero-knowledge protocols for NP-complete languages 
unless the polynomial time hierarchy collapses. This 
paper demonstrates that knowledge complexity can 
be used to show that a language is easy to prove. 

1 Introduction 

Interactive, protocols and zero-knowledge, as de- 
scribed by Goldwasser, Micali and Rackoff [GMR], 
have in recent years proven themselves to be impor- 
tant models of computation in both complexity and 
cryptography. 

Interactive proof systems are a randomized exten- 
sion to NP which give us a greater understanding of 
what an infinitely powerful machine can prove to a 
probabilistic polynomial one. Recent results about 
interactive protocols have given us an idea of what 
languages may be efficiently provable in this way. 
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Zero-knowledge interactive protocols give us a good 
way to determine which languages can be efficiently 
proven without giving away any details of the proof. 
This model consists of an infinitely powerful prover 
trying to convince a polynomial time verifier that a 
string is in a certain language. Zero-knowledge re- 
quires that the verifier not learn any information use- 
ful to him it8 a polytime machine. Goldreich, Mi- 
cali and W.igderson [GMW] show that if one way 
functions exist then all languages in NP have zero- 
knowledge proofs. However, their proof relies on the 
fact that the verifier has limited power and is un- 
able to invert these one-way functions. A stronger 
notion is that of perfect zero-knowledge(PZK) which 
requires that the verifier not learn any additional 
information no matter how powerful he may be. 
There are many languages not known to be in BPP 
or NPnco-NP, such as graph isomorphism [GMW], 
which have perfect zero-knowledge proof systems. 

Our main theorem says that for any language which 
has a perfect zero-knowledge protocol, its comple- 
ment has a single round interactive protocol. Thus 
PZKCco-AM, where AM is the class accepted by one- 
round Arthur-Merlin games described by Babai [B]. 
Our result holds in the weaker case where we only re- 
quire that the verifier which follows protocol will not 
learn any additional information. 

Combining our main theorem with a result of Bop- 
pana and Hastad [BH], we get that NP-complete lan- 
guages do not have perfect zero-knowledge proof sys- 
tems unless the polynomial time hierarchy collapses 
to the secon.d level. Thus it is unlikely that the result 
of [GMW] that NP has zero-knowledge proof systems 
will extend to perfect zero-knowledge. 

Our proof makes use of an approximate upper 
bound protocol that is of independent interest and 
that may be useful in completely different contexts. 
This is in contrast to an approximate lower bound 
protocol used in [S,B,GS]. 

The results in this paper do not depend on any 
unproven cryptographic assumptions. 
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2 Notation and Definitions 

Let P be a probabilistic infinite power Turing ma- 
chine and V be a probabilistic polynomial time ma- 
chine that share the same input and can communicate 
with each other. Let P-V denote the interaction be- 
tween P and V. P-V(z) accepts if after the interac- 
tion, V accepts. V’s view of Ihe conversation between 
P and V consists of all the messages between P and 
V and the random coin tosses of V. 

P and V form an interactive protocol for a language 
L if: 

1. If z E L then Pr(P*V(z) accepts) > 1 - & 
for all polynomials p and 2: large enough. 

2. If z $! L then VP* Pr(P’wV(z) accepts) < & 
for all polynomials p and t large enough. 

Let IP be the class of all languages that are efi- 
ciently provable, i.e., accepted by an interactive pro- 
tocol. 

A roundof an interactive protocol is a message from 
the verifier to the prover followed by a message from 
the prover to the verifier. AM is the class of languages 
accepted by bounded round interactive protocols. 

The notation for describing protocols follows: 

P: 

P+V: 

v: 

V-P: 

These are computations performed by the 
prover that can not be seen by the verifier. 
The prover has probabilistic infinite time 
to make these computations. 

This is a message from the prover to the 
verifier. 

These are computations performed by the 
verifier that cannot be seen by the prover. 
These computations must be performed in 
probabilistic polynomial time. 

This is a message from the verifier to the 
prover. 

Let M be a simulator for a view of the conversation 
between P and V. Each run of M will produce: 

f,Pl,%~2,. . .Pk,ak 

where the oi are messages from the prover to the 
verifier at round i and the pi are messages from the 
verifier to the prover, and r is the random coin tosses 
of v. 

Let P H V[2] denote the distribution of views of 
conversations between P and V over the random coin 
tosses of P. M[z] denotes the distribution of views 
of conversations created by running M on x. 

Let A[;c] and B[z] be two distributions of strings. 
A[z] and B[z:] are stoWico/ly close if for any subset 
of strings S, 

for all polynomials q with I large enough. Let p be a 
probabilistic polynomial time machine that outputs 
either 0 or 1. A[z] and B[z] are poiyhme indis2in- 
guishable if for any p, 

for all polynomials r with z large enough. Note that 
if A[z] and B[z] are statistically close then they are 
polytime indistinguishable. 

P-V is Zero-Knowledge if for any V’ there is 
a Mv. such that (t/z E L)P-V*[z] and Mv-[z] are 
polytime indistinguishable. 

P-V is Perfect Zero-Knowledge(PZK) if for any 
V’ there is a Mv. such that (V2 E L)P c-+ V*[2] = 

Mv- [xl. 
P-V is Almost Perfect Zero-Knowledge(APZK) if 

for any V* there is a Mv. such that (V2 E L)P++ 
V’ [z] and Mv- [z] are statistically close. 

Interactive Protocols and Zero-Knowledge were in- 
troduced in [GMR]. Perfect Zero-Knowledge was de- 
scribed originally in [GMW]. The class AM was in- 
troduced by Babai [B] as the class of languages that 
have one round interactive protocol where V’s mes- 
sage consists exactly of his coin tosses. This was 
shown equivalent to the definition used above by [GS] 
and [B]. 

Note that ZKzAPZK>PZK. The inclusions are 
not known to be proper but this paper gives good 
evidence that ZKfAPZK. 

The results in this paper only require a weaker ver- 
sion of zero-knowledge: a simulator only need exist 
for the given P and V and not when the verifier 
cheats. For the rest of this paper we will assume 
we are in this weaker model and M = Mv is the 
simulator for P and V. 

E is used as a small number that will be determined 
in the final paper. 

3 Related Results 

Goldwasser and Sipser [GS] have shown that for any 
language that has an interactive protocol in Q rounds, 
there is an Arthur-Merlin protocol in Q + 2 rounds 
for that language. Arthur-Merlin protocols are simi- 
lar to interactive protocols except that the verifier’s 
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messages are just random coin tosses. Babai [B] 
showed that any bounded round Arthur-Merlin pro- 
tocol is equivalent to a one round Arthur-Merlin pro- 
tocol. This is just our class AM. IBabai also shows 
that AMC NPR for a random oracle R and al.so that 
AM& II;. Mike Sipser pointed out that AM is con- 
tained in non-uniform NP. 

Boppana and Hastad [BH] show that if co-NP 
has bounded round interactive proofs then the whole 
polynomial time hierarchy would be in AM or thus 
PHC Hi and thus the polynomial time hierarchy col- 
lapses to the second level. 

Brassard and Crkpeau [BC] show perfect zero- 
knowledge for SAT using a different model for interac- 
tive protocols where the prover is a. polynom.ial time 
machine that knows a satisfying assignment. Our re- 
sult about perfect zeroknowledge relies on the ability 
of the prover to have infinite power .and thus does not 
apply to Brassard and Cr6peau’s model. 

4 Showing Sets are Large and 
Small 

In this paper, we will need protocols to show sets are 
large and small. We do both using Carter-Wegman 
Universal Hash Functions [CW]. 

Suppose X = (0, 1) N is a set of strings and S c X. 
Let A be a random binary N x !J ma,trix. Let ,f : X + 
(0, l}! be the function defined by f(z) = AZ. Let fs 
be the restriction off to S. 

If ISI >> 2l then fs is likely to be onto most of 
(0, l)! and most elements of (0, l)bL will have many 
preimages. 

If IS] << 2l then the range of fs is a small subset 
of (0, 1)’ and most elements of fs (S) have only one 
inverse in S. 

If S is polynomial time checkable then we have the 
following protocol to show ISI >> 2”: 

V: Pick a random N x (e +, e) matrix A and 
y E (o,l)~+Y 

V+P: A,y 

P-+V: x E S such that f(x) = ,42 = y 

If S is not much larger than 2’ .then it is unlikely 
for there to be any z such that f(z) = y. However 
if S is large then there are likely to be many x so a 
prover should have no trouble exhibiting such an z 
that I/r can verify in polynomial time. 

If V has a random element s E S that is not 
known by P then the following protocol works. to show 
ISI -GE 2l: 
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V: Pick a random N x (e -’ c) matrix A. 

V+P: A, f(s) = As 

P+V: s 

If S is small then s is likely to be the only element 
of S that maps to f(s) thus P can find s. If S is large 
then many elements of S map to f(s),and because s 
is a random1 element of S, the prover will have no way 
of determining which element of S V has. 

Suppose we had two sets A, B C X and wanted 
to show th,at IAl >> IB]. If A was polynomial time 
checkable a.nd V has a random element b of 8, then 
this is a protocol to show IAl > JBI: 

P: Pick e such that IAl >> 2L >> IBI 

P-V: C! 

P-rV: Prove that IAl >> 2c as above 

P-V: l?rove that ]B] < 2l as above 

Using Carter-Wegman Hashing to show a set is 
large was mtroduced by Sipser [S] and used exten- 
sively in [S,B,GS]. To the author’s knowledge this 
paper is the first use of an interactive protocol to 
show a set is small. 

5 Main Theorem 

We will start with a simple version of the theorem: 

Theorem 1 Let L be a language with a perfect zero- 
knowledge interactive protocol. Then there ecists an 
interactive protocol accepting Z. 

5.1 Structure of Proof 

We are given a prover and verifier (P and V) for the 
language L and a simulator M that produces views of 
conversations between P and V and the random coin 
tosses of V. Note one can simulate the computation of 
V in polynomial time, checking, for example, whether 
or not V accepts. On z E L, M produces a view 
of a conversation from exactly the same probability 
distribution as when P and V run on x. The key 
idea of the proof of the theorem is to notice what M 
might do on x $8 L. There is no requirement in the 
definition of perfect zero-knowledge on what M does 
on x $ L; Ihowever there are three possibilities: 

1. M will produce “garbage”, something that 
clearly is not a randomly selected member of 
P++V[z]. 



2. M will produce views of conversations that cause 
V to reject most of the time. 

3. M will produce a simulation that looks valid and 
causes V to accept, It may not be possible in 
polynomial time to tell this view from one cre- 
ated by P and V when x E L. However, M must 
be producing views of conversations from a dis- 
tribution quite different from the distribution of 
views between P and V, since in the real views 
V is likely to reject. 

We will create a new prover and verifier, P’ and V’ 
that will determine if one of the three cases occur. V’ 
will run M and get a view of a conversation between 
P and V and r, the random coin tosses of V. V’ will 
check that this view is valid and that V halts accept- 
ing. If the view fails this test then it falls in cases 1 or 
2 so V’ knows that z e L and V’ accepts. Otherwise 
V’ will send to P’ some initial segment of the conver- 
sation. P’ will then convince V’ that the conversation 
came from a bad distribution by “predicting” r better 
than P’ could have done from a good distribution. 

5.2 Example: Graph Isomorphism 

Graph isomorphism is a well studied problem that is 
clearly in NP but not known to be in co-NP. A per- 
fect zero-knowledge proof of graph isomorphism was 
presented in [GMW]. We will show how the theo- 
rem converts this perfect zero-knowledge protocol to 
an interactive protocol for graph non-isomorphism. 
This protocol for graph non-isomorphism is identical 
to the graph non-isomorphism protocol described in 
[GMW]; our proof, however, shows that the similarity 
between the two protocols is not coincidental. 

Let ?r : (1,. . . , n} + { 1,. . . , n} be a permutation 
of the vertices of a graph. For a graph G = (V, E) 
let (K(wI), r(m)) E r(E) + (WI, ~2) E E. Let n(G) = 
wt +w* 

Two graphs Gr and Gs are isomorphic if there ex- 
ists a permutation 7r such that ?r(Gr) = Gz. A perfect 
zero-knowledge protocol for graph isomorphism sug- 
gested by [GMW] works as follows: 

P: Generates random permutation ?F and com- 
putes G = r(Gr) 

P--+V: G 

V-tP: i = 1 or 2 chosen at random 

P-V: ?r’ chosen at random such that a’(Gi) = G 

If Gr E! Gs then G will be a permutation of both 
Gr and Gz and P will always be able to find a A’. If 
G1 p Gs then G cannot be a permutation of both Gr 

and G2 so at least half of the time V will choose an 
i such that no a’ exists. Thus we have an interactive 
protocol for graph isomorphism. This protocol also 
is perfect zero-knowledge. 

The simulator M works as follows: 

M generates r and i at random and computes 
G= r(Gi) then outputs the following view of a con- 
versation: 

r: i 

P-W/: G 

V-+P: i 

P+V: lr 

It is easy to verify that when G1 Y Gz, M pro- 
duces exactly the same distribution of views of con- 
versations as P and V. Notice what happens when 
Gr $? Gs. The output of M always causes V to ac- 
cept. Thus when Gr $! Gz, M must produce views of 
conversations from a very different distribution from 
what P and V produce. In fact whenever Gr p Gz, 
one can always predict r ‘= i from the G produced 
by M. This leads to a new interactive protocol be- 
tween a new prover and verifier, P’ and V’, for graph 
non-isomorphism as follows: 

V’: Generate ?r and i at random and compute 
G = x(Gi) 

I/‘-P’: G 

P’+V’: i 

5.3 The Protocol for z 

We are given a prover and verifier, P and V for a 
language L and a simulator M that exactly simulates 
views of conversations between P and V when z E L. 
A protocol between a new prover and verifier, P’ and 
V’, works as follows: 

V’: Run M and get r,prl or,. . ./?k, CQ. V’ now 
checks two things: 

1. Check that the conversation is valid, 
i.e., that r,cyr ,... ak will cause V to 

Say Ply.. -Pk. 

2. Check that the conversation causes V 
to accept. 

If either of these tests fail then V’ can be 
pretty sure that x $Z L so V’ quits now and 
accepts. Otherwise V’ continues. 
Let i=l. 
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V’+P’: pj , Qj 

P’-+V’: STOP and show ]7Zi 1 >> ]K?z] (as defined 
below) or 
TRY NEXT ROUND (P’ must say S.TOP 
after some CXj) 

Ri can be thought of as all the possible random 
strings of V after round j of the protocol. R:! are the 
possible random strings of V generated by M. More 
formally: 

Let ‘R be the set of all possible coin tosses of V. 
Let 721 = {R E R]R and (~1,. . . oj cause V to say 

A,* --Pj)- 

LetRz={RERIPr(MoutputsR,~ll,crl,...~~,aj 
part of a valid, accepting conversation]M produces 

A,% ,***Pj,“j) L +I- 

Note that 7Zs C Ri and if 2 E L then Rz $3 Ri. 
Also note that 7Ei is independent of trj. 

Since Ri is polynomial time checkable and V’ 
knows a random element of R2, namely r, we can 
use the protocol outlined in section 4 to show 17211 >> 

I%l. 

5.4 The Protocol Constitutes an 
Interactive Protocol for E 

To show that this is an interactive protocol for I:, we 
must show two things: 

1. If (z E z) th en P’ w V’(z) accepts with high 
probability. 

2. If (z 4 z) then VP p-V’(o) accepts with very 
low probability. 

We will prove the second statement first since it is 
the easier of the two to prove. 

2. Suppose t E L. Then M will produce views of 
conversations from exactly the same distribution as 
P and V. So virtually all conversations produced will 
be valid and cause V to accept. So after round j (for 
any j), r will be distributed about uniformly over the 
possible R’s that could have taken V this far. Thus, 
R2 M Ri so no @ will be able to convince V’ that 
I&l >> W2(. 

1. Suppose to the contrary that z $! L and the pro- 
tocol does not work. So R2 = RI at all rounds j with 
high probability. We use this to derive a contradic- 
tion by demonstrating that P++V is not an interactive 
proof system for L by presenting a prover P’ that will 
convince V (the original verifier) that r E L. 

At round j suppose the conversation so far has been 
/3{, ck{, . . . flj. P’ works as follows: 

P’: Run M which outputs r, PI, or,. . .&,a~. 
Check that this is a valid accepting con- 
versation. If not, try again. See if 
/?I,&, . ..flj = /?i,Ly: ,... pi. If not, try 
again. 

P*+V/: C2j 

At round j when P’ has a conversat:ion from M 
that matches the conversation so far, 721 is the set of 
possible random coin tosses of V. When P’ says oj 
then Rz is the set of coin tosses of V that will still 
keep V heading towards an accepting path. Since 
R2 M Ri, this will happen with high probability. 
Even after a polynomial number of rounds, V still 
has a decent chance of accepting x. This cannot be 
since x $i! L and P-V is an interactive protocol for L. 

Note that P’ may require exponential expected 
time to complete its part of the protocol but in our 
model an infinitely powerful P’ is allowed. 

6 Extensions and Corollaries 

Theorem 2 Suppose P-V is an interaciiuc proiocol 
for a languaige L and there is a probabilistic polyno- 
mial time simulator M such that M[x] is statistically 
close to Pt+V[x]. Then there is a single round inter- 
active protocol for the complement of L. 

Proof This extends the main theorem in two ways. 
First, we do not require M[x] = Pc*V[x] just that 
they be statistically close. One can check the proof 
in the previous section and notice that statistically 
close is good enough. 

Second, we would like to get a single round protocol 
for the complement of L. Notice that in the protocol 
given above the number of rounds is dependent on 
when P’ decides to say STOP. To get bounded rounds 
we must make the following change to the protocol: 

V’: Run M k3 times independently and get k3 
views of conversations and check that each 
conversation is valid and accepting. 

V’-+P’: For 1 5 i 5 k3 send the first i mod k 
rounds of the ith conversation. 

P’+V’: Pick any conversation j and show 17211 >> 
lU2] for the view of that conversation. 

It is not hard to verify that the above proof still 
works for this new protocol. Once we have bounded 
rounds we a.pply the theorems of [B,GS] which imply 
that all bounded round protocols can be made into 
single round protocols. 
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Some trivial corollaries that follow from results that 
are described in section 3: 

Corollary 1 If L EAPZK then J5 EAM. 

Corollary 2 If L EAPZK then L eco-NPR Enon- 
uniform co-NP where R is a random oracle. 

Corollary 3 If any NP-complete language has an al- 
most perfect zero-knowledge interactive protocol then 
the polynomial time hierarchy collapses to the second 
level. 

Corollary 4 If L and x both have almost perfect 
zero-knowledge interactive protocols with possibly un- 
bounded rounds then L E (NP~~co-NP)~ where R is a 
random oracle. 

Corollary 5 If there are one-way functions and the 
polynomial time hierarchy does not collapse then 
NPEZh7 but NPgAPZK so ZK#APZK. 

7 Open Problems 

There are several interesting problems remaining, in- 
cluding: 

l What is the relationship between PZK and 
APZK? 

l Are complement of perfect or almost per- 
fect zero-knowledge languages themselves perfect 
zero-knowledge in any sense? 

l Can the same techniques be used to show 
that any perfect zero-knowledge protocol has a 
bounded round interactive protocol? 
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