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How to Bootstrap Anonymous Communication

Sune K. Jakobsen⋆ and Claudio Orlandi⋆⋆

Abstract. We ask whether it is possible to anonymously communicate a large amount of data using
only public (non-anonymous) communication together with a small anonymous channel. We think this
is a central question in the theory of anonymous communication and to the best of our knowledge this
is the first formal study in this direction.
To solve this problem, we introduce the concept of anonymous steganography : think of a leaker Lea
who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can
embed this document in innocent looking communication on some popular website (such as cat videos
on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short key k which, when applied
to the entire website, recovers the document while hiding the identity of Lea among the large number
of users of the website. Our contributions include:
– Introducing and formally defining anonymous steganography,
– A construction showing that anonymous steganography is possible (which uses recent results in

circuits obfuscation),
– A lower bound on the number of bits which are needed to bootstrap anonymous communication.

1 Introduction

Lea the leaker wants to leak a big document to Joe the journalist in an anonymous way1. Lea has a way of
anonymously communicating a small number of bits to Joe, but the size of the document she wants to leak
is orders of magnitudes greater than the capacity of the anonymous channel between them.

In this paper we ask whether it is possible to “bootstrap” anonymous communication, in the sense that we
want to construct a “large” anonymous channel using only public (non-anonymous) communication channels
together with a “small” anonymous channel. We find the question to be central to the theory of anonymous
communication and to the best of our knowledge this is the first formal study in this direction.

To solve this problem, we introduce a novel cryptographic primitive, which we call anonymous steganog-
raphy: the goal of (traditional) steganography is to hide that a certain communication is taking place, by
embedding sensitive content in innocent looking traffic (such as pictures, videos, or other redundant docu-
ments). There is no doubt that steganography is a useful tool for Lea the leaker: using steganography2 she
could send sensitive documents to Joe the journalist in such a way that even someone monitoring all internet
traffic would not be able to notice that this communication is taking place.3

However, steganography alone cannot help Lea if she wants to make sure that Joe does not learn her
identity, and there is a strong demand for solutions which guarantee the anonymity of whistleblowers (see
e.g., SecureDrop 4).
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1 This naming convention is courtesy of Nadia Heninger.
2 For a background on steganographic techniques see e.g., [Fri09].
3 Of course this powerful eavesdropper could try to apply the decoding procedure of the steganographic algorithm to
the monitored traffic, but combining steganography with cryptography (assume e.g., that Lea knows Joe’s public
key) it is quite easy to make sure that the message to be steganographically embedded is indistinguishable from
random.
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From a high level point of view, anonymous steganography allows Lea to embed some sensitive message
into an innocent looking document, in such a way that someone looking at the entire website5 (or a large
portion of it) can recover the original message without being able to identify which of the documents contains
the message. Unfortunately this is too good to be true, and in Section 4 we prove that it is impossible to
construct an anonymous steganography scheme unless Lea sends a key (of super-logarithmic size) to Joe.
The idea is: if the scheme is correct at some point the probability that Joe outputs x has to increase from
polynomially small to 1. Joe can estimate how each message (sent by any of the users over the non-anonymous
channel) affects this probability and concludes that the message which changes this probability the most must
come from Lea. Hence, the messages that causes this increase has to be sent over an anonymous channel.

To summarize, in anonymous steganography Lea wants to communicate a sensitive (large) message x to
Joe. To do so, she embeds x in some innocent looking (random) document c which she uploads to a popular
website (not necessarily in an anonymous way). Then Lea produces some (short) decoding key dk (which is
a function of c and all other documents on the website – or at least a set large enough so that her identity is
hidden in a large group of users, such as “all videos uploaded last week”) which she then communicates to Joe
using an anonymous channel. Now Joe is able to recover the original message x from the website using the
key dk, but at the same time Joe has no way of telling which document contains the message (and therefore
which of the website user is the leaker). In Section 2 we formally introduce anonymous steganography and
in Section 3 we show how to construct such a scheme.

Related Work. Practical ways for a leaker to communicate anonymously with a journalist is by using e.g.,
the aforementioned SecureDrop, which uses Tor [DMS04]. However, Tor is not secure against end-to-end
attacks [DMS04]. Another disadvantage in Tor is that it relies on a network of servers whose only purposes
is to make anonymous communication possible. This means that countries can, with some success, block Tor
servers [WL12] and they could make it illegal to host such servers.

Message In A Bottle [IKV13] is a protocol where Lea can encrypt her message under Joe’s public key,
embed it in an image using steganography and post the image on any blog. Joe will now monitor all blogs to
see if someone left a (concealed) message for him. Interestingly [IKV13] shows that this approach is feasible
in practice and because Lea can use any blog, it will be costly for e.g. a government to prevent Lea from
sending the message to Joe. However, in this protocol Joe learns Lea’s identity, which is what we are trying
to prevent in our work.

In cryptogenography [BJSW14,Jak14] a group of users cooperate to allow a leaker to publish a message
with some reasonable degree of anonymity: here we want that anyone should be able to recover the message
from the protocol transcript, but no one (even a computationally unbounded observers) should be able to
determine with certainty the identity of the leaker. In other words in cryptogenography we are happy as
long as the observer cannot produce evidence which proves with certainty the identity of the leaker (which
could be used e.g., in a court case). In [BJSW14] the leaker can publish one bit correctly but no observer
can guess the identity of the leaker with probability more than 44%. In [Jak14] instead a different setting is
considered, where multiple leakers agree to publish some information while hiding their identity by blending
into an arbitrarily large group. The leakers do not need perfect anonymity, but just want to ensure that
for each leaker, an observer will never assign a probability greater that c to the event that that person is a

leaker. It is shown that for any ǫ > 0 and sufficiently large n, n leakers can publish
(

− log(1−c)
c

− log(e)− ǫ
)

n

bits, where e is the base of the natural logarithm. Our work is inspired by the model in [Jak14]. The main
difference is that we assume the adversary has bounded computational power, so we only need one leaker
and we get all but negligible anonymity.

For a survey about anonymity channels, see [DD08]. In [IKOS06] the authors investigated how an
anonymous channel could be used to implement other cryptographic primitives, but not if it could be used
to bootstrap a larger anonymous channel. Finally, our positive result is inspired by the clever techniques

5 Intuitively, it is crucial for Lea’s anonymity that Joe can only decode the entire website at once: if Joe had a way
of decoding single documents (or portions) he would easily be able to pinpoint which document (and therefore
which user) contains the sensitive message.
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of Hubáček and Wichs [HW15] to compress communication using obfuscation, and crucially relies on their
techniques.

Open problems. Unfortunately our positive result crucially relies on heavy tools such as homomorphic
encryption and circuit obfuscation, making it very far from being useful in practice. We leave it as a major
open question to construct such schemes using simpler and more efficient cryptographic tools (perhaps even
at the price of relaxing the definition of anonymity).

Other open problems include studying whether the computational complexity for the leaker must depend
on the size of the anonymity set if the leaker is given a hash of all the documents, and whether it is possible
to construct more efficient protocols if multiple leakers are leaking to Joe at once.

2 Definitions

Notation. We write [x, y] with x < y ∈ N as a shorthand for {x, . . . , y} and [x] as a shorthand for [1, x].
If v is a vector (v1, . . . , vn) then v−i is a vector such that (v1, . . . , vi−1,⊥, vi+1, . . . vn) and (v−i, vi) = v. A
function is negligible if it goes to 0 faster than the inverse of any polynomial. We write poly(·) and negl(·) for
a generic polynomial and negligible function respectively. x← S denotes sampling a uniform element x from
a set S. If A is an algorithm x ← A is the output of A on a uniformly random tape. We highlight values
α, β, . . . , hardwired in a circuit C using the notation C[α, β, . . .].

Anonymous Steganography. We define an anonymous steganography scheme as a tuple of algorithms
π = (Gen,Enc,KeyEx,Dec) where6:

– ek ← Gen(1λ) is a randomized algorithm which generates an encoding key.
– c← Encek(x) is a randomized algorithm which encodes a secret message x ∈ {0, 1}ℓ

′

into a (pseudoran-
dom looking) document c ∈ {0, 1}ℓ.7

– dk ← KeyExek(t, i) takes as input a public vector of documents t ∈ ({0, 1}ℓ)d, an index i ∈ [d] such that
ti = c, and extracts a (short) decoding key dk ∈ {0, 1}s.

– x′ = Decdk(t) recovers a message x′ using the decoding key dk and the public vector of documents t in
a deterministic way.

How to Use The Scheme. To use anonymous steganography, Lea generates the encoding key ek using
Gen, and then encodes her secret x using Encek to get the ciphertext c. She can then upload c to some
website.8 She then waits some time, and chooses the set of documents she is hiding among, for example, all
files uploaded to this website during that day/week. Lea then downloads all these documents t and finds
the index i of her own document in this set. Finally she computes dk ← KeyExek(t, i), and uses the small
anonymous channel to send dk to Joe together with a pointer to t.

Properties of Anonymous Steganography. We require the following properties: correctness (meaning
that x′ = x with overwhelming probability), compactness (meaning that s < ℓ′) and anonymity (meaning
that a receiver does not learn any information about i). Another natural requirement is confidentiality
(meaning that one should not be able to learn the message without the decoding key dk), but it is easy to
see that this follows from anonymity. Formal definitions follow:

Definition 1 (Correctness). We say an anonymous steganography scheme is q-correct if for all λ ∈ N, x ∈
{0, 1}ℓ

′

, i ∈ [d], t−i ∈ ({0, 1}ℓ)d−1, the following holds

Pr [Decdk ((t−i, c)) = x] ≥ q.

6 All algorithms (even when not specified) take as input the security parameter λ, and the length parameters ℓ, ℓ′, d, s.
7 In our scheme ℓ = ℓ′.
8 For simplicity we will in this example assume that Lea is using a website where everyone is storing documents that
are indistinguishable from random. If she is using e.g. YouTube, she would need to use steganography to get an
innocent looking stegotext, and Lea and Joe should use the inverse program for extracting messages from stegotext
whenever they download documents from the site.
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where ek ← Gen(1λ), c ← Encek(x), dk ← KeyExek((t−i, c), i) and the probabilities are taken over all the
random coins. We simply say that a scheme is correct when q ≥ 1− negl(λ).

Definition 2 (Anonymity). Consider the following game between an adversary A and a challenger C :

1. The adversary A outputs a message x ∈ {0, 1}ℓ
′

, two indices i0 6= i1 ∈ [d], and a vector t−(i0,i1);
2. The challenger C:

(a) samples a bit b← {0, 1};
(b) computes ek ← Gen(1λ), tib ← Encek(x) and samples ti1−b

← {0, 1}ℓ;
(c) computes dk ← KeyExek

(

(t−(i0,i1), (ti0 , ti1)), ib
)

(d) outputs dk, t;
3. A outputs a guess bit g;

We say π satisfies anonymity if for all PPT A
∣

∣Pr[g = b]− 1
2

∣

∣ = negl(λ).

Building Blocks. We will need the following ingredients in our construction: 1) an indistinguishability
obfuscator [GGH+13] C̄ ← O(C) which takes any polynomial size circuit C and outputs an obfuscated
version C̄; 2) A compact homomorphic encryption scheme (HE.G,HE.E,HE.D,HE.Eval); 3) A pseudorandom
function f ; 4) A vector commitment scheme (VC.G,VC.C,VC.D,VC.V) which allows to commit to a long
string x using VC.C, and where it is possible to decomitt to individual bits of x using VC.D. Crucially, the
proof of correct decomitting πj for any bit j has size at most polylog in |x|. In addition, we need that
the vector commitment scheme is somewhere statistically binding according to the definition of Hubáček and
Wichs [HW15]: in a nutshell, this means that when generating a commitment key ck it is possible to specify a
special position i such that a) any commitment generated using the key ck is statistically binding for the i-th
bit of x (this property is crucial to be able to verify these commitments inside circuits obfuscated using iO)
and that b) ck computationally hides the index i. Such a vector commitment scheme can be constructed from
fully-homomorphic encryption [HW15]. To keep the paper self-contained, all these tools are formally defined
in the rest of this section. Indistinguishability obfuscation. We use an indistinguishability obfuscator like

the one proposed in [GGH+13] such that C̄ ← O(C) which takes any polynomial size circuit C and outputs
an obfuscated version C̄ that satisfies the following property.

Definition 3 (Indistinguishability Obfuscation). We say O is an indistinguishability obfuscator for a circuit
class C if for all C0, C1 ∈ C such that ∀x : C0(x) = C1(x) and |C0| = |C1| it holds that:

1. ∀C ∈ C, ∀x ∈ {0, 1}n,O(C)(x) = C(x);
2. |O(C)| = poly(λ|C|)
3. for all PPT A:

|Pr[A(O(C0)) = 0]− Pr[A(O(C0)) = 1]| < negl(λ)

Homomorphic Encryption (HE). Let (HE.G,HE.E,HE.D) be an IND-CPA public-key encryption scheme
with an additional algorithm HE.Eval which on input the public key pk, n ciphertexts c1, . . . , cn and a circuit
C : {0, 1}n → {0, 1} outputs a ciphertext c∗, then we say that:

Definition 4 (Correctness – HE). An HE scheme (HE.G,HE.E,HE.D,HE.Eval) is correct for a circuit class
C if for all C ∈ C

HE.Dsk(HE.Evalpk(C,HE.Epk(x1), . . . ,HE.Epk(xn)) = C(x1, . . . , xn)

Definition 5 (Compactness – HE). An HE scheme (HE.G,HE.E,HE.D,HE.Eval) is called compact if there
exist a polynomial s ∈ poly(λ) such that the output of HE.Eval(C, c1, . . . , cn) is at most s bits long (regardless
of the size of the circuit |C| or the number of inputs n).

The first candidate homomorphic encryption for all circuits was introduced by Gentry [Gen09]. Later
Brakerski and Vaikuntanathan [BV11] showed that it is possible to build homomorphic encryption based
only on the (reasonable) assumption that the learning with error problem (LWE) is computationally hard.
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Pseudorandom Functions. We need a pseudorandom function f : {0, 1}λ × {0, 1}λ → {0, 1}. It is well
known that the existence of one way function (implied by the existence of homomorphic encryption) implies
the existence of PRFs.

Somewhere Statistically Binding (SSB) Vector Commitment Scheme. This primitive was intro-
duced by Hubáček and Wichs [HW15] under the name somewhere statistically binding hash, but we think
that the term vector commitment scheme is better at communicating the goal of this primitive.

In a nutshell, a Merkle tree (instantiated with a collision resistant hash function) allows to construct a
vector commitment: the commitment is the root of the tree, and to decommit a single leaf one can simply
send the (logarithmically many) hashes corresponding to the nodes which are necessary to compute the
root from the leaf. Unfortunately this only leads to a computationally binding commitment, which leads to a
problem when verifying these commitments inside a circuit obfuscated using indistinguishability obfuscation.
The point is, iO only ensures that the obfuscation of two circuits are computationally indistinguishable if the
two original circuits compute the same function. Therefore computational binding is not enough since there
exist (even if they hard to find) other inputs which make the verification procedure to accept. A somewhere
statistically binding commitment has the additional property that when the commitment key is generated,
an index i is specified as well, and the commitment key “hides” this index i. Now a commitment to x is
computationally binding for all leaves 6= i and statistically binding for the leaf i. This allows us to (via a
series of hybrids) use this commitment inside a circuit obfuscated using iO.

More formally a SSB vector commitment scheme is composed of the following algorithms:

Key Generation: The key generation algorithm ck ← VC.G(1λ, L, i) takes as input an integer L ≤ 2λ and
index i ∈ [L] and outputs a public key ck.

Commit: The commit algorithm VC.Cck : ({0, 1}ℓb)L → {0, 1}ℓc is a deterministic polynomial time algo-
rithm which takes as input a string x = (x1, . . . , xL) ∈ ({0, 1}ℓb)L and outputs VC.Cck(x) ∈ {0, 1}

ℓc.

Decommit: The decommit algorithm π ← VC.Dck(x, j) given the commitment key ck, the input x ∈
({0, 1}ℓb)L and an index j ∈ [L], creates a proof of correct decommitment π ∈ {0, 1}ℓd

Verify: The verify algorithm VC.Vck(y, j, u, π) given the key ck and y ∈ {0, 1}ℓc an integer index j ∈ [L], a
value u ∈ {0, 1}ℓb and a proof π ∈ {0, 1}ℓd, outputs 1 for accept (that y = VC.Cck(x) and xj = u) or 0
for reject.

Definition 6 (Vector Commitment Scheme – Correctness). A vector commitment scheme is correct if
for any L ≤ 2λ and i, j ∈ [L], any ck ← VC.G(1λ, L, i), x ∈ ({0, 1}ℓb)L, π ← VC.Dck(x, j) it holds that
VC.Vck(VC.Cck(x), j, xj , π) = 1.

Definition 7 (Vector Commitment Scheme – Index Hiding). We consider the following game between an
attacker A and a challenger C:

– The attacker A(1λ) chooses an integer L and two indices i0 6= i1 ∈ [L];

– The challenger C chooses a bit b← {0, 1} and sets ck ← VC.G(1λ, L, ib).

– The attacker A gets ck and outputs a guess bit g.

We say a vector commitment scheme is index hiding if for all PPT A

∣

∣

∣

∣

Pr[g = b]−
1

2

∣

∣

∣

∣

< negl(λ)

Definition 8 (Vector Commitment Scheme – Somewhere Statistically Binding). We say ck is statistically
binding for index i if there are no y, u 6= u′, π, π′ such that

VC.Vck(y, i, u, π) = VC.Vck(y, i, u
′, π′) = 1

In [HW15] it is shown how to construct SSB vector commitments using homomorphic encryption.
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3 A Protocol For Anonymous Steganography

We start with a high-level description of our protocol (in steps) before presenting the actual construction
and proving that it satisfies our notion of anonymity.

First attempt. Let the encoding key ek be a key for a PRF f , and let the encoding procedure be simply a
“symmetric encryption” of x using this PRF.

In this first attempt we let the decoding key dk be the obfuscation of a circuit C[i, ek, γ](t). The circuit
contains two hard-wired secrets, the index of Lea’s document i ∈ [d] and the key for the PRF ek. It also
contains the hash of the entire set of documents γ = H(t). On input a database t the circuit checks if
γ = H(t) and if this is the case outputs x by decrypting ti with ek.

Clearly this first attempt fails miserably since the size of the circuit is now proportional to the size of the
entire database t = dℓ, which is even larger than the size of the secret message |x| = ℓ.

Second attempt. To remove the dependency on the number of documents d, we include in the decoding key
an encryption α = HE.Epk(i) of the index i (using the homomorphic encryption scheme), and an obfuscation
of a (new) circuit C[ek, sk, γ](β), which contains hardwired secrets ek and sk (the secret key for the homo-
morphic encryption scheme), as well as a hash γ = H(HE.Eval(mux[t], α)), where the circuit mux[t](i) outputs
ti. The circuit C now checks that γ = H(β) and if this is the case computes ti ← HE.Dsk(β) using the secret
key of the HE scheme, then decrypts ti using ek and outputs the secret message x. When Joe receives the
decoding key dk, Joe constructs the circuit mux[t] (using the public t) and computes β = HE.Eval(mux[t], α).
To learn the secret, he runs the obfuscated circuit on β.

In other words, we are now exploiting the compactness of the homomorphic encryption scheme to let Joe
compute an encryption of the document c = ti from the public database t and the encryption of i. Since Lea
the leaker can predict this ciphertext9, she can construct a circuit which only decrypts when this particular
ciphertext is provided as input. However, the size of β (and therefore C) is proportional to poly(λ) + ℓ, thus
we are still far from our goal.10

Third attempt. To remove the dependency from the length of the document ℓ, we construct a circuit which
takes as input an encryption of a single bit j instead of the whole ciphertext. However, we also need to make
sure that the circuit only decrypts these particular ciphertexts, and does not help Joe in decrypting anything
else. Moreover, the circuit must perform this check in an efficient way (meaning, independent of the size of
ℓ), so we cannot simply “precompute” these ℓ ciphertexts and hardwire them into C.

This is where we use the vector commitment: we let the decoding key include a (short) commitment
key ck. We include in the obfuscated circuit a (short) commitment γ = VC.Cck(β) (where β = (β1, . . . , βℓ)
is a vector of encryptions of bits) and we make sure that the circuit only helps Joe in decrypting these ℓ

ciphertexts (and nothing else). In other words, we obfuscate the circuit C[ek, sk, ck, γ](β′, π′, j) which first
checks if VC.Vck(γ, j, β

′, π′) = 1 and if this is the case it outputs the j-th bit of x from the j-th bit of the
ciphertext tji ← HE.Dsk(β

′).11 We have now almost achieved our goal, since the size of the decoding key is
poly(λ log(dℓ)).

Final attempt. We now have to argue that our scheme is secure. Intuitively, while it is true that the index
i is only sent in encrypted form, we have a problem since the obfuscated circuit contains the secret key for
the homomorphic encryption scheme, and we therefore need a final fix to be able to argue that the adversary
does not learn any information about i.

The final modification to our construction is to encrypt the index i twice under two independent public
keys. From these encryptions Joe computes two independent encryptions of the bit t

j
i which he inputs to

the obfuscated circuits together with proofs of decommitment. The circuit now outputs ⊥ if any of the two
decommitment proofs are incorrect, otherwise the circuit computes and outputs xj from one of the two
encryptions (and ignores the second ciphertext).

9 The evaluation algorithm HE.Eval can always be made deterministic since we do not need circuit privacy.
10 Note that the decryption key also contains an encryption of i which depends logarithmically on d, but we are going

to ignore all logarithmic factors.
11 This means that we need to use a symmetric encryption scheme where it is possible to recover a single bit of the

plaintext from a single bit of the ciphertext. This can easily be done by encrypting x bit by bit using the PRF.
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Anonymity. Very informally, we can now prove that Joe cannot distinguish between the decoding keys
computed using indices i0 and i1 in the following way: we start with the case where the decoding key
contains two encryptions of i0 (this correspond to the game in the definition with b = 0). Then we define a
hybrid game where we change one of the two ciphertext from being an encryption of i0 with an encryption
of i1. In particular, since we change the ciphertext which is ignored by the obfuscated circuit, this does not
change the output of the circuit at all (and we can argue indistinguishability since the obfuscated circuit does
not contain the secret key for this ciphertext). We also replace the random document ci1 with an encryption
of x with a new key for the PRF. Finally we change the obfuscated circuit and let it recover the message x

from the second ciphertext. Thanks to the SSB property of the commitment scheme it is possible to prove,
in a series of hybrids, that the adversary cannot notice this change. To conclude the proof we repeat the
hybrids (in inverse order) to reach a game which is identical to the definition of anonymity when b = 1.

The Actual Construction. A complete specification of our anonymous steganography scheme follows.

Key Generation: On input the security parameter λ the algorithm Gen samples a random key ek ∈ {0, 1}λ

for the PRF and outputs ek.
Encoding: On input a message x ∈ {0, 1}ℓ and an encoding key ek the algorithm Enc outputs an encoded

message c ∈ {0, 1}ℓ where for each bit j ∈ [ℓ], cj = xj ⊕ fek(j).
Key Extraction: On input the encoding key ek, the database of documents t, and index i such that ti = c

the algorithm KeyEx outputs a decoding key dk generated as follows:
1. For all u ∈ {0, 1} run (pku, sku)← HE.G(1λ) and αu ← HE.Epku

(i).
2. For all j ∈ [ℓ], u ∈ {0, 1} run βj

u = HE.Evalpku
(mux[t, j], αu)

12 where the circuit mux[t, j](i) outputs

the j-th bit of the i-th document tji ;
3. For all u ∈ {0, 1} run cku ← VC.G(1λ, ℓ, 0) and γu ← VC.Ccku

(β1
u, . . . , β

ℓ
u).

4. Pick a random bit σ ∈ {0, 1}.
5. Define the circuit C[ek, σ, skσ, ck0, ck1, γ0, γ1](β

′
0, β

′
1, π

′
0, π

′
1, j) as follows:

(a) if(∀u ∈ {0, 1} : VC.Vhku
(γu, j, β

′
u, π

′
u)) output HE.Dskσ

(β′
σ)⊕ fek(j);

(b) else output ⊥;
6. Compute an obfuscation C̄ ← O(Cσ) where Cσ is a shorthand for the circuit defined before, padded

to length equal to max(C,C′) (where the circuit C′ is defined in the proof of security).
7. Output dk = (pk0, pk1, α0, α1, ck0, ck1, C̄)

Decoding: On input a decoding key dk and a database of document t the algorithm Dec outputs a message
x′ in the following way:
1. Parse dk = (pk0, pk1, α0, α1, ck0, ck1, C̄);
2. For all j ∈ [ℓ], u ∈ {0, 1} run βj

u = HE.Evalpku
(mux[t, j], αu);

3. For all u ∈ {0, 1} run γu ← VC.Ccku
(β1

u, . . . , β
ℓ
u).

4. For all j ∈ [ℓ], u ∈ {0, 1} compute πj
u ← VC.Dcku

((β1
u, . . . , β

ℓ
u), j);

5. For all j ∈ [ℓ] output (x′)j ← C̄(βj
0 , β

j
1, π

j
0, π

j
1, j);

Theorem 1. If a) f is PRF b) (VC.G,VC.C,VC.D,VC.V) is a vector commitment scheme satisfying Defini-
tions 6, 7 and 8 c) (HE.G,HE.E,HE.D,HE.Eval) is a homomorphic encryption scheme satisfying Definition 4
and 5 and d) O is an obfuscator for all polynomial size circuits satisfying Definition 3 then the anonymous
steganography scheme (Gen,Enc,KeyEx,Dec) satisfies Definitions 1 and 2.

Proof. Correctness (Definition 1). Correctness follows from inspection of the protocol. In particular, for
each bit j ∈ [ℓ] it holds that

C̄(βj
0, β

j
1, π

j
0, π

j
1, j)) = C[ek, σ, skσ, ck0, ck1, γ0, γ1](β

j
0 , β

j
1, π

j
0, π

j
1, j)

thanks to Definition 3 (Bullet 1). It is also true (thanks to Definition 4) that ∀u ∈ {0, 1} the ciphertext βj
u

is such that
HE.Dsku

(βj
u) = mux[t, j](HE.Dsku

(αu)) = mux[t, j](i) = t
j
i

12 Note that we consider HE.Eval to be a deterministic algorithm. This can always be achieved by fixing the random
tape of HE.Eval to some constant value.
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Now, since t
j
i = xj ⊕ fek(j) it follows that the output z of C̄ 6= ⊥ is either ⊥ or xj . Finally, the circuit only

outputs ⊥ if ∃u ∈ {0, 1} s.t. VC.Vhku
(γu, j, β

j
u, π

j
u) = 0. But since

cku ← VC.G(1λ, ℓ, 0), γu ← VC.Ccku
(β1

u, . . . , β
ℓ
u), π

j
u ← VC.Dcku

((β1
u, . . . , β

ℓ
u), j)

then the probability that C̄ (and therefore Dec) outputs ⊥ is 0 thanks to Definition 6.

Anonymity (Definition 2). We prove anonymity using a series of hybrid games. We start with a game
which is equivalent to the definition when b = 0 and we end with a game which is equivalent to the definition
when b = 1. We prove at each step that the next hybrid is indistinguishable from the previous. Therefore,
at the end we conclude that the adversary cannot distinguish whether b = 0 or b = 1.

Hybrid 0. This is the same as the definition when b = 0. In particular, here it holds that (α0, α1) ←
(HE.Epk0(i0),HE.Epk1(i0)).

Hybrid 1. In the first hybrid we replace α1−σ with α1−σ ← HE.Epk1−σ
(i1). Note that the circuit C[ek, σ, skσ, ck0, ck1, γ0, γ1](·)

does not contain the secret key sk1−σ, therefore any adversary that can distinguish between Hybrid 0 and
1 can be turned into an adversary which breaks the IND-CPA property of the HE scheme.

Hybrid 2. In the previous hybrids ti1 is a random string from {0, 1}ℓ. In this hybrid we replace ti1 with an
encryption of x using a new PRF key ek′. That is, for each bit j ∈ [ℓ] we set tji1 = xj ⊕ fek′(j). Clearly, any
adversary that can distinguish between Hybrid 1 and Hybrid 2 can be used to break the PRF.

Hybrid 3.(τ, ρ). We now define a series of 2(ℓ+1) hybrids indexed by τ ∈ [0, ℓ], ρ ∈ {0, 1}. In Hybrid 3.(τ, ρ)
we replace the obfuscated circuit with the circuit C′[τ, ek, ek′, σ, sk0, sk1, ck0, ck1, γ0, γ1](β

′
0, β

′
1, π

′
0, π

′
1, j) de-

fined as

1. if(∃u ∈ {0, 1} : VC.Vhku
(γu, j, β

′
u, π

′
u) = 0) output ⊥

2. else if(j > τ) output HE.Dskσ
(β′

σ)⊕ fek(j);
3. else output HE.Dsk1−σ

(β′
1−σ)⊕ fek′ (j);

We use C′
τ as a shorthand for a circuit defined as above which is padded to length max(C,C′).

In addition, we also replace the way the keys for the vector commitment schemes are generated. Remember
that in the previous hybrids

∀u ∈ {0, 1} cku ← VC.G(1λ, ℓ, 0)

which are now replaced with
∀u ∈ {0, 1} cku ← VC.G(1λ, ℓ, τ + ρ),

From inspection it is clear that the circuit obfuscated in Hybrid 3.(0.0) computes the same function as
the circuit obfuscated in Hybrid 2 (since j is indexed starting from 1 we always have j > τ and the branch
(3) is never taken), and they are therefore indistinguishable thanks to Definition 3 (Bullet 3).

Next, we argue that Hybrid 3.(τ, 0) is indistinguishable from Hybrid 3.(τ, 1) for all τ ∈ [ℓ]. In those
hybrids the obfuscated circuit is exactly the same, and the only difference is in the way the commitment
keys ck0, ck1 are generated. In particular, the only difference is the index on which the keys are statistically
binding. Therefore, any adversary who can distinguish between 3.(τ, 0) and Hybrid 3.(τ, 1) can be used to
break the index hiding property (Definition 7) of the vector commitment scheme.

Finally, we argue that Hybrid 3.(τ, 1) is indistinguishable from Hybrid 3.(τ +1, 0). First we note that the
commitment keys ck0, ck1 are identically distributed in these two hybrids i.e., in both hybrids

∀u ∈ {0, 1} cku ← VC.G(1λ, ℓ, τ + 1)

The only difference between the two hybrids is what circuits are being obfuscated: in Hybrid 3.(τ, 1) we
obfuscate C′

τ and in Hybrid 3.(τ + 1, 0) we obfuscate C′
τ+1. We now argue that these two circuits give the

same output on every input, and therefore an adversary that can distinguish between Hybrid 3.(τ, 1) and
Hybrid 3.(τ + 1, 0) can be used to break the indistinguishability obfuscator.

It follows from inspection that the two circuits behave differently only on inputs of the form (β′
0, β

′
1, π

′
0, π

′
1, τ+

1). On input of this form:
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– C′
τ (since j = τ + 1 > τ) chooses branch (2) and outputs

x
j
0 ← HE.Dskσ

(β′
σ)⊕ fek(j)

– C′
τ+1 (since j = τ + 1 = τ + 1) chooses branch (3) and outputs

x
j
1 ← HE.Dsk1−σ

(β′
1−σ)⊕ fek′(j)

Now, the statistically binding property of the vector commitment scheme (Definition 8) allows us to conclude
that there exists only one single pair (β′

0, β
′
1) for which C′

τ and Cτ+1 do not output ⊥ (remember that in
both hybrids the commitment keys ck0, ck1 are statistically binding on index τ + 1), namely the pair

∀u ∈ {0, 1} βj
u = HE.Evalpku

(mux[t, τ + 1], αu)

which decrypts to the pair (tji0 , t
j
i1
) (since we changed α1−σ in Hybrid 1), which in turns were defined as

(since we changed t
j
i1

in Hybrid 2)

(tji0 , t
j
i1
) = (xj ⊕ fek(j), x

j ⊕ fek′ (j))

which implies that xj
0 = x

j
1 and therefore the two circuits have the exact same input output behavior.

This concludes the technical core of our proof, what is left now is to make few simple changes to go from
Hybrid 3.(ℓ, 0) to the same game as Definition 2 when b = 1.

Hybrid 4. In this hybrid we replace the obfuscated circuit with

C[ek′, σ′, skσ′ , ck0, ck1, γ0, γ1](·)

where σ′ = 1 − σ. It is easy to see that the input/output behavior of this circuit is exactly the same as
C′

ℓ (since ∀j ∈ [ℓ] : j 6> ℓ the circuit C′
ℓ always executes branch 3) and therefore an adversary that can

distinguish between Hybrid 4 and Hybrid 3.(ℓ, 0) can be used to break the indistinguishability obfuscator.

Hybrids 5, 6, 7. In Hybrid 5 we change the distribution of both commitment keys ck0, ck1 to VC.G(1λ, ℓ, 0)
(whereas in Hybrid 4 they were both sampled as VC.G(1λ, ℓ, ℓ + 1)). Indistinguishability follows from the
index hiding property. In Hybrids 6 we replace ti0 with a uniformly random string in {0, 1}ℓ (whereas in the
previous hybrid it was an encryption of x using the PRF f with key ek). Since the obfuscated circuit no
longer contains ek we can use an adversary which distinguishes between Hybrids 5 and 6 to break the PRF.
In Hybrid 7 we replace α1−σ′ (which in the previous hybrid is an encryption of i0) with an encryption of i1.
Since the obfuscated circuit no longer contains sk1−σ′ = skσ we can use an adversary which distinguishes
between Hybrids 6 and 7 to break the IND-CPA property of the encryption scheme. Now Hybrid 7 is exactly
as the definition of anonymity with b = 1 with a random bit σ′ = 1 − σ (which is distributed uniformly at
random) and a random encoding key ek′. This concludes therefore the proof.

Our theorem, together with the results of [HW15] implies the following.

Corollary 1. Assuming the existence of homomorphic encryption and indistinguishability obfuscators for
all polynomially sized circuits, there exist an anonymous steganography scheme.

4 Lower Bound

In this section we show that any (correct) anonymous steganography scheme must have a decoding key of
size bigger than O(log(λ)). Since the decoding key must be sent over an anonymous channel, this gives a
lower bound on the number of bits which are necessary to bootstrap anonymous communication.

To show this, we find a strategy for Joe that gives him a higher probability of guessing the leaker than
if he guessed uniformly at random.
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Our lower bound applies to a more general class of anonymous steganography schemes than defined
earlier, in particular it also applies to reactive schemes where the leaker can post multiple documents to the
website, as a function of the documents posted by other users.

We define a reactive anonymous steganography scheme as a tuple of algorithms π = (Enc,KeyEx,Dec)
where:

– (tk, statej) ← Encek(x, t
k−1, statej−1) is an algorithm which takes as input a message x ∈ {0, 1}ℓ

′

, a
sequence of documents tk−1 (which represents the set of documents previously sent) and a state of the
leaker, and outputs a new document tk ∈ {0, 1}

ℓ, together with a new state.
– dk ← KeyExek(t

d, state) is an algorithm which takes as input a transcript of all documents sent and the
current state of the leaker and outputs a decryption key dk ∈ {0, 1}s.

– x′ = Decdk(t
d) in an algorithm that given transcript td returns a guess x of what the secret is in a

deterministic way.

To use a reactive anonymous steganography scheme, the leaker’s index i is chosen uniformly at random
from {1, . . . , n} where n is the number of players. For each k from 1 to d we generate a document tk. If
k 6≡ i mod n we let tk ← {0, 1}

ℓ. This corresponds to the non-leakers sending a message. When k ≡ i

mod n we define (tk, statej) ← Encek(x, t
k−1, statej−1), where tk−1 = (t1, . . . , tk−1). Then we define dk ←

KeyExek(t
d, state) and x′ = Decdk(t

d). Here dk is the message that Lea would send over the small anonymous
channel.13

The definition of q-correctness for reactive schemes is the same as for standard schemes, but our definition
of anonymity is weaker because we do not allow the adversary to choose the documents for the honest users.
This implies that our lower bound is stronger.

Definition 9 (Correctness). A reactive anonymous steganography scheme is q-correct if for all λ and x ∈
{0, 1}ℓ

′(λ) we have
Pr

[

Decdk
(

td
)

= x
]

≥ q.

where t and dk is chosen as above and the probability is taken over all the random coins.

Definition 10 (Weak Anonymity). Consider the following game between an adversary A and a challenger
C

1. The adversary A outputs a message x ∈ {0, 1}ℓ
′

;
2. The challenger C samples random i ∈ [n], and generates td, dk as described above
3. The challenger C outputs td, dk
4. A outputs a guess g;

We say that an adversary has advantage ǫ(λ) if
∣

∣Pr[g = i]− 1
n

∣

∣ ≥ ǫ(λ). We say a reactive anonymous
steganography scheme provides anonymity if, for any adversary, the advantage is negligible.

In the model we assume that the non-leakers’ documents are chosen uniformly at random. This is realistic
in the case where we use steganography, so that each tk is the result of extracting information from a larger
file. We could also define a more general model where the distribution of each non-leaker’s documents tk
depends on the previous transcript. The proof of our impossibility results works as long as the adversary
can sample from Tk|Tk−1=tk−1,i6≡k mod n in polynomial time. Using this general model, we can also model
the more realistic situation where the players do not take turns in sending documents, but at each step only
send a document with some small probability. To do this, we just consider “no document” to be a possible
value of tk.

We could also generalise the model to let the leaker use the anonymous channel at any time, not just
after all the documents have been sent. However, in such a model, the anonymous channel transmits more
information than just the number of bits send over the channel: the times at which the bits are sent can
be used to transmit information [IW10]. For the number of bits sent to be a fair measure of how much

13 Note that a “standard” anonymous steganography scheme is also a reactive anonymous scheme.
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information is transferred over the channel, we should only allow the leaker to use the channel when Joe
knows she would use the anonymous channel14, and the leaker should only be allowed to send messages from
a prefix-free code (which might depend on the transcript, but should be computable in polynomial time for
Joe). Our impossibility result also works for this more general model, however, to keep the notation simple,
we will assume that the anonymous channel is only used at the end.

Finally, we could generalise the model by allowing access to public randomness. However, this does not
help the players: as none of the players are controlled by the adversary, the players can generate trusted
randomness themselves.

We let T ′ = (T ′
1, . . . , T

′
d) denote that random variable where each T ′

i is uniformly distributed on {0, 1}ℓ.
In particular T ′|T ′k=tk is the distribution the transcript would follow if the first k documents are given by
tk and all the players were non-leakers. We let dk′ be uniformly distributed on {0, 1}s. Joe can sample from
both T ′|T ′k=tk and dk′ and he can compute Dec. His strategy to guess the leaker given a transcript t will
be to estimate Pr(Decdk′(T ′) = x|T ′k = tk) for each k ≤ d. That is, given that the transcript of the first
k documents is tk and all later documents is chosen as if the sender was not a leaker and the anonymous
channel just sends random bits, what is the probability that the result is x? He can estimate this by sampling:
given tk he randomly generates td and dk, and then he computes Dec of this extended transcript.

Joe will now consider how each player affects these probabilities, given by Pr(Decdk′(T ′) = x|T ′k = tk).
Intuitively, if these probabilities tends to be higher just after a certain player’s documents than just before,
he would suspect that this player was leaking. Of course, a leaking player might send some documents that
lowers Pr(Decdk′(T ′) = x|T ′k = tk) to confuse Joe, so we need a way to add up all the changes a players
does to Pr(Decdk′(T ′) = x|T ′k = tk). The simplest idea would be to compute the additive difference

Pr(Decdk′(T ′) = x|T ′k = tk)− Pr(Decdk′(T ′) = x|T ′k−1 = tk−1)

and add these for each player. However, the following example shows that this strategy does not work in
general.

Example 1. Consider this protocol for two players, where one of them wants to leak one bit. We have s = 0,
that is dk is the empty sting and will be omitted from the notation. First we define the function Dec. This
function looks at the two first documents. If none of these are 0ℓ, it returns the first bit of the third document.
Otherwise it defines the leader to be the first player who send 0ℓ. Next Dec looks at the first time the leader
sent a document different from 0ℓ. If this number represents a binary number less than 9

10 · 2
ℓ, then Dec

returns the last bit of the document before, otherwise it outputs the opposite value of that bit. If the leader
only sends the document 0ℓ the output of Dec is just the last bit sent by the other player.

The leaker’s strategy is to become the leader. There is extremely small probability that the non-leaker
sends 0ℓ in his first document, so we will ignore this case. Otherwise the leaker sends 0ℓ in her first document
and becomes the leader. When sending her next document, she looks at the last document from the non-
leaker. If it ended in 0, Joe will think there is 90% chance that 0 it is output and 10% chance that the output
will be 1, and if it ended in 1 it is the other way around. If the last bit in the non-leakers document is the
bit the leakers wants to leak, she just sends the document 0ℓ−11. To Joe, this will look like the non-leaker
raised the probability of this outcome from 50% to 90% and then the leaker raised it to 100%. Thus, Joe
will guess that the non-leaker was the leaker.

If the last bit of the previous document was the opposite of what the leaker wanted to reveal, she will
“reset” by sending 0ℓ. This brings Joe’s estimate that the result will be 1 back to 50%. The leaker will
continue “resetting” until the non-leaker have sent a document ending in the correct bit more times than he
has sent a document ending in the wrong bit. For sufficiently high d, this will happen with high probability,
and then the leaker sends 0ℓ1. This ensures that Dec(T ) gives the correct value and that Joe will guess that
the non-leaker was the leaker.

If the leaker wants to send many bits, the players can just repeat this protocol.

14 That is, there should be a polynomial time algorithm that given previous transcript tk and previous messages over
the anonymous channel decides if the leaker sends a message over the anonymous channel.
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Obviously, the above protocol for revealing information is not a good protocol: it should be clear to Joe
that the leader is not sending random documents.

As the additive difference does not work, Joe will instead look at the multiplicative factor

Pr(Decdk′(T ′) = x|T ′k = tk)

Pr(Decdk′(T ′) = x|T ′k−1 = tk−1)
.

Definition 11. For a transcript t the multiplicative factor mfi,[k0,k1] of player j over the time interval
[k0, k1] is given by

mfj,[k0,k1](t, r) =
∏

[k0,k1]∩(j+nN)

Pr(Decdk′(T ′) = x|T ′k = tk))

Pr(Decdk′(T ′) = x|T ′k−1 = tk−1)
,

We also define

mf−i,[k0,k1](t, r) =
∏

[k0,k1]\(j+nN)

Pr(Decdk′(T ′) = x|T ′k = tk)

Pr(Decdk′(T ′) = x|T ′k−1 = tk−1)
,

For fixed k0 and non-leaking player j the sequence

mfj,[k0,k0](T ),mfj,[k0,k0+1](T ), . . .

is a martingale. Furthermore, if we consider the first k1 − 2 documents to be fixed and player 1 sends a
document at time k1 − 1 and player 2 at time k1, then player 1’s document can affect the distribution of

mf2,[k0,k1](T
′)|T ′k1−1=tk1−1

but no matter what document tk1−1 player 1 sends,

mf2,[k0,k1](T
′)|T ′k1−1=tk1−1

will have expectation
mf2,[k0,k1−1](t

k1−1).

Similar statements holds for the additive difference, but the advantage of the multiplicative factor is that it
is non-negative. This, together with the fact that it is also a martingale, implies that it does not get large
with high probability.

Proposition 1. For j and k0, k1 we have:

ET ′|Tk1−1=tk1−1mfj,[k0,k1](T ) = mfj,[k0,k1−1](t
k1−1)

Proof. For k 6≡ j mod n we have mfj,[k0,k1](t) = mfj,[k0,k1−1](t
k1−1) for any t so the statement is trivially

true. For k ≡ j mod n it follows from Bayes’ Theorem.

Proposition 2. For fixed x an random T there is probability at most 4d
m0

that there exists j 6= i and k0 such
that mfj,[k0,d](T ) or mf−i,[k0,d](T ) is at least m0

2 .

Proof. For fixed k0, and non-leaker j we have E
(

mfj,[k0,d](T )
)

= 1. As

mfj,[k0,d](t) ≥ 0

this implies that

Pr(mfj,[k0,d](T ) ≥
m0

2
|T ) ≤

2

m0

Similarly for mf−i,[k0,d]. We have
mfj,[k0,d](t) = mfj,[k0−1,d](t)

if player j does not send the k0’th document, so for fixed t there are only d different values (not counting 1)
of mfj,[k0,d](t) with j 6= i and k0 ≤ d. By the union bound, the probability that one of the mfj,[k0,d](t)’s or

one of the mf−i,[k0,d](t)’s are above m0

2 is at most 4d
m0

.
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By sampling T ′d|T ′k=tk and dk′ Joe can estimate Pr(Decdk′(T ′) = x|T ′k = tk) with a small additive
error, but when the probability is small, there might still be a large multiplicative error. In particular, Joe
can only do polynomially many samples, so when Pr(Decdk′(T ′) = x|T ′k = tk) is less than polynomially
small Joe will most likely estimate it to be 0. This is the reason that anonymous steganography with small
anonymous channel works at all: we keep Pr(Decdk′(T ′) = x|T ′k = tk) exponentially small until we use the
anonymous channel. Instead, the idea is to estimate the multiplicative factor starting from some time k0
such that Pr(Decdk′(T ′) = x|T ′k = tk) is not too small for any k ≥ k0. The following proposition is useful
when choosing k0 and choosing how many samples we make.

Proposition 3. Assume that Joe samples 3·2s+9d4

ǫ2
log

(

4d
ǫ

)

times to estimate Pr(Decdk′(T ′) = x|T ′k = tk).

If Pr(Decdk′(T ′) = x|T ′k = tk) ≥ ǫ2

2s+7d2 , there is probability at least 1 − ǫ
2d that his estimate will be in

the interval

[(1−
1

2d
) Pr(Decdk′(T ′) = x|T ′k = tk), (1 +

1

2d
) Pr(Decdk′(T ′) = x|T ′k = tk)]

Proof. Follows from the multiplicative Chernoff bound.

Definition 12. In the following we say that Joe’s estimate of Pr(Decdk′(T ′) = x|T ′k = tk) is bad if

Pr(Decdk′(T ′) = x|T ′k = tk) ≥ ǫ2

2s+7d2 but his estimate is not in the interval

[(1−
1

2d
) Pr(Decdk′(T ′) = x|T ′k = tk), (1 +

1

2d
) Pr(Decdk′(T ′) = x|T ′k = tk)].

Now we are ready to prove the impossibility result.

Theorem 2. Let be ǫ a function in λ such that 1
ǫ
is bounded by a polynomial, and let π be a reactive

anonymous steganography scheme with s(λ) = O(log(λ)), ℓ′ ≥ s+7+ 2 log2(d)− 2 log2(ǫ) that succeeds with
probability at least q(λ). Now there is a probabilistic polynomial time Turing machine A that takes input t
and x and outputs the leaker identity with probability

q(λ) +
1− q(λ)

n(λ)
− ǫ(λ)

Proof. Let π be a reactive anonymous steganography scheme. We assume that for random T ′ and dk′ the
random variable Decdk′(T ′) is uniformly distributed15 on {0, 1}ℓ

′

and we will just let Joe send 0ℓ
′

in the
anonymity game.

Letm0 = 8d
ǫ
. Consider a random transcript t. If for some k0 and some non-leaker j we havemfj,[k0,d] ≥

m0

2
or mf−i,[k0,d] ≥

m0

2 we set E = 1.

First Joe will estimate Pr(Decdk′(T ′) = 0ℓ
′

|T ′k = tk) for all k using

3 · 2s+9d4

ǫ2
log

(

4d

ǫ

)

samples for each k. Set E = 1 if at least one of these estimates is bad. In all other cases, E = 0. By the
above propositions and the union bound, Pr(E = 1) ≤ ǫ(λ).

Now let k0 be the smallest number such that for all k ≥ k0 Joe’s estimate of Pr(Decdk′(T ′) = 0ℓ
′

|T ′k = tk)

is at least ǫ2

2s+7d2 . The idea would be to estimate the multiplication factors mfj,[k0+1,d], but the problem

is that Pr(Decdk′(T ′) = 0ℓ
′

|T ′k0 = tk0) could be large (even 1) even though Pr(Decdk′(T ′) = 0ℓ
′

|T ′k0−1 =
tk0−1) is small, so the players might not reveal any information after the k0 − 1’th document. Thus, Joe

15 If this is not the case, we can define a reactive anonymous scheme π̃ where this is the case: just let X ′ be uniformly

distributed on {0, 1}ℓ
′

, let Ẽnc(x, tk, state) = Enc(x ⊕ X ′, tk, state) and D̃ecdk(t) = X ′ ⊕ Decdk(t), where ⊕ is
bitwise addition modulo 2. To use π̃ we would need ℓ′ bits of public randomness to give us X ′. To get this, we can
just increase ℓ by ℓ′ and let X ′ be the last ℓ′ bits of the first document.
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needs to include the k0 − 1’th document in his estimate of the multiplication factors, but his estimate of
Pr(Decdk′(T ′) = 0ℓ

′

|T ′k0−1 = tk0−1) might be off by a large constant factor. To solve this problem, we define

mfj =







mfj,[k0+1,d] if j 6≡ k0 − 1 mod n

mfj,[k0+1,d]
Pr(Dec

dk′(T ′)=0ℓ
′

|T ′k0=tk0 )

(1− 1
2d )

−1 ǫ2

2s+7d2

if j ≡ k0 − 1 mod n

that is, we pretend that Pr(Decdk′(T ′) = 0ℓ
′

|T ′k0 = tk0) = (1 − 1
2d)

−1 ǫ2

2s+7d2 and then use mfj,[k0,d]. We

define mf−i the similar way. Joe’s estimate of Pr(Dec(T ) = X |T k0−1 = tk0−1) less that ǫ2

2s+7d2 , otherwise k0
would have been lower (here we are using the assumption h ≥ s+ 7+ 2 log2(d)− 2 log2(ǫ). Without this, k0
could be 1). Thus, if this estimate it not bad we must have

Pr(Decdk′(T ′) = 0ℓ
′

|T ′k0−1 = tk0−1) ≤ (1−
1

2d
)−1 ǫ2

2s+7d2

So if E = 0 then mfj ≤ mfj,[k0,d] ≤
m0

2 . Similar for mf−i.
If E = 0 then mfj ≤

m0

2 for all j 6= i and mf−i ≤
m0

2 . Furthermore, as all Joe’s estimate are good, his

estimate of mfj is off by at most a factor
(

1− 1
2d

)−d
< 2. Now we define Joe’s guess: if exactly one of his

estimated mfj ’s are above m0 he guesses that this player j is the leaker. Otherwise he chooses his guess

uniformly at random from all the players. There are two ways Pr(Decdk′(T ′) = 0ℓ
′

|T ′k = tk) can increase as
k increases16: by the leaker sending documents or by a non-leaker sending documents. In the cases where
E = 0 and Joe’s estimate of mfi is less than m0 we know that the contribution from the leaker’s documents
is a factor less than 2m0. As E = 0 we also know that the total contribution from all the non-leakers is at
most a factor m0

2 . So when only dk′ has not been revealed to Joe we have

Pr(Decdk′(T ) = X |T = t) <
ǫ2

2s+7d2
2m0

m0

2
=

ǫ2

2s+6d2
m2

0 = 2−s

As the only randomness left to be revealed17 is dk′ which is uniformly distributed on a set of size 2−s, we
know that

Pr(Decdk′(T ) = 0ℓ
′

|T = t)

is a multiple of 2−s. This implies
Pr(Decdk′(T ) = 0ℓ

′

|T = t) = 0

In other words, if Decdk(T ) = 0 and E = 0 then A must output i. Furthermore, in all other cases where
E = 0 Joe will either guess the leaker correctly (because Joe’s estimate of mfi is sufficiently high) or guess
uniformly among all the players. The probability that Joe is correct is now

Pr(g = i) ≥ q +
1− q

n
− Pr(E = 1) ≥ q +

1− q

n
− ǫ.

Notice that we cannot do better than q + 1−q

n
. The players could use a protocol where with probability

q the leaker reveals herself and the information and otherwise no-one reveals any information. This protocol
succeeds with probability q, and when is does, Joe will guess the leaker. With probability 1− q it does not
succeed, and Joe has probability 1

n
of guessing the leaker. In total Joe will guess the leaker with probability

q + 1−q

n
. Finally we can conclude that:

16 If we allow the leaker to send anonymous bits before the end of the open communication, this is a third way
Pr(Decdk′(T ′) = 0ℓ

′

|T ′k = tk) can increase. However, if the times where the anonymous channel is used are
predictable by Joe, he can still sample as if the anonymous bits where random. This way, each anonymous bits
makes Pr(Decdk′(T ′) = 0ℓ

′

|T ′k = tk) increase by at most a factor 2. If the leaker can only send s anonymous bit in

total this only moves a factor 2 increase in Pr(Decdk′(T ′) = 0ℓ
′

|T ′k = tk) from a later point in the proof to here.
17 Here we are using that Dec is deterministic. However, allowing it to be non-deterministic does not help: we could

just increase ℓ and let Dec use the extra bits in each document as randomness instead of using a random tape.

14



Corollary 2. If π is a reactive anonymous steganography scheme with s = O(log(λ)), d polynomial in λ

and ℓ′

log(λ) →∞ that ensures weak anonymity, then the probability of correctness q tends to 0 as λ→∞.

Proof. Let π be as in the assumption and define

ǫ = max(λ−1, 2−
s+7+2 log2(d)−ℓ

′

2 )

By assumption, s = O(log(λ)), log(d) = O(log(λ)), and ℓ′

log(λ) → ∞, so ǫ → 0. The parameters satisfy the

assumptions in Theorem 2 so there is an adversary that can guess the leaker with probability

q +
1− q

n
− ǫ =

1

n
+

n− 1

n
q − ǫ ≥

1

2
+

q − 2ǫ

2
.

As π ensures anonymity, q−2ǫ
2 must be negligible and as ǫ→ 0 we must have q → 0.
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