
UC Berkeley
UC Berkeley Previously Published Works

Title
Why Don't Some CS0 Students Succeed?

Permalink
https://escholarship.org/uc/item/35t9h6x4

ISBN
9781450338561

Authors
Garcia, Daniel D
Lewis, Colleen
Reges, Stuart
et al.

Publication Date
2016-02-17

DOI
10.1145/2839509.2844667

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35t9h6x4
https://escholarship.org/uc/item/35t9h6x4#author
https://escholarship.org
http://www.cdlib.org/

Why Don’t Some CS0 Students Succeed?
How Important Are Background, Experience, Culture,

Aptitude, Habits and Attitude?
 Daniel D. Garcia (moderator) Colleen Lewis
 University of California, Berkeley Harvey Mudd College
 777 Soda Hall Department of Computer Science
 Berkeley, CA 94720 Claremont, CA 91711
 +1 (510) 517-4041 +1 (909) 607-0443

 ddgarcia@cs.berkeley.edu lewis@cs.hmc.edu

 Stuart Reges Nathan Ensmenger
 University of Washington Indiana University
 Box 352350 School of Informatics & Computing
 Seattle, WA 98195 Bloomington, IN 47408
 +1 (206) 685-9138 +1 (812) 855-0705

 reges@cs.washington.edu nensmeng@indiana.edu

Keywords
Computer science education, hidden prerequisites, litmus test

1. SUMMARY
There are always some students who succeed and some

students who don’t. Our four panelists are committed to the
success of all students, but have different explanations for
students’ lack of success. This panel discussion will highlight both
their shared beliefs and disagreements between veteran CS
educators Stuart Reges and Dan Garcia, CS education researcher
Colleen Lewis, and Professor of History and Philosophy of
Science Nathan Ensmenger. We hope this lively discussion will
bring together divergent and complementary positions and
expertise, as well as invite significant audience participation.

2. DANIEL D. GARCIA
After ten years of teaching our non-majors introductory

computing classes, to hard-working students who have never
programmed before, I have noticed several common features of
students who succeed: logical thinking (e.g., debugging skill, or
noticing that XOR(a,b) is really just a!=b), problem solving
(e.g., knowing when a solution is a dead-end, how to back up to
the last decision branch, where that branch is, and what the other
possibilities are from that branch), lateral “out of the box”
thinking (e.g., able to generate creative, non-linear solutions),
persistence in the face of challenge (i.e., “grit”), a love of
“tinkering” (i.e., pleasure in casually playing with an artifact),
comfort in a world of unknowns balanced with a drive to

make sense of it (e.g, getting a new electronic toy with lots of
buttons and wanting to try each one out), and the ability to
abstract (removing irrelevant details, generalizing something by
noticing common patterns, etc.).

I believe all students who put in the time and effort can
succeed in introductory computing classes (and beyond), and
when some don’t, it’s our fault. We should make sure the climate
doesn’t have bias and is fully conducive to their learning. We
may also be operating under a false assumption that all students
have all the features listed above. Those who did succeed may
have honed these skills in another context and transferred their
knowledge over! We should make these prerequisites explicit,
and/or provide activities in our classes to help develop them.
3. STUART REGES

My 27 years of teaching programming to novices has left me
with some deep intuitions about how people learn to program. I
share Don Knuth’s belief that there is a mode of thinking that is
particular to computer science (CS) and that some students have a
greater aptitude than others. As Knuth has written, “I conclude
that roughly 2% of all people ‘think algorithmically,’ in the sense
that they can reason rapidly about algorithmic processes” [5]. My
own intuition about this is that there are students who think this
way naturally, but we can build up this ability in a broad range of
students with exercises that allow them to practice this thought
process. I have presented some questions that I hypothesize
measure what Knuth calls “algorithmic reasoning” [9], although
another study failed to replicate the result [8], so there is still no
conclusive evidence to support this intuition that many of us have.

Whether or not CS aptitude exists, most of us who teach
introductory CS classes observe wide variation in how students
take to programming. Many students who expect to enjoy it
because they enjoyed using video games or other software are
surprised to find that they don’t enjoy the process of
programming. Other students who had no clue that they would
enjoy programming are surprised to find that they thoroughly

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SIGCSE '16, March 02-05, 2016, Memphis, TN, USA
ACM 978-1-4503-3685-7/16/03.
http://dx.doi.org/10.1145/2839509.2844667

317

enjoy the mental challenge presented by it. Often it is men who
are disappointed and women who are pleasantly surprised,
although surprises happen in the other direction as well.

Even though I believe that some students more easily pick up
programming than others, I also believe that we can design
introductory courses in which every student can succeed.
Instructors should:
• present coding topics incrementally with lots of examples
• provide a strong safety net for students who need help
• point out common programming patterns and include exam

questions that reward students who learn these patterns
• include non-programming, “mechanical” questions on exams
• emphasize that effort is at least as important as aptitude in

predicting success
Of course, you don't want to tailor your course too much for

the students who struggle because you want to make sure that
there is enough intellectual content to attract the students who end
up loving it. This is a delicate balancing act that I feel I have
struggled with throughout my career.

4. COLLEEN LEWIS
A common occurrence in the United States is that students

arrive at college without programming experience. At many
institutions, these students have a rich set of skills and deep
knowledge in domains other than CS. Certainly, educating these
students should be easier than educating younger, less skillful, and
less knowledgeable students. Unfortunately, as a CS education
community, we have few techniques for building upon students’
out-of-domain knowledge and skills. Even worse, we have no
clear understanding of how, when, and why various out-of-
domain knowledge and skills are productive in CS.

My hypothesis of what makes students successful is that
they, without being instructed, apply the right out-of-domain
knowledge and skills. Other students may have the right
knowledge and skills, but do not apply them. My research [7]
attempts to identify productive out-of-domain knowledge and
skills for reasoning about computer programs. If we better
understand what is required to master computer programming, we
can make these requirements explicit and support them in
developing these competencies.

The hypothesis that there exists an innate ability for CS is
flawed and deeply problematic. In decades of research, there have
been no factors that reliably predict an individual’s success
learning to program [10]. Why would there exist an innate ability,
uncorrelated with other abilities, for a task (CS) that did not exist
one hundred years ago? The potential for discouragement and
discrimination in assuming there exists an innate ability for CS
seems obvious. As evidence of this potential for discouragement,
students’ belief in an innate ability for CS appears to be
consequential for students’ decision to major in CS [6]. In
addition, it has been shown that students who believe intelligence
is innate avoid taking intellectual risks [3], which is the exact
opposite of the behavior we want from our students.

We are far too young as a field to assume that students who
are not successful cannot be successful. As a community we
should start identifying relevant out-of-domain knowledge and
skills and developing teaching techniques to build upon them.

5. NATHAN ENSMENGER
From the establishment of the Curriculum ‘68 [1] guidelines

to the present, there has existed a long-running debate within the
academic CS community about what skills, abilities, training (and
even personality type) are required to be a successful computer
scientist. I am especially interested in the relationship between
the formal curriculum in CS education and the informal
subculture that is often associated with the computing
professions. I argue that the distinctive cultural norms and
practices of certain computing communities, which draw on or
appeals to tacit knowledge, skills, and other cultural affinities
independent of the actual intellectual content of the CS
curriculum, send subtle message to potential CS students about
who does (and, more importantly, does not) belong. Educators
who are sensitive to the influence and effects of this subculture
can use it to encourage a broader and more diverse range of
students. This is particularly true in regard to gender diversity, an
issue of concern to many CS departments.

Much of my historical research focuses on the role of women
in computing, and I find that including this history in the
curriculum both helps with the recruitment and retention of
women, but also encourages all students to appreciate the value of
a broad and inclusive perspective on their discipline [4]. There is
a also growing body of research that suggests that not only can
historical case studies be useful in teaching core concepts in CS,
but that they can help students better appreciate the value – to
themselves, and to society – of a CS education.

6. REFERENCES
[1] ACM Curriculum Committee on Computer Science. 1968.

Curriculum 68: Recommendations for Academic Programs in
CS. Comm. ACM 11, 3 (Mar. 1968), 151-197.

[2] Briggs, A. and Snyder, L. 2012. Computer science principles
and the CS 10K initiative.ACM Inroads 3, 2 (June 2012), 29-
31. doi.acm.org/10.1145/2189835.2189847

[3] Dweck, C. (2007). Mindset: The new psychology of success.
New York, NY: Random House, Inc.

[4] Ensmenger, Nathan. “Making Programming Masculine.” In
Gender Codes: Why Women Are Leaving Computing, edited
by Thomas Misa, Wiley, 2010.

[5] Knuth, D. 2004. Selected Papers on Computer Science.
CSLI.

[6] Lewis, C. M., Yasuhara, K., & Anderson, R. E. (2011).
Deciding to Major in Computer Science: A Grounded Theory
of Students’ Self-Assessment of Ability. Proceedings of the
International Computer Science Education Research
Workshop. Providence, RI. 3-10.

[7] Lewis, C. M. (2012). Applications of Out-of-Domain
Knowledge in Students' Reasoning about Computer Program
State. (Doctoral dissertation). Retrieved from ProQuest
Dissertations and Theses. (Accession Order No. 12710).

[8] Lewis, C. M., Khayrallah, H., & Tsai, A. (2013). Mining data
from the AP CS A exam: patterns, non-patterns, and
replication failure. Proceedings of the International
Computer Science Education Research Workshop. San
Diego, CA, USA. 115-122.

[9] Reges, S. The mystery of "b := (b = false)." Proceedings of
the 39th SIGCSE technical symposium on Computer Science
education.

[10] Robins, A. (2010). Learning edge momentum: a new account
of outcomes in CS1. CS Education, 20(1), 37-71.

318

