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Simulation of Protocols
Himanshu Tyagi∗ Shaileshh Venkatakrishnan† Pramod Viswanath† Shun Watanabe‡

Abstract

Two parties observing correlated random variables seek to run an interactive communication protocol.

How many bits must they exchange to simulate the protocol, namely to produce a view with a joint

distribution within a fixed statistical distance of the joint distribution of the input and the transcript

of the original protocol? We present an information spectrum approach for this problem whereby the

information complexity of the protocol is replaced by its information complexity density. Our single-

shot bounds relate the communication complexity of simulating a protocol to tail bounds for information

complexity density. As a consequence, we obtain a strong converse and characterize the second-order

asymptotic term in communication complexity for independent and identically distributed observation

sequences. Furthermore, we obtain a general formula for the rate of communication complexity which

applies to any sequence of observations and protocols. Connections with results from theoretical computer

science and implications for the function computation problem are discussed.

I. INTRODUCTION

Two parties observing random variables X and Y seek to run an interactive protocol π with inputs X

and Y . The parties have access to private as well as shared public randomness. What is the minimum

number of bits that they must exchange in order to simulate π to within a fixed statistical distance ε?

This question is of importance to the theoretical computer science as well as the information theory

communities. On the one hand, it is related closely to the communication complexity problem [53],

which in turn is an important tool for deriving lower bounds for computational complexity [27] and for
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space complexity of streaming algorithms [2]. On the other hand, it is a significant generalization of

the classical information theoretic problem of distributed data compression [45], replacing data to be

compressed with an interactive protocol and allowing interactive communication as opposed to the usual

one-sided communication.

In recent years, it has been argued that the distributional communication complexity for simulating a

protocol1 π is related closely to its information complexity2 IC(π) defined as follows:

IC(π)
def
= I(Π ∧X|Y ) + I(Π ∧ Y |X),

where I(X∧Y |Z) denotes the conditional mutual information between X and Y given Z (cf. [44], [13]).

For a protocol π with communication complexity |π| (the depth of the binary protocol tree), a simulation

protocol requiring Õ(
√
IC(π)|π|) bits of communication was given in [4] and one requiring 2O(IC(π))

bits of communication was given in [10]. A general version of the simulation problem was considered

in [55], but only bounded round simulation protocols were considered. Interestingly, it was shown in

[8] that the amortized3 distributional communication complexity of simulating n copies of a protocol

π for vanishing simulation error is bounded above by4 IC(π). While a matching lower bound was also

derived in [8], it is not valid in our context – [8] considered function computation and used a coordinate-

wise error criterion. Nevertheless, we can readily modify the lower bound argument in [8] and use the

continuity of conditional mutual information to formally obtain the required lower bound and thereby a

characterization of the amortized distributional communication complexity for vanishing simulation error.

Specifically, denoting by D(πn) the distributional communication complexity of simulating n copies of

a protocol π with vanishing simulation error, we have

lim
n→∞

1

n
D(πn) = IC(π).

Perhaps motivated by this characterization, or a folklore version of it, the research in this area has focused

on designing simulation protocols for π requiring communication of length depending on IC(π); the

results cited above belong to this category as well. However, the central role of IC(π) in the distributional

communication complexity of protocol simulation is far from settled and many important questions remain

1The difference between simulation and compression of protocols is significant and is discussed in Remark 2 below.
2For brevity, we do not display the dependence of IC(π) on the (fixed) distribution PXY .
3Throughout the paper, ”amortized” indicates that the observations are independently identically distributed (IID) and the

protocol to be simulated is n copies of the same protocol.
4Braverman and Rao actually used their general simulation protocol as a tool for deriving the amortized distributional

communication complexity of function computation. This result was obtained independently by Ma and Ishwar in [31] using
standard information theoretic techniques.
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unanswered. For instance, (a) does IC(π) suffice to capture the dependence of distributional communi-

cation complexity on the simulation error ε? (b) Does information complexity have an operational role

in simulating πn besides being the leading asymptotic term? (c) How about the simulation of more

complicated protocols such as a mixture πmix of two product protocols πn1 and πn2 – does IC(πmix) still

constitute the leading asymptotic term in the communication complexity of simulating πmix?

The quantity IC(π) plays the same role in the simulation of protocols as H(X) in the compression

of Xn [44] and H(X|Y ) in the transmission of Xn by the first to the second party with access to

Y n [45]. The questions raised above have been addressed for these classical problems (cf. [22]). In this

paper, we answer these questions for simulation of interactive protocols. In particular, we answer all

these questions in the negative by exhibiting another quantity that plays such a fundamental role and

can differ from information complexity significantly. To this end, we introduce the notion of information

complexity density of a protocol π with inputs X and Y generated from a fixed distribution PXY .

Definition 1 (Information complexity density). The information complexity density of a private coin

protocol π is given by the function

ic(τ ;x, y) = log
PΠ|XY (τ |x, y)

PΠ|X (τ |x)
+ log

PΠ|XY (τ |x, y)

PΠ|Y (τ |y)
,

for all observations x and y of the two parties and all transcripts τ , where PΠXY denotes the joint

distribution of the observation of the two parties and the random transcript Π generated by π.

Note that IC(π) = E [ic(Π;X,Y )]. We show that it is the ε-tail of the information complexity density

ic(Π;X,Y ), i.e., the supremum5 over values of λ such that Pr (ic(Π;X,Y ) > λ) > ε, which governs

the communication complexity of simulating a protocol with simulation error less than ε and not the

information complexity of the protocol. The information complexity IC(π) becomes the leading term in

communication complexity for simulating π only when roughly

IC(π)�
√

Var(ic(Π;X,Y )) log(1/ε).

This condition holds, for instance, in the amortized regime considered in [8]. However, the ε-tail of

ic(Π;X,Y ) can differ significantly from IC(π), the mean of ic(Π;X,Y ). In Appendix A, we provide

an example protocol with inputs of size 2n such that for ε = 1/n3, the ε-tail of ic(Π;X,Y ) is greater

than 2n while IC(π) is very small, just Õ(n−2).

5Formally, our lower bound uses lower ε-tail sup{λ : Pr (ic(Π;X,Y ) > λ) > ε} and the upper bound uses upper ε-tail
inf{λ : Pr (ic(Π;X,Y ) > λ) < ε}. For many interesting cases, the two coincide.
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A. Summary of results

Our main results are bounds for distributional communication complexity Dε (π) for ε-simulating a

protocol π. The key quantity in our bounds is the ε-tail λε of ic(Π;X,Y ).

Lower bound. Our main contribution is a general lower bound for Dε (π). We show that for every

private coin protocol π, Dε (π) & λε. In fact, this bound does not rely on the structure of random variable

Π and is valid for the more general problem of simulating a correlated random variable.

Prior to this work, there was no lower bound that captured both the dependence on simulation error ε as

well as the underlying probability distribution. On the one hand, the lower bound above yields many sharp

results in the amortized regime. It gives the leading asymptotic term in the communication complexity

for simulating any sequence of protocols, and not just product protocols. For product protocols, it yields

the precise dependence of communication complexity on ε as well as the exact second-order asymptotic

term. On the other hand, it sheds light on the dependence of Dε (π) on ε even in the single-shot regime.

For instance, our lower bound can be used to exhibit an arbitrary separation between Dε (π) and IC(π)

when ε is not fixed. Specifically, consider the example protocol in Appendix A. On evaluating our lower

bound for this protocol, for ε = 1/n3 we get Dε (π) = Ω(n) which is far more than 2IC(π) since

IC(π) = Õ(n−2). Remarkably, [21], [20] exhibited exponential separation between the distributional

communication complexity of computing a function and the information complexity of that function

even for a fixed ε, thereby establishing the optimality of the upper bound Dε (π) ≤ O(2IC(π)) given

in [10]. Our simple example shows a much stronger separation between Dε (π) and IC(π), albeit for a

vanishing ε.

Upper bound. To establish our asymptotic results, we propose a new simulation protocol, which is of

independent interest. For a protocol π with bounded rounds of interaction, using our proposed protocol

we can show that Dε (π) . λε. Much as the protocol of [8], our simulation protocol simulates one round

at a time, and thus, the slack in our upper bound does depend on the number of rounds.

Note that while the operative term in the lower bound and the upper bound is the ε-tail of ic(Π;X,Y ),

the lower bound approaches it from below and the upper bound approaches it from above. It is often

the case that these two limits match and the leading term in our bounds coincide. See Figure 1 for an

illustration of our bounds.

Amortized regime: second-order asymptotics. Denote by πn the n-fold product protocol obtained by

applying π to each coordinate (Xi, Yi) for inputs Xn and Y n. Consider the communication complexity

Dε(π
n) of ε-simulating πn for independent and identically distributed (IID) (Xn, Y n) generated from

PnXY . Using the bounds above, we can obtain the following sharpening of the results of [8]: With V(π)
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Lower bound Upper Bound

Pr(ic(⇧; X, Y )) > �) < ✏Pr(ic(⇧; X, Y )) > �) > ✏

Distribution of ic(⇧; X, Y )

Fig. 1: Illustration of lower and upper bounds for Dε (π)

denoting the variance of ic(Π;X,Y ),

Dε(π
n) = nIC(π) +

√
nV(π)Q−1(ε) + o(

√
n),

where Q(x) is equal to the probability that a standard normal random variable exceeds x and Q−1(ε) ≈√
log(1/ε). On the other hand, the arguments in6 [8] or [55] give us

Dε(π
n) ≥ nIC(π)− nε[|π|+ log |X ||Y|]− ε log(1/ε).

But the precise communication requirement is not less but
√
nV(π) log(1/ε) more than nIC(π).

General formula for amortized communication complexity. The lower and upper bounds above

can be used to derive a formula for the first-order asymptotic term, the coefficient of n, in Dε(πn) for

any sequence of protocols πn with inputs Xn ∈ X n and Yn ∈ Yn generated from any sequence of

distributions PXnYn . We illustrate our result by the following example.

Example 1 (Mixed protocol). Consider two protocols πh and πt with inputs X and Y such that IC(πh) >

IC(πt). For n IID observations (Xn, Y n) drawn from PXY , we seek to simulate the mixed protocol πmix,n

defined as follows: Party 1 first flips a (private) coin with probability p of heads and sends the outcome

Π0 to Party 2. Depending on the outcome of the coin, the parties execute πh or πt n times, i.e., they

use πnh if Π0 = h and πnt if Π0 = t. What is the amortized communication complexity of simulating the

mixed protocol πmix,n? Note that

IC(πmix,n) = n [pIC(πh) + (1− p)IC(πt)] .

Is it true that in the manner of [8] the leading asymptotic term in Dε(πmix,n) is IC(πmix,n)? In fact, it is

not so. Our general formula implies that for all p ∈ (0, 1),

Dε(πmix,n) = nIC(πh) + o(n)

6The proof in [8] uses the inequality IC(π) ≤ |π|, a multiparty extension of which is available in [15], [32].
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This is particularly interesting when p is very small and IC(πh)� IC(πt).

B. Proof techniques

Proof for the lower bound. We present a new method for deriving lower bounds on distributional

communication complexity. Our proof relies on a reduction argument that utilizes an ε-simulation to

generate an information theoretically secure secret key for X and Y (for a definition of the latter, see

[33], [1] or Section IV). Heuristically, a protocol can be simulated using fewer bits of communication than

its length because of the correlation in X and Y . Due to this correlation, when simulating the protocol,

the parties agree on more bits (generate more common randomness) than what they communicate. These

extra bits can be extracted as an information theoretically secure secret key for the two parties using

the leftover hash lemma (cf. [6], [43]). A lower bound on the number of bits communicated can be

derived using an upper bound for the maximum possible length of a secret key that can be generated

using interactive communication; the latter was derived recently in [50], [51].

Protocol for the upper bound. We simulate a given protocol one round at a time. Simulation of each

round consists of two subroutines: Interactive Slepian-Wolf compression and message reduction by public

randomness. The first subroutine is an interactive version of the classical Slepian-Wolf compression [45]

for sending X to an observer of Y which is of optimal instantaneous rate. The second subroutine uses

an idea that appeared first in [41] (see, also, [35], [54]) and reduces the number of bits communicated in

the first by realizing a portion of the required communication by the shared public randomness. This is

possible since we are not required to recover a given random variable Π, but only simulate it to within

a fixed statistical distance.

The proposed protocol is closely related to that in [8]. However, there are some crucial differences. The

protocol in [8], too, uses public randomness to sample each round of the protocol, before transmitting

it using an interactive communication of size incremented in steps. However, our information theoretic

approach provides a systematic method for choosing this step size. Furthermore, our protocol for sampling

the protocol from public randomness is significantly different from that in [8] and relies on randomness

extraction techniques. In particular, the protocol in [8] does not attain the asymptotically optimal bounds

achieved by our protocol.

Technical approach. While we utilize new, bespoke techniques for deriving our lower and upper

bounds, casting our problem in an information theoretic framework allows us to build upon the develop-

ments in this classic field. In particular, we rely on the information spectrum approach of Han and Verdú,

introduced in the seminal paper [23] (see the textbook [22] for a detailed account). In this approach, the

classical measures of information such as entropy and mutual information are viewed as expectations
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of the corresponding information densities, and the notion of “typical sets” is replaced by sets where

these information densities are bounded uniformly. The distribution of an information density (such as

h(x) = − log PX (x)), or the support of this distribution, is loosely referred to as its spectrum. Further,

we shall refer to the difference between max and min value of h(x) over its support as the length of

the spectrum. Coding theorems of classical information theory consider IID repetitions and rely on the

so-called the asymptotic equipartition property [12] which essentially corresponds to the concentration

of spectrums on small intervals. For single-shot problems such concentrations are not available and we

have to work with the whole span of the spectrum.

Our main technical contribution in this paper is the extension of the information spectrum method to

handle interactive communication. Our results rely on the analysis of appropriately chosen information

densities and, in particular, rely on the spectrum of the information complexity density ic(Π;X,Y ).

Different components of our analysis require bounds on these information densities in different directions,

which in turn renders our bounds loose and incurs a gap equal to the length of the corresponding

information spectrum. To overcome this shortcoming, we use the spectrum slicing technique of Han

[22]7 to divide the information spectrum into small portions with information densities closely bounded

from both sides. While in our upper bounds spectrum slicing is used to carefully choose the parameters

of the protocol, it is required in our lower bounds to identify a set of inputs where a given simulation

will require a large number of bits to be communicated.

C. Organization

A formal statement of the problem along with the necessary preliminaries is given in the next section.

Section III contains all our results. In Section IV, we review the information theoretic secret key agreement

problem, the leftover hash lemma, and the data exchange problem, all of which will be instrumental in

our proofs. The formal proof of our lower bound is contained in Section V and that of our upper bound

in Section VI. Section VII contains a proof of our asymptotic results, followed by concluding remarks

in Section VIII.

D. Notations

Random variables are denoted by capital letters such as X , Y , etc. realizations by small letters such

as x, y, etc. and their range sets by corresponding calligraphic letters such as X , Y , etc.. Protocols are

7The spectrum slicing technique was introduced in [22] to derive the error exponents of various problems for general sources
and a rate-distortion function for general sources.
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denoted by appropriate subscripts or superscripts with π, the corresponding random transcripts by the

same sub- or superscripts with Π; τ is used as a placeholder for realizations of random transcripts. All

the logarithms in this paper are to the base 2.

The following convention, described for the entropy density, shall be used for all information densities

used in this paper. We shall abbreviate the entropy density hPX (x) = − log PX (x) by h(x), when there

is no confusion about PX , and the random variable h(X) corresponds to drawing X from the distribution

PX .

Whenever there is no confusion, we will not display the dependence of distributional communication

complexity on the underlying distribution; the latter remains fixed in most of our discussion.

II. PROBLEM STATEMENT

Two parties observe correlated random variables X and Y , with Party 1 observing X and Party

2 observing Y , generated from a fixed distribution PXY and taking values in finite sets X and Y ,

respectively. An interactive protocol π (for these two parties) consists of shared public randomness U ,

private randomness8 UX and UY , and interactive communication Π1,Π2, ...,Πr. The parties communicate

alternatively with Party 1 transmitting in the odd rounds and Party 2 in the even rounds. Specifically, in

each round i one of the party, say Party 1, communicates and transmits a string of bits Πi ∈ {0, 1}∗ deter-

mined by the previous transmissions Π1, ...,Πi−1 and the observations (X,UX , U) of the communicating

party. To each possible value of the bit string Πi, a state from the state space {C, φ} is associated. If the

next state is C, the other party starts communicating. If it is φ, the protocol stops and each party generates

an output based on its local observation and trascript Π1, ...,Πi of the protocol. We assume without loss

of generality that Party 1 initiates the protocol. Note that the set Ci of possible values of Πi, and the

associated next states C or φ for each value, is determined by a common function of (X,UX , U,Π
i−1)

and (Y, UY , U,Π
i−1) (cf. [19]), i.e., as a function of a random variable V such that

H(V |X,UX , U,Πi−1) = H(V |Y, UY , U,Πi−1) = 0.

We denote the overall transcript of the protocol by Π. The length of a protocol π, |π|, is the maximum

number of bits that are communicated in any execution of the protocol.

In the special case where Ci is a prefix-free set determined by Πi−1, the protocol is called a tree-

protocol (cf. [53], [29]). In this case, the set of transcripts of the protocol can be represented by a

tree, termed the protocol tree, with each leaf corresponding to a particular realization of the transcript.

8The random variables U,UX , UY are mutually independent and independent jointly of (X,Y ).
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Specifically, the protocol is defined by a binary tree where each internal node v is owned by either party,

and node v is labeled either by a function av : X × UX × U → {0, 1} or bv : Y × UY × U → {0, 1}.

Then each leaf, or the path from the root to the leaf, corresponds to the overall transcript. Our proposed

protocol is indeed a tree protocol. On the other hand, our converse bound applies to the more general

class of interactive protocols described above.

A random variable F is said to be recoverable by π for Party 1 (or Party 2) if F is function of

(X,U,UX ,Π) (or (Y,U, UY ,Π)).

A protocol with a constant U is called a private coin protocol, with a constant (UX , UY) is called a

public coin protocol, and with (U,UX , UY) constant is called a deterministic protocol. Note that a private

coin protocol can be realized as a public coin protocol by sampling private coins from public coins.

When we execute the protocol π above, the overall view of the parties consists of random variables

(XYΠΠ), where the two Πs correspond to the transcript of the protocol seen by the two parties. A

simulation of the protocol consists of another protocol which generates almost the same view as that

of the original protocol. We are interested in the simulation of private coin protocols, using arbitrary9

protocols; public coin protocols can be simulated by simulating for each fixed value of public randomness

the resulting private coin protocol.

Definition 2 (ε-Simulation of a protocol). Let π be a private coin protocol. Given 0 ≤ ε < 1, a protocol

πsim constitutes an ε-simulation of π if there exist ΠX and ΠY , respectively, recoverable by πsim for

Party 1 and Party 2 such that

dvar (PΠΠXY ,PΠXΠYXY ) ≤ ε, (1)

where dvar (P,Q) = 1
2

∑
x |Px−Qx| denotes the variational or the statistical distance between P and Q.

Definition 3 (Distributional communication complexity). The ε-error distributional communication

complexity Dε (π|PXY ) of simulating a private coin protocol π is the minimum length of an ε-simulation

of π. The distribution PXY remains fixed throughout our analysis; for brevity, we shall abbreviate

Dε (π|PXY ) by Dε (π).

Problem. Given a protocol π and a joint distribution PXY for the observations of the two parties, we

seek to characterize Dε (π).

9Since we are not interested in minimizing the amount of shared randomness used in a simulation, we allow arbitrary public
coin protocols to be used as simulation protocols.
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Remark 1 (Deterministic protocols). Note that a deterministic protocol corresponds to an interactive

function. A specific instance of this situation appears in [49] where Π(X,Y ) = (X,Y ) is considered.

For such protocols,

dvar (PΠΠXY ,PΠXΠYXY ) = 1− Pr (Π = ΠX = ΠY) .

Therefore, a protocol is an ε-simulation of a deterministic protocol if and only if it computes the

corresponding interactive function with probability of error less than ε. Furthermore, randomization does

not help in this case, and it suffices to use deterministic simulation protocols. Thus, our results below

provide tight bounds for distributional communication complexity of interactive functions and even of

all functions which are information theoretically securely computable for the distribution PXY , since

computing these functions is tantamount to computing an interactive function [36] (see, also, [5], [28]).

Remark 2 (Compression of protocols). A protocol πcom constitutes an ε-compression of a given protocol

π if it recovers ΠX and ΠY for Party 1 and Party 2 such that

Pr (Π = ΠX = ΠY) ≥ 1− ε.

Note that randomization does not help in this case either. In fact, for deterministic protocols simulation and

compression coincide. In general, however, compression is a more demanding task than simulation and

our results show that in many cases, (such as the amortized regime), compression requires strictly more

communication than simulation. Specifically, our results for ε-simulation in this paper can be modified to

get corresponding results for ε-compression by replacing the information complexity density ic(τ ;x, y)

by

h(τ |x) + h(τ |y) = − log PΠ|X (τ |x) PΠ|Y (τ |y) .

The proofs remain essentially the same and, in fact, simplify significantly.

III. MAIN RESULTS

We derive a lower bound for Dε (π) which applies to all private coin protocols π and, in fact, applies

to the more general problem of communication complexity of sampling a correlated random variable. For

protocols with bounded number of rounds of interaction, admittedly a significant restriction, i.e., protocols

with r = r(X,Y, U, UX , UY) ≤ rmax with probability 1, we present a simulation protocol which yields

upper bounds for Dε (π) of similar form as our lower bounds. In particular, in the asymptotic regime

our bounds improve over previously known bounds and are tight.

September 6, 2018 DRAFT
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A. Lower bound

We prove the following lower bound.

Theorem 1. Given 0 ≤ ε < 1 and a protocol π, for arbitrary 0 < η < 1/3

Dε (π) ≥ sup{λ : Pr (ic(Π;X,Y ) > λ) ≥ ε+ ε′} − λ′, (2)

where the fudge parameters ε′ and λ′ depend on η as well as appropriately chosen information spectrums

and will be described below in (4) and (5).

The appearance of fudge parameters such as ε′ and λ′ in the bound above is typical since the techniques

to bound the tail probability of random variables invariably entail such parameters, which are tuned based

on the specific scenario being studied. For instance, the Chernoff bound has a parameter that is tuned

with respect to the moment generating function of the random variable of interest. More relevant to

the problem studied here, such fudge parameters also show up in the evalutation of error probability of

single-party non-interactive compression problems (cf. [23], [22]).

When the fudge parameters ε′ and λ′ are negligible, the right-side of the bound above is close to the

ε-tail of ic(Π;X,Y ). Indeed, the fudge parameters turn out to be negligible in many cases of interest.

For instance, for the amortized case ε′ can be chosen to be arbitrarily small. The parameter λ′ is related

to the length of the interval in which the underlying information densities lie with probability greater than

1 − ε′, the essential length of spectrums. For the amortized case with product protocols, by the central

limit theorem the related essential spectrums are of length Λ = O(
√
n) and λ′ = log Λ. On the other

hand, λε is O(n). Thus, the log n order fudge parameter λ′ is negligible in this case. The same is true

also for the example protocol in Appendix A. Finally, it should be noted that similar fudge parameters

are ubiquitous in single-shot bounds; for instance, see [22, Lemma 1.3.2].

Remark 3. The result above does not rely on the interactive nature of Π and is valid for simulation of

any random variable Π. Specifically, for any joint distribution PΠXY , an ε-simulation satisfying (1) must

communicate at least as many bits as the right-side of (2), which is roughly equal to the largest value

λε of λ such that Pr (ic(Π;X,Y ) > λ) > ε.

The fudge parameters. The fudge parameters ε′ and λ′ in Theorem 1 depend on the spectrums of

the following information densities:

(i) Information complexity density: This density is described in Definition 1 and will play a pivotal

role in our results.

(ii) Entropy density of (X,Y ): This density, given by h(X,Y ) = − log PXY (X,Y ), captures the

September 6, 2018 DRAFT
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randomness in the data and plays a fundamental role in the compression of the collective data of

the two parties (cf. [22]).

(iii) Conditional entropy density of X given YΠ: The conditional entropy density h(X|Y ) = − log PX|Y (X|Y )

plays a fundamental role in the compression of X for an observer of Y [34], [22]. We shall use

the conditional entropy density h(X|YΠ) in our bounds.

(iv) Sum conditional entropy density of (XΠ, YΠ): The sum conditional entropy density is given by

h (X4Y ) = − log PX|Y (X|Y ) PY |X (Y |X) has been shown recently to play a fundamental role in

the communication complexity of the data exchange problem [49]. We shall use the sum conditional

entropy density h (XΠ4YΠ).

(v) Information density of X and Y is given by i(X ∧ Y )
def
= h(X)− h(X|Y ).

Let [λ
(1)
min, λ

(1)
max], [λ

(2)
min, λ

(2)
max], and [λ

(3)
min, λ

(3)
max] denote the “essential” spectrums of information densities

ζ1 = h(X,Y ), ζ2 = h(X|YΠ), and ζ3 = h (XΠ4YΠ), respectively. Concretely, let the tail events

Ei = {ζi /∈ [λ
(i)
min, λ

(i)
max]}, i = 1, 2, 3, satisfy

Pr (E1) + Pr (E2) + Pr (E3) ≤ εtail, (3)

where εtail can be chosen to be appropriately small. Further, let Λi = λ
(i)
max − λ(i)

min, i = 1, 2, 3, denote

the corresponding effective spectrum lengths. The parameters ε′ and λ′ in Theorem 1 are given by

ε′ = εtail + 2η (4)

and

λ′ = 2 log Λ1Λ3 + log Λ2 − log(1− 3η) + 9 log 1/η + 3, (5)

where 0 < η < 1/3 is arbitrary. If Λi = 0, i = 1, 2, 3, we can replace it with 1 in the bound above.

Thus, our spectrum slicing approach allows us to reduce the dependence of λ′ on spectrum lengths Λi’s

from linear to logarithmic.

B. Upper bound

We prove the following upper bound.

Theorem 2. For every 0 ≤ ε < 1 and every protocol π,

Dε (π) ≤ inf
{
λ : Pr (ic(Π;X,Y ) > λ) ≤ ε− ε′

}
+ λ′,
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where the fudge parameters ε′ and λ′ depend on the maximum number of rounds of interaction in π and

on appropriately chosen information spectrums.

Remark 4. In contrast to the lower bound given in the previous section, the upper bound above relies

on the interactive nature of π. Furthermore, the fudge parameters ε′ and λ′ depend on the number of

rounds, and the upper bound may not be useful when the number of rounds is not negligible compared

to the ε-tail of the information complexity density. However, we will see that the above upper bound is

tight for the amortized regime, even up to the second-order asymptotic term.

The simulation protocol. Our simulation protocol simulates the given protocol π round-by-round,

starting from Π1 to Πr. Simulation of each round consists of two subroutines: Interactive Slepian-Wolf

compression and message reduction by public randomness.

The first subroutine uses an interactive version of the classical Slepian-Wolf compression [45] (see [34]

for a single-shot version) for sending X to an observer of Y . The standard (noninteractive) Slepian-Wolf

coding entails hashing X to l values and sending the hash values to the observer of Y . The number of

hash values l is chosen to take into account the worst-case performance of the protocol. However, we

are not interested in the worst-case performance of each round, but of the overall multiround protocol.

As such, we seek to compress X using the least possible instantaneous rate. To that end, we increase the

number of hash values gradually, ∆ at a time, until the receiver decodes X and sends back an ACK. We

apply this subroutine to each round i, say i odd, with Πi in the role of X and (Y,Π1....,Πi−1) in the role

of Y . Similar interactive Slepian-Wolf compression schemes have been considered earlier in different

contexts (cf. [17], [38], [52], [25], [49]).

The second subroutine reduces the number of bits communicated in the first by realizing a portion

of the required communication by the shared public randomness U . Specifically, instead of transmitting

hash values of Πi, we transmit hash values of a random variable Π̂i generated in such a manner that some

of its corresponding hash bits can be extracted from U and the overall joint distributions do not change

by much. Since U is independent of (X,Y ), the number k of hash bits that can be realized using public

randomness is the maximum number of random hash bits of Πi that can be made almost independent of

(X,Y ), a good bound for which is given by the leftover hash lemma. The overall simulation protocol

for Πi now communicates l − k instead of l bits. A similar technique for message reduction appears in

a different context in [41], [35], [54].

The overall performance of the protocol above is still suboptimal because the saving of k bits is limited

by the worst-case performance. To remedy this shortcoming, we once again take recourse to spectrum

slicing to ensure that our saving k is close to the best possible for each realization (Π, X, Y ).
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Note that our protocol above is closely related to that proposed in [8]. However, the information

theoretic form here makes it amenable to techniques such as spectrum slicing, which leads to tighter

bounds than those established in [8].

The fudge parameters. The fudge parameters ε′ and λ′ in Theorem 2 depend on the spectrum of

various conditional information densities. To optimize the performance of each subroutine described

above, we slice the spectrum of the respective conditional information density involved. Specifically,

for odd round t, we slice the spectrum of h(Πt|YΠt−1) = − log PΠt|YΠt−1

(
Πt|Y,Πt−1

)
for interactive

Slepian-Wolf compression and h(Πt|XΠt−1) = − log PΠt|XΠt−1

(
Πt|X,Πt−1

)
for the substitution of

message by public randomness; for even rounds, the role of X and Y is interchanged. Each round

involves some residuals related to the two conditional information densities. The fudge parameters ε′ and

λ′ are accumulations of the residuals of each round. The explicit expressions for ε′ and λ′ are rather

technical and are given in Section VI-E along with the proofs.

C. Amortized regime: second-order asymptotics

It was shown in [8] that information complexity of a protocol equals the amortized communication

rate for simulating the protocol, i.e.,

lim
ε→0

lim
n→∞

1

n
Dε(π

n|PnXY ) = IC(π),

where PnXY denotes the n-fold product of the distribution PXY , namely the distribution of random

variables (Xi, Yi)
n
i=1 drawn IID from PXY , and πn corresponds to running the same protocol π on every

coordinate (Xi, Yi). Thus, IC(π) is the first-order term (coefficient of n) in the communication complexity

of simulating the n-fold product of the protocol. However, the analysis in [8] sheds no light on finer

asymptotics such as the second-order term or the dependence of Dε(π
n|PnXY ) on10 ε. On the one hand,

it even remains unclear from [8] if a positive ε reduces the amortized communication rate or not. On the

other hand, the amortized communication rate yields only a loose bound for Dε(π
n|PnXY ) for a finite,

fixed n. A better estimate of Dε(π
n|PnXY ) at a finite n and for a fixed ε can be obtained by identifying

the second-order asymptotic term. Such second-order asymptotics were first considered in [46] and have

received a lot of attention in information theory in recent years following [24], [39].

Our lower bound in Theorem 1 and upper bound in Theorem 2 show that the leading term in

Dε(π
n|PnXY ) is roughly the ε-tail λε of the random variable ic(Πn;Xn, Y n) =

∑n
i=1 ic(Πi;Xi, Yi), a

sum of n IID random variables. By the central limit theorem the first-order asymptotic term in λε equals

10The lower bound in [8] gives only the weak converse which holds only when ε = εn → 0 as n→∞.
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nE [ic(Π;X,Y )] = nIC(π), recovering the result of [8]. Furthermore, the second-order asymptotic term

depends on the variance V(π) of ic(Π;X,Y ), i.e., on

V(π)
def
= Var [ic(Π;X,Y )] .

We have the following result.

Theorem 3. For every 0 < ε < 1 and every protocol π with V(π) > 0,

Dε(π
n|PnXY ) = nIC(π) +

√
nV(π)Q−1(ε) + o(

√
n),

where Q(x) is equal to the probability that a standard normal random variable exceeds x.

As a corollary, we obtain the strong converse.

Corollary 4. For every 0 < ε < 1, the amortized communication rate

lim
n→∞

1

n
Dε(π

n|PnXY ) = IC(π).

Corollary 4 implies that the amortized communication complexity of simulating protocol π cannot

be smaller than its information complexity even if we allow a positive error. Thus, if the length of the

simulation protocol πsim is “much smaller” than nIC(π), the corresponding simulation error ε = εn must

approach 1. But how fast does this εn converge to 1? Our next result shows that this convergence is

exponentially rapid in n.

Theorem 5. Given a protocol π and an arbitrary δ > 0, for any simulation protocol πsim with

|πsim| ≤ n[IC(π)− δ],

there exists a constant E = E(δ) > 0 such that for every n sufficiently large, it holds that

dvar
(
PΠnΠnXnY n ,PΠnXΠnYX

nY n
)
≥ 1− 2−En.

A similar converse was first shown for the channel coding problem by Arimoto [3] (see [16], [40] for

further refinements of this result), and has been studied for other classical information theory problems

as well. To the best of our knowledge, Corollary 5 is the first instance of an Arimoto converse for a

problem involving interactive communication.

In the theoretical computer science literature, such converse results have been termed direct product

theorems and have been considered in the context of the (distributional) communication complexity
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problem (for computing a given function) [9], [11], [26]. Our lower bound in Theorem 1, too, yields

a direct product theorem for the communication complexity problem. We state this simple result in the

passing, skipping the details since they closely mimic Theorem 5. Specifically, given a function f on

X ×Y , by a slight abuse of notations and terminologies, let Dε(f) = Dε(f |PXY ) be the communication

complexity of computing f . As noted in Remark 3, Theorem 1 is valid for an arbitrary random variables

Π, and not just an interactive protocol. Then, by following the proof of Theorem 5 with F = f(X,Y )

replacing Π in the application of Theorem 1, we get the following direct product theorem.

Theorem 6. Given a function f and an arbitrary δ > 0, for any function computation protocol π

computing estimates FX ,n and FY,n of fn at the Party 1 and Party 2, respectively, and with length

|π| ≤ n[H(F |X) +H(F |Y )− δ], (6)

there exists a constant E = E(δ) > 0 such that for every n sufficiently large, it holds that

Pr (FX ,n = FY,n = Fn) ≤ 2−En,

where Fn := (F1, ..., Fn) and Fi := f(Xi, Yi), 1 ≤ i ≤ n.

Recall that [8], [31] showed that the first order asymptotic term in the amortized communication

complexity for function computation equals the information complexity IC(f) of the function, namely

the infimum over IC(π) for all interactive protocols π that recover f with 0 error. Ideally, we would like

to show an Arimoto converse for this problem, i.e., replace the threshold on the right-side of (6) with

n[IC(f)− δ]. The direct product result above is weaker than such an Arimoto converse, and proving the

Arimoto converse for the function computation problem is work in progress. Nevertheless, the simple

result above is not comparable with the known direct product theorems in [9], [11] and can be stronger

in some regimes11.

D. General formula for amortized communication complexity

Consider arbitrary distributions PXnYn on X n×Yn and arbitrary protocols πn with inputs Xn and Yn

taking values in X n and Yn, for each n ∈ N. For vanishing simulation error εn, how does Dεn(πn|PXnYn)

evolve as a function of n?

The previous section, and much of the theoretical computer science literature, has focused on the

case when PXnYn = PnXY and the same protocol π is executed on each coordinate. In this section,

11The result in [9], [11] shows a direct product theorem when we communicate less than nIC(f)/poly(logn).
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we identify the first-order asymptotic term in Dεn(πn|PXnYn) for a general sequence of distributions12

{PXnYn}∞n=1 and a general sequence of protocols π = {πn}∞n=1. Formally, the amortized (distributional)

communication complexity of π for {PXnYn}∞n=1 is given by13

D(π)
def
= lim

ε→0
lim sup
n→∞

1

n
Dε(πn|PXnYn).

Our goal is to characterize D(π) for any given sequences Pn and π. We seek a general formula for

D(π) under minimal assumptions. Since we do not make any assumptions on the underlying distribution,

we cannot use any measure concentration results. Instead, we take recourse to probability limits of infor-

mation spectrums introduced by Han and Verdú in [23] for handling this situation (cf. [22]). Specifically,

for a sequence of protocols π = {πn}∞n=1 and a sequence of observations (X,Y) = {(Xn, Yn)}∞n=1, the

sup information complexity is defined as

IC(π)
def
= inf

{
α | lim

n→∞
Pr

(
1

n
ic(Πn;Xn, Yn) > α

)
= 0

}
,

where, with a slight abuse of notation, Πn is the transcript of protocol πn for observations (Xn, Yn). The

result below shows that it is nIC(π), and not IC(πn), that determines the communication complexity in

general.

Theorem 7. For every sequence of protocols π = {πn}∞n=1,

D(π) = IC(π).

The proof uses Theorem 1 and Theorem 2 with carefully chosen spectrum-slice sizes.

For the case when πn = πn and PXnYn = PnXY , it follows from the law of large numbers that

IC(π) = IC(π) and we recover the result of [8]. However, the utility of the general formula goes beyond

this simple amortized regime. Example 1 provides one such instance. In this case, IC(π) can be easily

shown to equal IC(πh) for any bias of the coin Π0.

IV. BACKGROUND: SECRET KEY AGREEMENT AND DATA EXCHANGE

Our proofs draw from various techniques in cryptography and information theory. In particular, we use

our recent results on information theoretic secret key agreement and data exchange, which are reviewed

in this section together with the requisite background.

12We do not require PXnYn to be even consistent.
13Although D(π) also depends on {PXnYn}∞n=1, we omit the dependency in our notation.
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A. Secret key agreement by public discussion

The problem of two party secret key agreement by public discussion was alluded to in [7], but a

proper formulation and an asymptotically optimal construction appeared first in [33], [1]. Consider two

parties with the first and the second party, respectively, observing the random variable X and Y . Using

an interactive protocol π and their local observations, the parties agree on a secret key. A random variable

K constitutes a secret key if the two parties form estimates that agree with K with probability close to 1

and K is concealed, in effect, from an eavesdropper with access to the transcript Π and a side-information

Z. Formally, let KX and KY , respectively, be recoverable by π for the first and the second party. Such

random variables KX and KY with common range K constitute an ε-secret key if the following condition

is satisfied:

dvar

(
PKXKYΠZ ,P

(2)
unif × PΠZ

)
≤ ε,

where

P
(2)
unif (kX , kY) =

1(kX = kY)

|K|
.

The condition above ensures both reliable recovery, requiring Pr (KX 6= KY) to be small, and information

theoretic secrecy, requiring the distribution of KX (or KY ) to be almost independent of the eavesdropper’s

side information (Π, Z) and to be almost uniform. See [50] for a discussion.

Definition 4. Given 0 ≤ ε < 1, the supremum over lengths log |K| of an ε-secret key is denoted by

Sε(X,Y |Z), and for the case when Z is constant by Sε(X,Y ).

By its definition, Sε(X,Y |Z) has the following monotonicity property.

Lemma 8 (Monotonicity). For any deterministic protocol π,

Sε(X,Y |Z) ≥ Sε(XΠ, YΠ|ZΠ).

Furthermore, if VX and VY can be recovered by π for the first and the second party, respectively, then

Sε(X,Y |Z) ≥ Sε(XVX , VY |ZΠ).

The claim holds since the two parties can generate a secret key by first running π and then generating

a secret key for the case when the first party observes (X,Π), the second party observes (Y,Π) and

the eavesdropper observes (Z,Π). Similarly, the second inequality holds since the parties can ignore a
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portion of their observations and generate a secret key from (X,VX ) and (Y, VY).

1) Leftover hash lemma: A key tool for generating secret keys is the leftover hash lemma (cf. [42])

which, given a random variable X and an l-bit eavesdropper’s observation Z, allows us to extract roughly

Hmin(PX)− l bits of uniform bits, independent of Z. We shall use a slightly more general form. Given

random variables X and Z, let

Hmin (PXZ | QZ)
def
= sup

x,z
− log

PXZ (x, z)

QZ (z)
.

We define the conditional min-entropy of X given Z as

Hmin (PXZ | Z)
def
= sup

QZ : supp(PZ)⊂ supp(QZ)
Hmin (PXZ | QZ) .

Further, let F be a 2-universal family of mappings f : X → K, i.e., for each x′ 6= x, the family F

satisfies
1

|F|
∑
f∈F

1(f(x) = f(x′)) ≤ 1

|K|
.

Lemma 9 (Leftover Hash). Consider random variables X,Z and V taking values in countable sets X ,

Z , and a finite set V , respectively. Let S be a random seed such that fS is uniformly distributed over a

2-universal family F . Then, for KS = fS(X)

ES {dvar (PKSV Z ,PunifPV Z)} ≤ 1

2

√
|K||V|2−Hmin(PXZ |Z),

where Punif is the uniform distribution on K.

The version above is a straightforward modification of the leftover hash lemma in, for instance, [42]

and can be derived in a similar manner.

As an application of the leftover hash lemma above, we get the following useful result.

Lemma 10. Consider random variables X,Y, Z and V taking values in countable sets X , Y , Z , and a

finite set V , respectively. Then,

S2ε(X,Y |ZV ) ≥ Sε(X,Y |Z)− log |V| − 2 log(1/2ε).

The proof is relegated to Appendix A.

2) Conditional independence testing upper bound for secret key lengths: Next, we recall the conditional

independence testing upper bound for Sε(X,Y ), which was established in [50], [51]. In fact, the general

upper bound in [50], [51] is a single-shot upper bound on the secret key length for a multiparty secret
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key agreement problem with side information at the eavesdropper. Below, we recall a specialization of

the general result for the two party case with no side information at the eavesdropper. In order to state

the result, we need the following concept from binary hypothesis testing.

Consider a binary hypothesis testing problem with null hypothesis P and alternative hypothesis Q,

where P and Q are distributions on the same alphabet V . Upon observing a value v ∈ V , the observer

needs to decide if the value was generated by the distribution P or the distribution Q. To this end, the

observer applies a stochastic test T, which is a conditional distribution on {0, 1} given an observation

v ∈ V . When v ∈ V is observed, the test T chooses the null hypothesis with probability T(0|v) and the

alternative hypothesis with probability T (1|v) = 1 − T (0|v). For 0 ≤ ε < 1, denote by βε(P,Q) the

infimum of the probability of error of type II given that the probability of error of type I is less than ε,

i.e.,

βε(P,Q) := inf
T : P[T]≥1−ε

Q[T],

where

P[T] =
∑
v

P(v)T(0|v),

Q[T] =
∑
v

Q(v)T(0|v).

The following upper bound for Sε(X,Y ) was established in [50], [51].

Theorem 11 (Conditional independence testing bound). Given 0 ≤ ε < 1, 0 < η < 1−ε, the following

bound holds:

Sε (X,Y ) ≤ − log βε+η
(
PXY ,QXQY

)
+ 2 log(1/η),

for all distributions QX and QY on X and Y , respectively.

We close by noting a further upper bound for βε(P,Q), which is easy to derive.

Lemma 12. For every 0 ≤ ε < 1 and λ,

− log βε(P,Q) ≤ λ− log

(
P

(
log

P (X)

Q (X)
< λ

)
− ε
)

+

,

where (x)+ = max{0, x}. As a corollary, we obtain the following upper bound for Sε(X,Y ):

Sε (X,Y ) ≤ λ− log

(
Pr

(
log

PXY (X,Y )

QX (X) QY (Y )
< λ

)
− ε− η

)
+

+ 2 log(1/η),
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for all distributions QX and QY .

B. The data exchange problem

The next primitive that will be used in the reduction argument in our lower bound proof is a protocol

for data exchange. The parties observing X and Y seek to know each other’s data. What is the minimum

length of interactive communication required? This basic problem, first studied in [37], is in effect a

two-party extension of the classical Slepian-Wolf compression [45] (see [14] for a multiparty version).

In a recent work [49], we derived tight lower and upper bounds for the length of a protocol that, for a

given distribution PXY , will facilitate data exchange with probability of error less than ε. We review the

proposed protocol and its performance here; first, we formally define the data exchange problem.

Definition 5. For 0 ≤ ε < 1, a protocol π attains ε-data exchange if there exist Ŷ and X̂ which are

recoverable by π for the first and the second party, respectively, and satisfy

P(X̂ = X, Ŷ = Y ) ≥ 1− ε.

Note that data exchange corresponds to simulating a (deterministic) interactive protocol π where

Π1(X) = X and Π2 = Y ; attaining ε-data exchange is tantamount to ε-simulation of π. In fact, the

specific protocol for data exchange proposed in [49] can be recovered as a special case of our simulation

protocol in Section VI. The next result paraphrases [49, Theorem 2] and can also be recovered as a

special case of Lemma 21.

We paraphrase the result form [49] in a form that is more suited for our application here. The

data exchange protocol proposed in [49] relies on slicing the spectrum of h(X|Y ) (or h(Y |X)). Let

Etail denote the tail event h(X|Y ) /∈ [λ′min, λ
′
max]. The protocol entails slicing the essential spectrum

[λ′min, λ
′
max] into N parts of length ∆ each, i.e.,

N =
λ′max − λ′min

∆
.

Theorem 13 ([49, Theorem 2], Lemma 21). Given ∆ > 0, ξ > 0, and N as above, there exists a

deterministic protocol for ε-data exchange satisfying the following properties:

(i) Denoting by Eerror the error event, it holds that

PXY (Eerror ∩ {h(X4Y ) ≤ λ}) ≤ PXY (Etail) +N2−ξ,
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which further yields that the probability of error ε is bounded above as

ε ≤ PXY (h(X4Y ) > λ) + PXY (Etail) +N2−ξ;

(ii) the protocol communicates no more than λ+ ∆ +N + ξ bits;

(iii) for every (X,Y ) such that λ′min < h(X|Y ) < λ′max, the transcript of the protocol can take no more

than 2h(X4Y )+∆+ξ values.

Note that property (iii) above, though not explicitly stated in [49, Theorem 2] or in the general

Lemma 21 below, follows simply from the proofs of these results. It makes the subtle observation that

while, for each (X,Y ) such that λ′min < h(X|Y ) < λ′max, h (X4Y )+∆+N+ξ bits are communicated

to interactively generate the transcript, the number of (variable length) transcripts is no more than14

h (X4Y ) + ∆ + N + ξ. Property (ii) above was crucial to establish the communication complexity

results of [49]; property (iii) was not relevant in the context of that work. On the other hand, here we

shall use the protocol of Theorem 13 in our reduction to secret key agreement in the next section and will

treat the communication used in data exchange as eavesdropper’s side information. As such, it suffices

to bound the number of values taken by the transcript; the number of bits actually communicated in the

interactive protocol is a loose upper bound on the former quantity.

Interestingly, our simulation protocol given in Section VI is used both in our upper bound to compress

a given protocol and in our lower bound to complete the reduction argument.

V. PROOF OF LOWER BOUND

As described in the introduction, our proof of Theorem 1 relies on generating a secret key for X and Y

from a given ε-simulation πsim of π. However, there are two caveats in the heuristic approach described

in the introduction:

First, to extract secret keys from the generated common randomness we rely on the leftover hash lemma.

In particular, the bits are extracted by applying a 2-universal hash family to the common randomness

generated. However, the range-size of the hash family must be selected based on the min-entropy of the

generated common randomness, which is not easy to estimate. To remedy this, we communicate more

using a data-exchange protocol proposed in [49] to make the collective observations (X,Y ) available

to both the parties; a good bound for the communication complexity of this protocol is available. The

generated common randomness now includes (X,Y ) for which the min-entropy can be easily bounded

14The N -bit ACK-NACK feedback used in the protocol can be determined from the length of the transcript.
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and the size of the aforementioned extracted secret key can be tracked. A similar common randomness

completion and decomposition technique was introduced in [48] to characterize a class of securely

computable functions.

Second, our methodology described above requires bounds on various information densities in different

directions. A direct application of this method will result in a gap equal to the effective length of various

spectrums involved. To remedy this, we apply the methodology described above not to the original

distribution PXY but a conditional distribution PXY |E where the event E is an appropriately chosen

event contained in single slices of various spectrums involved. Such a conditioning is allowed since we

are interested in the worst-case communication complexity of the simulation protocol.

We now describe the proof of Theorem 1 in detail. To make the exposition clear, we have divided the

proof into five steps.

Given a (private coin) protocol π, let πsim be its ε-simulation and ΠX and ΠY be the corresponding

estimates of the transcript Π for Party 1 and Party 2, respectively.

A. From simulation to probability of error

We first use a coupling argument to replace the ε-simulation condition with an ε probability of error

condition. Recall the maximal coupling lemma.

Lemma 14 (Maximal Coupling Lemma [47]). For any two distributions P and Q on the same set,

there exists a joint distribution PXY with X ∼ P and Y ∼ Q such that

Pr (X 6= Y ) = dvar (P,Q) .

Using the maximal coupling lemma, for each fixed x, y there exists a joint distribution PΠΠXΠY |X=x,Y=y

such that

Pr (Π = ΠX = ΠY |X = x, Y = y) = 1− dvar
(
PΠΠ|X=x,Y=y,PΠXΠY |X=x,Y=y

)
;

Consequently,

Pr (Π = ΠX = ΠY) = 1−
∑
x,y

PXY (x, y) dvar
(
PΠΠ|X=x,Y=y,PΠXΠY |X=x,Y=y

)
= 1− dvar (PΠΠXY ,PΠXΠYXY )

≥ 1− ε. (7)

As pointed in footnote 9, we restrict ourselves to public coin protocols πsim using shared public random-
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ness U . For concreteness (and convenience of proof), we define the joint distribution for (ΠΠXΠYXY U)

as

PΠXΠYΠXY U = PΠXΠYΠXY PU |ΠXΠYXY . (8)

Note that the marginal PΠXΠYXY U remains as in the original protocol. In particular, (X,Y ) is jointly

independent of U .

B. From partial knowledge to omniscience

As explained in the heuristic proof above, instead of extracting a secret key from the common

randomness generated by the protocol πsim, we first use the data exchange protocol of Theorem 13

to make all the data available to both the parties, which was termed attaining omniscience15 in [14].

In particular, the parties run the protocol πsim followed by a data exchange protocol for (XΠ, YΠ) to

recover (X,Y ) at both the parties. Once both the parties have access to (X,Y ), they can extract a secret

key from (X,Y ) which will be used in the reduction in our final step.

Formally, with the notations introduced in Section IV-B, let πDE be the data exchange protocol of

Theorem 13 with X and Y replaced by (XΠ) and (YΠ), respectively, with N2 and ∆2 denoting N and

∆, respectively, and with λ = λ
(3)
max, λ′min = λ

(2)
min, λ′max = λ

(2)
max. Then, denoting by Eerror the error

event for the protocol πDE Theorem 13(i) yields

Pr (Eerror ∩ Ec3) ≤ Pr (E2) +N22−ξ, (9)

where E2 and E3 are as in (3). Furthermore, for every realization (X,Y ) /∈ E3 the number possible

transcripts ΠDE is no more than

2h(XΠ4YΠ)+∆2+ξ. (10)

We seek to use πDE for recovering Y and X , respectively, at Party 1 and Party 2 by running πDE

successively after πsim. However, πsim yields XΠX and YΠY at Party 1 and Party 2, respectively, while

the data exchange protocol πDE facilitates data exchange when the two parties observe XΠ and YΠ. We

can easily fix this gap using (7).

Specifically, denote by X̂ and Ŷ the estimates of X and Y formed at Party 2 and Party 1 in πDE. Note

15Csiszár and Narayan considered a multiterminal version of the data exchange problem in [14] and connected the minimum
(amortized) rate of communication needed to the maximum (amortized) secret key rate.
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that πDE is a deterministic protocol and X̂ and Ŷ are functions of (X,Y,Π,Π). Denote by A the set

A = {(τX , τY , τ, x, y) : τX = τY = τ}

and by B the set

B = {(τX , τY , τ, x, y) : X̂(x, y, τ, τ) = x, Ŷ (x, y, τ, τ) = y},

which is the same as Ecerror for Eerror in (9). Then, by (7) and (9)

Pr
(
{X̂(X,Y,ΠX ,ΠY) = X, Ŷ (X,Y,ΠX ,ΠY) = Y } ∩ Ec3

)
≥ PΠXΠYΠXY (A ∩ B ∩ Ec3)

≥ PΠXΠYΠXY (A) + Pr (Ec3)− PΠXΠYΠXY (Bc ∩ Ec3)− 1

≥ 1− ε− Pr (E2)− Pr (E3)−N22−ξ. (11)

C. From simulation to secret keys: A rough sketch of the reduction

The first step in our proof is to replace the simulation condition (1) with the probability of error

condition (7) for the joint distribution PΠXΠYΠXY U in (8).

Next, we “complete the common randomness,” i.e., we communicate more to facilitate the recovery

of Y and X at Party 1 and Party 2, respectively. To that end, upon executing πsim, the parties run the

data exchange protocol πDE of Theorem 13 for (XΠ) and (YΠ), with (X,ΠX ) and (Y,ΠY) in place of

(XΠ) and (YΠ), respectively. Condition (7) guarantees that the combined protocol (πsim, πDE) recovers

Y and X at Party 1 and Party 2 with probability of error less than ε.

We now sketch our reduction argument. Consider the secret key agreement for X and Y when the

eavesdropper observes U . By the independence of (X,Y ) and U , Sη(XU, Y U |U) = Sη(X,Y ), and

further, the result of [50] shows that Sη(X,Y ) is bounded above, roughly, by the mutual information

density i(X ∧ Y ) = log PXY (X,Y ) /PX (X) PY (Y ), i.e.,

Sη(XU, Y U |U) = Sη(X,Y ) . i(X ∧ Y ). (12)

On the other hand, we can generate a secret key using the following protocol:

1) Run the combined protocol (πsim, πDE) to attain data exchange for X and Y , resulting in a common

randomness of size roughly h(X,Y |U) = h(X,Y ).

2) The data exchange protocol πDE for (XΠ) and (YΠ) communicates roughly h (XΠ4YΠ) bits for

every fixed realization (X,Y,Π). Thus, the combined protocol (πsim, πDE), which allows both the
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parties to recover (X,Y ), communicates no more than |πsim|+ h (XΠ4YΠ) bits for every fixed

realization (X,Y,Π). Using the leftover hash lemma, we can extract a secret key of rate roughly

h(X,Y )− |πsim| − h (XΠ4YΠ).

The following approximate inequalities summarize our reduction:

Sη(XU, Y U |U) ≥ Sη(XŶ , X̂Y |ΠsimΠDEU)

& Sη(XŶ , X̂Y |U)− |πsim| − h (XΠ4YΠ)

≈ h(X,Y )− |πsim| − h (XΠ4YΠ) , (13)

where the first inequality is by Lemma 8 and the the second by Lemma 9.

We note that the generation of secret keys from data exchange was first proposed in [14] in an amortized,

IID setup and was shown to yield a secret key of asymptotically optimal rate.

From (12) and (13) it follows that

|πsim| & h(X,Y )− h (XΠ4YΠ)− i(X ∧ Y ) = ic(Π;X,Y ),

which is the required lower bound.

Clearly, the steps above are not precise. We have used instantaneous communication and common ran-

domness lengths in our bounds whereas a formal treatment will require us to use worst-case performance

bounds for these quantities. Unfortunately, such worst-case bounds do not yield our desired lower bound

for Dε (π). To fill this gap, we apply the arguments above not for the original distribution PΠXΠYΠXY U

but for the conditional distribution PΠXΠYΠXY U |E where the event E is carefully constructed in such a

manner that the aforementioned worst-case bounds are close to instantaneous bounds for all realizations.

Specifically, E is selected by appropriately slicing the spectrums of the various information densities that

appear in the worst-case bounds.

D. From original to conditional probabilities: A Spectrum slicing argument

To identify an appropriate critical event for conditioning, we take recourse to spectrum slicing. Specif-

ically, we identify an appropriate subset of intersection of slices of spectrums (ii) and (iv) described in

Section III-A. For the combined protocol (πsim, πDE) and the estimates (X̂, Ŷ ) as above, and λ(i)
min, λ

(i)
max,

i = 1, 2, 3, as in Section III-A, let

Esim = {Π = ΠX = ΠY},

EDE = {X̂(X,Y,ΠX ,ΠY) = X, Ŷ (X,Y,ΠX ,ΠY) = Y },
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Eλ = {ic(Π;X,Y ) ≥ λ}

E(1)
i = {λ(1)

min + (i− 1)∆1 ≤ h(X,Y ) ≤ λ(1)
min + i∆1}, 1 ≤ i ≤ N1,

E(3)
j = {λ(3)

min + (j − 1)∆3 ≤ h (XΠ4YΠ) ≤ λ(3)
min + j∆3}, 1 ≤ j ≤ N3,

where

N1 =
λ

(1)
max − λ(1)

min

∆1
and N3 =

λ
(3)
max − λ(3)

min

∆3
.

Note that ∪i E(1)
i = Ec1 and ∪j E(3)

j = Ec3 , where the events E1 and E3 are as in (3). Finally, define the

event Eij as follows:

Eij = Esim ∩ EDE ∩ Eλ ∩ E
(1)
i ∩ E

(3)
j , 1 ≤ i ≤ N1, 1 ≤ j ≤ N3.

The next lemma says that (at least) one of the events Eij has significant probability, and this particular

event will be used as the critical event in our proofs.

Lemma 15. There exists i, j such that

Pr (Eij) ≥
Pr (Eλ)− ε− εtail −N22−ξ

N1N3

def
= α. (14)

Proof. Note that the event Esim ∩ EDE ∩ Ec3 is the same as the event A ∩ B ∩ Ec3 of (11). Therefore,

Pr (Esim ∩ EDE ∩ Eλ ∩ Ec1 ∩ Ec3) ≥ Pr (Eλ) + Pr (Esim ∩ EDE ∩ Ec3) + Pr (Ec1)− 2

≥ Pr (Eλ)− ε− Pr (E2)− Pr (E3)−N22−ξ − Pr (E1)

≥ Pr (Eλ)− ε− εtail −N22−ξ,

where the second inequality uses (11) and and the third uses (3). The proof is completed upon noting

that {Eij}i,j constitutes a partition of Esim ∩ EDE ∩ Eλ ∩ Ec1 ∩ Ec3 with N1N3 parts. �

E. From simulation to secret keys: The formal reduction proof

We are now in a position to complete the proof of our lower bound. For brevity, let E denote the event

Eij of Lemma 15 satisfying Pr (E) ≥ α.

Our proof essentially formalizes the steps outlined in Section V-C, but for the conditional distribution

given E . With an abuse of notation, let Sη(X,Y |Z, E) denote the maximum length of an η-secret key

for two parties observing X and Y , and the eavesdropper’s side information Z, when the distribution

of (X,Y, Z) is given by PXY Z|E . Then, using Lemma 12 with QX = PX and QY = PY , we get the
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following bound in place of (12):

S2η(X,Y |E) ≤ γ − log

(
Pr

({
(x, y) : log

PXY |E (x, y)

PX (x) PY (y)
< γ

} ∣∣∣∣ E)− 3η

)
+

+ 2 log(1/η)

≤ γ − log

(
Pr

({
(x, y) : log

PXY (x, y)

PX (x) PY (y)
< γ + logα

} ∣∣∣∣ E)− 3η

)
+

+ 2 log(1/η),

(15)

where 0 < η < 1/3 is arbitrary and in the previous inequality we have used

PXY |E (x, y|E) ≤ PXY (x, y)

Pr (E)
≤ PXY (x, y)

α
.

To replace (13), note that by Lemma 8

S2η(X,Y |E) ≥ S2η(XΠsimΠDE, YΠsimΠDE|U,Πsim,ΠDE, E)

≥ S2η(XŶ , X̂Y |U,Πsim,ΠDE, E). (16)

Next, note that by (10) the transcript ΠsimΠDE takes no more than 2|πsim|+h(XΠ4YΠ)+∆2+ξ values for

every realization (X,Y ) /∈ E3. However, when the event E = Eij holds, h (XΠ4YΠ) ≤ λ(3)
min + j∆3. It

follows by Lemma 10 that

S2η(XŶ , X̂Y |UΠsimΠDE, E)

≥ Sη(XŶ , X̂Y |U, E)− |πsim| − λ(3)
min − j∆3 −∆2 − ξ − 2 log(1/2η). (17)

Also, since {X = X̂, Y = Ŷ } holds when we condition on E ,

Sη(XŶ , X̂Y |U, E) = Sη(XY,XY |U, E)

≥ Hmin(PXY U |E | U)− 2 log(1/2η), (18)

where the previous inequality is by the leftover hash lemma. Furthermore, by using

PXY U |E(x, y, u) ≤ PXY U (x, y, u)

Pr (E)
≤ PXY U (x, y, u)

α

we can bound Hmin(PXY U |E | U) as follows:

Hmin(PXY U |E | U) ≥ min
x,y,u
− log

PXY U |E (x, y, u)

PU (u)

≥ min
x,y,u
− log

PXY U (x, y, u)1(PXY U |E (x, y, u) > 0)

αPU (u)

September 6, 2018 DRAFT



29

= min
x,y∈E(1)

i

hPXY (x, y) + logα

≥ λ(1)
min + (i− 1)∆1 + logα. (19)

Thus, on combining (16)-(19), we get

S2η(X,Y |E) ≥ [λ
(1)
min + (i− 1)∆1 − λ(3)

min − j∆3 + logα]−∆2 − ξ − 4 log(1/2η)− |πsim|. (20)

To get a matching form of the upper bound (15) for S2η(X,Y |E), note that since16

−icPΠXY
(τ ;x, y) = iPXY (x ∧ y)− hPXY (x, y) + hPΠXY

((x, τ)4− (y, τ)),

and since under E

hPXY (x, y) ≤ λ(1)
min + i∆1,

hPXYΠ
((x, τ)4(y, τ)) ≥ λ(3)

min + (j − 1)∆3,

it holds that

Pr

(
{(x, y) : iPXY (x ∧ y) < γ + logα}

∣∣∣∣ E)
≥ Pr

({
(x, y, τ) : −icPXYΠ

(x, y, τ) < γ − λ(1)
min − i∆1 + λ

(3)
min + (j − 1)∆3 + logα

} ∣∣∣∣ E) .
On choosing

γ = −λ+ λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα,

it follows from (15) that

S2η(X,Y |E)

≤ −λ+ [λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα]− log (Pr (Eλ | E)− 3η)+ + 2 log(1/η)

≤ −λ+ [λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα]− log(1− 3η) + 2 log(1/η), (21)

where the equality holds since Pr (Eλ | E) = 1.

Thus, by (20) and (21), we get

|πsim| ≥ λ+ 2 logα−∆1 −∆2 −∆3 − ξ − 6 log(1/η) + log(1− 3η) + 4

16For clarity, we display the dependence of each information density on the underlying distribution in the remainder of this
section.
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= λ+ 2 log(Pr (Eλ)− ε− εtail − η)− 2 logN1N3 − (∆1 + ∆2 + ∆3)− logN2

− 7 log(1/η) + log(1− 3η) + 4.

where the equality holds for ξ = − log η+ logN2. Note that the maximum value of the right-side above,

when maximized over Ni and ∆i under the constraint Ni∆i = Λi, i = 1, 2, 3, occurs for ∆1 = ∆3 = 2

and ∆2 = 1. Substituting this choice of parameters, we get

|πsim| ≥ λ+ 2 log(Pr (Eλ)− ε− εtail − η)− 2 log Λ1Λ3 − log Λ2 − 7 log(1/η) + log(1− 3η) + 3.

≥ λ− 2 log Λ1Λ3 − log Λ2 − 9 log(1/η) + log(1− 3η) + 3.

where the final inequality holds for every λ such that Pr (Eλ) ≥ ε+ εtail + 2η; Theorem 1 follows upon

maximizing the right side-over all such λ. �

VI. SIMULATION PROTOCOL AND THE UPPER BOUND

In this section, we formally present an ε-simulation of a given interactive protocol π with bounded

rounds. For clarity, we build the simulation protocol in steps.

A. Sending X using one-sided communication

We start with the well-known Slepian-Wolf compression problem [45] where Party 1 wants to transmit

X itself to Party 2 using as few bits as possible. This corresponds to simulating the deterministic protocol

Π = Π1 = X . See Remark 1 in Section II for a discussion on simulation of deterministic protocols.

For encoder, we use a hash function that is randomly chosen from a 2-universal hash family Fl(X );

for decoder, we use a kind of joint typical decoder [12]. Let the typical set TPX|Y be given by

TPX|Y =
{

(x, y) : hPX|Y (x|y) ≤ l − γ
}

(22)

for a slack parameter γ > 0. Our first protocol is given below:

The following result is from [34], [22, Lemma 7.2.1] (see, also, [30]).

Lemma 16 (Performance of Protocol 1). For every γ > 0, the protocol above satisfies

Pr
(
X 6= X̂

)
≤ PXY

(
T cPX|Y

)
+ 2−γ .

Essentially, the result above says that Party 1 can send X to Party 2 with probability of error less than

ε using roughly as many bits as the ε-tail of hPX|Y (X|Y ).
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Protocol 1: Slepian-Wolf compression
Input: Observations X and Y , uniform public randomness Uhash, and a parameter l
Output: Estimate X̂ of X at party 2
Both parties use Uhash to select f from Fl(X )
Party 1 sends Πsim,1 = f(X)
if Party 2 finds a unique x ∈ TPX|Y with hash value f(x) = Πsim,1 then

set X̂ = x
else

protocol declares an error

In fact, the use of the typical set in (22) is not crucial in Protocol 1 and its performance analysis: For a

given measure QXY , we can define another typical set TQX|Y by replacing hPX|Y (x|y) with hQX|Y (x|y)

in (22) even though the underlying distribution of (X,Y ) is PXY . Then, the error probability is bounded

as

Pr
(
X 6= X̂

)
≤ PXY

(
T cQX|Y

)
+ 2−γ ,

which implies that X can be sent by using roughly as many bits as the ε-tail of hQX|Y (X|Y ) under PXY .

This modification simplifies our performance analysis of the more involved protocols in the following

sections.

B. Sending X using interactive communication

Protocol 1 aims at minimizing the worst-case communication length over all realization of (X,Y ).

However, our goal here is to simulate a multiround interactive protocol, and we need not account for the

worst-case communication length in each round. Instead, we shall optimize the worst-case communication

length for the combined interactive protocol. The protocol below is a modification of Protocol 1 and uses

roughly h(X|Y ) bits for transmitting X instead of its ε-tail.

The new protocol proceeds as the previous one but relies on spectrum-slicing to adapt the length of

communication to the specific realization of (X,Y ): It increases the size of the hash output gradually,

starting with λ1 = λmin and increasing the size ∆-bits at a time until either Party 2 decodes X or λmax

bits have been sent. After each transmission, Party 2 sends either an ACK-NACK feedback signal. The

protocol stops when an ACK symbol is received.

Fix an auxiliary distribution QXY . For λmin
QX|Y

, λmax
QX|Y

,∆QX|Y > 0 with λmax
QX|Y

> λmin
QX|Y

, let

NQX|Y =
λmax

QX|Y
− λmin

QX|Y

∆QX|Y

,
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and

λ
(i)
QX|Y

= λmin
QX|Y

+ (i− 1)∆QX|Y , 1 ≤ i ≤ NQX|Y .

Further, let

T (0)
QX|Y

:=
{

(x, y) | hQX|Y (x|y) ≥ λmax
QX|Y

or hQX|Y (x|y) < λmin
QX|Y

}
, (23)

and for 1 ≤ i ≤ NQX|Y , let T (i)
QX|Y

denote the ith slice of the spectrum given by

T (i)
QX|Y

=
{

(x, y) | λ(i)
QX|Y

≤ hQX|Y (x|y) < λ
(i)
QX|Y

+ ∆QX|Y

}
.

Note that T (0)
QX|Y

corresponds to T cQX|Y
in the previous section and will be counted as an error event.

Protocol 2: Interactive Slepian-Wolf compression
Input: Observations X and Y with distribution PXY , uniform public randomness Uhash, auxiliary

distribution QXY , and parameters γ, λmin
QX|Y

, ∆QX|Y , NQX|Y , and l
Output: Estimate X̂ of X at party 2
Both parties use Uhash to select f1 from Fl(X )
Party 1 sends Πsim,1 = f1(X)

if Party 2 finds a unique x ∈ T (1)
QX|Y

with hash value f1(x) = Πsim,1 then
set X̂ = x
send back Πsim,2 = ACK

else
send back Πsim,2 = NACK

while 2 ≤ i ≤ NQX|Y and party 2 did not send an ACK do
Both parties use Uhash to select fi from F∆QX|Y

(X ), independent of f1, ..., fi−1

Party 1 sends Πsim,2i−1 = fi(X)

if Party 2 finds a unique x ∈ T (i)
QX|Y

with hash value fj(x) = Πsim,2j−1, ∀ 1 ≤ j ≤ i then
set X̂ = x
send back Πsim,2i = ACK

else
if More than one such x found then

protocol declares an error
else

send back Πsim,2i = NACK

Reset i→ i+ 1

if No X̂ found at party 2 then
Protocol declares an error

Our protocol is described in Protocol 2. For every (x, y) ∈ T (i)
QX|Y

, 1 ≤ i ≤ NQX|Y , the following

lemma provides a bound on the error.

September 6, 2018 DRAFT



33

Lemma 17 (Performance of Protocol 2). For (x, y) ∈ T (i)
QX|Y

, 1 ≤ i ≤ NQX|Y , denoting by X̂ = X̂(x, y)

the estimate of x at Party 2 at the end of the protocol (with the convention that X̂ = ∅ if an error is

declared), Protocol 2 sends at most (l + (i − 1)∆QX|Y + i) bits and has probability of error bounded

above as follows:

Pr
(
X̂ 6= x | X = x, Y = y

)
≤ i2λ

min
QX|Y

+∆QX|Y −l.

Proof: Since (x, y) ∈ T (i)
QX|Y

, an error occurs if there exists a x̂ 6= x such that (x̂, y) ∈ T (j)
QX|Y

and

Πsim,2k−1 = f2k−1(x̂) for 1 ≤ k ≤ j for some j ≤ i. Therefore, the probability of error is bounded

above as

Pr
(
X̂ 6= x | X = x, Y = y

)
≤

i∑
j=1

∑
x̂ 6=x

Pr (f2k−1(x) = f2k−1(x̂), ∀ 1 ≤ k ≤ j)1
(

(x̂, y) ∈ T (j)
QX|Y

)

≤
i∑

j=1

∑
x̂ 6=x

1

2l+(j−1)∆QX|Y
1

(
(x̂, y) ∈ T (j)

QX|Y

)

=

i∑
j=1

∑
x̂ 6=x

1

2l+(j−1)∆QX|Y

∣∣∣{x̂ | (x̂, y) ∈ T (j)
QX|Y

}∣∣∣
≤ i2λ

min
QX|Y

+∆QX|Y −l,

where the first inequality follows from the union bound, the second inequality follows from the property

of 2-universal hash family, and the third inequality follows from the fact that

|{x̂ | (x̂, y) ∈ T (j)
QX|Y
}| ≤ 2

λ
(j)
QX|Y

+∆QX|Y .

Note that the protocol sends l bits in the first transmission, and ∆QX|Y bits and 1-bit feedback in every

subsequence transmission. Therefore, no more than (l + (i− 1)∆QX|Y + i) bits are sent.

Corollary 18. Protocol 2 with l = λmin
QX|Y

+∆QX|Y +γ sends at most (hQX|Y (X|Y )+∆QX|Y +γ+NQX|Y )

bits when the observations are17 (X,Y ) /∈ T (0)
QX|Y

, and has probability of error less than

Pr
(
X̂ 6= X

)
≤ Pr

(
(X,Y ) ∈ T (0)

QX|Y

)
+NQX|Y 2−γ .

C. Simulation of Π1 using interactive communication

We now proceed to simulating the first round of our given interactive protocol π. Note that using

Protocol 2, we can send Π1 using roughly h(Π1|Y ) bits. This protocol uses a public randomness Uhash

17 When hQX|Y (X|Y ) < λmin
QX|Y

, Protocol 2 may transmit more than (hQX|Y (X|Y ) + ∆QX|Y + γ +NQX|Y ) bits.
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only to choose hash functions, which is convenient for our probability of error analysis, and can be easily

derandomized. We now present a scheme which uses another independent portion of public randomness

Usim to reduce the rate of the communication further. However, the scheme will only allow the parties

to simulate Π1 (rather than recover it with small probability of error) and cannot be derandomized.

Specifically, our next protocol uses X and U = (Uhash, Usim) to simulate Π1 in such a manner that

Usim can be treated, in effect, as a portion of the communication used in Protocol 2. Note that since

Usim is independent of (X,Y ), the portion of communication which is equivalent to Usim must as well

be almost independent of (X,Y ). Such a portion can be guaranteed by noting that the communication

used in Protocol 2 is simply a random hash of Π1 drawn from a 2-universal family, and therefore, its

appropriately small portion can have the desired independence property by the leftover hash lemma. In

fact, since the Markov condition Π1−◦−X −◦−Y holds, it suffices guarantee the independent of X instead

of (X,Y ).

Protocol 3: Simulation of Π1

Input: Observations X and Y with distribution PXY , uniform public randomness
U = (Uhash, Usim), auxiliary distribution QΠ1Y , and parameters γ, λmin

QΠ1|Y
, ∆QΠ1|Y

, NQΠ1|Y

and k
Output: Estimates Π1X and Π1Y of Π1

1. Two parties share k random bits Usim and an h chosen from Hk(supp(Π1)) using Uhash

2. Party 1 generates a sample Π1X using PΠ1|Xf(Π1) (·|X,Usim)
3. Parties use Protocol 2 with auxiliary distribution QΠ1Y , and parameters γ, λmin

QΠ1|Y
, ∆QΠ1|Y

,
NQΠ1|Y

, and l = λmin
QΠ1|Y

+ ∆QΠ1|Y
+ γ to send Π1X to Party 2 by treating Usim as the first k bits of

communication obtained via the hash function f

Our simulation protocol is described in Protocol 3. Let the quantities such as λmin
QΠ1|Y

,∆QΠ1|Y
, and

NQΠ1|Y
be defined analogously to the corresponding quantities in Section VI-B with Π1 replacing X .

The following lemma provides a bound on the simulation error for Protocol 3.

Lemma 19 (Performance of Protocol 3). Protocol 3 sends at most

(
hQΠ1|Y

(Π1X |Y ) + ∆QΠ1|Y
+NQΠ1|Y

+ γ − k
)

+

bits when (Π1X , Y ) /∈ T (0)
QΠ1|Y

, and has simulation error

dvar (PΠ1XΠ1YXY ,PΠ1Π1XY ) ≤ Pr
(

(Π1, Y ) ∈ T (0)
QΠ1|Y

)
+NQΠ1|Y

2−γ +
1

2

√
2k−Hmin(PΠ1X

|QX)

for any auxiliary distribution QX on X .
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Proof: Consider the following simple protocol for simulating Π1 at Party 2:

1) Party 1 generates a sample Π1 using PΠ1|X (·|X).

2) Both parties use Protocol 2 with auxiliary distribution QΠ1Y , and parameters γ, λmin
QΠ1|Y

, ∆QΠ1|Y
,

NQΠ1|Y
, and l = λmin

QΠ1|Y
+ ∆QΠ1|Y

+ γ to generate an estimate Π̂1 of Π1 at Party 2.

In this protocol, lwst = λmin
QΠ1|Y

+NQΠ1|Y
∆QΠ1|Y

+γ bits of hash values will be sent for the worst (Π1, Y ).

We divide these lwst hash values into two parts, the fist k bits and the last lwst − k bits; let f and f ′,

respectively, denote the hash function producing the first and the second parts. Protocol 3 replaces, in

effect, f with shared randomness Usim for an appropriately chosen value of k.

Note that the joint distribution of the random variables involved in the simple protocol above satisfies18

Pf(Π1)f ′(Π1)Π1Π̂1XY
(v, v′, τ, τ̂ , x, y)

= Pf(Π1)X(v, x)PΠ1|Xf(Π1)(τ |x, v)Pf ′(Π1)|Π1
(v′|τ)PY |X(y|x)PΠ̂1|f(Π1)f ′(Π1)Π1XY

(τ̂ |v, v′, τ, x, y).

(24)

Note that the simple protocol above is deterministic and therefore by Remark 1

dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
= Pr

(
Π1 6= Π̂1

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

QΠ1|Y

)
+NQΠ1|Y

2−γ , (25)

where the inequality is by Corollary 18.

On the other hand, the joint distribution of random variables involved in Protocol 3 can be factorized

as

PUsimf ′(Π1X )Π1XΠ1YXY (u, u′, τ, τ̂ , x, y)

= PUsim
(u)PX(x)PΠ1|Xf(Π1)(τ |x, u)Pf ′(Π1)|Π1

(u′|τ)PY |X(y|x)PΠ̂1|f(Π1)f ′(Π1)Π1XY
(τ̂ |u, u′, τ, x, y).

(26)

Therefore, the simulation error for Protocol 3 is bounded as

dvar (PΠ1XΠ1YXY ,PΠ1Π1XY )

≤ dvar
(
PUsimf ′(Π1)Π1XΠ1YXY ,Pf(Π1)f ′(Π1)Π1Π1XY

)
≤ dvar

(
PUsimf ′(Π1)Π1XΠ1YXY ,Pf(Π1)f ′(Π1)Π1Π̂1XY

)
+ dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
= dvar

(
PUsim

PX ,Pf(Π1)X

)
+ dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
18When the protocol terminate before NQΠ1|Y

th round, a part of (f(Π1), f ′(Π1)) may not be sent.
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≤ dvar
(
PUsim

PX ,Pf(Π1)X

)
+ Pr

(
(Π1, Y ) ∈ T (0)

QΠ1|Y

)
+NQΠ1|Y

2−γ ,

where the first inequality is by the monotonicity of dvar (·, ·), the second inequality is by the triangular

inequality, the equality is by the fact that replacing PUsim
PX with Pf(Π1)X is the only difference between

the factorizations in (26) and (24), and the final inequality is by (25). The desired bound on simulation

error for Protocol 3 follows by using Lemma 9 to get

dvar
(
PUsim

PX ,Pf(Π1)X

)
≤ 1

2

√
2k−Hmin(PΠ1X |QX).

Since Protocol 3 uses shared randomness Usim instead of sending f(Π1), it communicates k fewer bits

in comparison with the simple protocol above, which completes the proof.

D. Improved simulation of Π1

In Protocol 3 we were able to reduce the communication by roughly Hmin(PΠ1X |QX) bits by simulating

a Π1 such that if we use Protocol 2 for sending Π1 to Party 2, a portion of the required communication

can be treated as shared public randomness. However, this is the least reduction in communication we can

obtain in the worst-case. In this section, we slice the spectrum of hPΠ1|X
(Π1|X) to obtain an instantaneous

reduction of roughly hPΠ1|X
(Π1|X) bits.

Denote by J a random variable which takes the value j ∈ {0, 1, . . . , NPΠ1|X
} if (Π1, X) ∈ T (j)

PΠ1|X
. In

our modified protocol, Party 1 first samples J and sends it to Party 2. Then, they proceed with Protocol 3

for PΠ1XY |J=j by selecting k to be less than Hmin(PΠ1X|J=j |QX) for an appropriately chosen QX . Let

Jg be the set of ”good” indices j > 0 with

PJ (j) ≥ 1

N2
PΠ1|X

;

it holds that

PJ
(
J cg
)
< Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+

1

NPΠ1|X

.

Note that for j ∈ Jg, with QX = PX , we have

Hmin(PΠ1X|J=j |PX) = min
τ,x
− log

PΠ1X|J (τ, x|j)
PX (x)

= min
τ,x
− log

PΠ1|X (τ |x)

PJ (j)

≥ λmin
PΠ1|X

+ (j − 1)∆PΠ1|X
− 2 logNPΠ1|X

.
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Protocol 4: Improved simulation of Π1

Input: Observations X and Y with distribution PXY , uniform public randomness
U = (Uhash, Usim), and parameters λmin

PΠ1|Y
, ∆PΠ1|Y

, NPΠ1|Y
, λmin

PΠ1|X
, ∆PΠ1|X

, NPΠ1|X
, and γ

Output: Estimates Π1X and Π1Y of Π1

Party 1 generate J ∼ PJ |X(·|X), and send it to Party 2.
if J = j ∈ Jg then

Parties use Protocol 3 with auxiliary distribution PΠ1Y , parameters γ, λmin
PΠ1|Y

, ∆PΠ1|Y
, NPΠ1|Y

,
and k = λmin

PΠ1|X
+ (j − 1)∆PΠ1|X

− 2 logNPΠ1|X
− 2γ + 2 to simulate Π1X and Π1Y for the

distribution PΠ1XY |J=j

else
protocol declares an error

Our modified simulation protocol is described in Protocol 4. The following lemma provides a bound

on the simulation error.

Lemma 20 (Performance of Protocol 4). Protocol 4 sends at most

(
hPΠ1|Y

(Π1X |Y )− hPΠ1|X
(Π1X |X) +NPΠ1|Y

+ 3 logNPΠ1|X
+ ∆PΠ1|Y

+ ∆PΠ1|X
+ 3γ

)
+

bits when (Π1X , Y ) /∈ T (0)
PΠ1|Y

, and has simulation error

dvar (PΠ1XΠ1YXY ,PΠ1Π1XY )

≤ Pr
(

(Π1, Y ) ∈ T (0)
PΠ1|Y

)
+ Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+
(
NPΠ1|Y

+ 1
)

2−γ +
1

NPΠ1|X

.

Proof: First, we have

dvar (PΠ1XΠ1YXY ,PΠ1Π1XY )

≤ dvar (PΠ1XΠ1YXY J ,PΠ1Π1XY J)

=
∑
j

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j ,PΠ1Π1XY |J=j

)
≤
∑
j∈Jg

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j ,PΠ1Π1XY |J=j

)
+ PJ

(
J cg
)

≤
∑
j∈Jg

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j ,PΠ1Π1XY |J=j

)
+ Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+

1

NPΠ1|X

.

Then, we apply Lemma 19 with QX = PX for each j ∈ Jg, and get

dvar
(
PΠ1XΠ1YXY |J=j ,PΠ1Π1XY |J=j

)
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≤ Pr
(

(Π1, Y ) ∈ T (0)
PΠ1|Y

| J = j
)

+NPΠ1|Y
2−γ +

1

2

√
2k−Hmin(PΠ1X|J=j |PX)

≤ Pr
(

(Π1, Y ) ∈ T (0)
PΠ1|Y

| J = j
)

+
(
NPΠ1|Y

+ 1
)

2−γ . (27)

Thus, we have the desired bound on simulation error.

Next, we prove the claimed bound on the number of bits sent by the protocol. By Lemma 19, the fact

that J can be sent by using at most logNPΠ1|X
+ 1 bits and the choice of k in Protocol 4, for J = j the

protocol above communicates at most

hQΠ1|Y
(Π1X |Y ) + ∆QΠ1|Y

+NQΠ1|Y
+ γ + logNPΠ1|X

+ 2− k

≤ hQΠ1|Y
(Π1X |Y )− λmin

PΠ1|X
− (j − 1)∆PΠ1|X

+ ∆QΠ1|Y
+NQΠ1|Y

+ 3 logNPΠ1|X
+ 3γ.

≤ hQΠ1|Y
(Π1X |Y )− hPΠ1|X

(Π1X |X) + ∆PΠ1|X
+ ∆QΠ1|Y

+NQΠ1|Y
+ 3 logNPΠ1|X

+ 3γ,

where the previous inequality holds since for Π1X generated by PΠ1|Xf(Π1)J(·|X,Usim, j)

λmin
PΠ1|X

+ j∆PΠ1|X
≥ hPΠ1|X

(Π1X |X),

for each j ∈ Jg.

E. Simulation of Π

We are now in a position to describe our complete simulation protocol. Consider an interactive protocol

π with maximum number of rounds rmax = d < ∞. We simply apply Protocol 4 for each round Πt of

Π. Our overall simulation protocol is described in Protocol 5. In each round we use Protocol 4 assuming

that the simulation up to the previous round has succeeded, where, for the rounds with even numbers,

we use Protocol 4 by interchanging the role of Party 1 and Party 2.

Protocol 5: Simulation of Π
Input: Observations X and Y with distribution PXY , uniform public randomness

U = (Ut,hash, Ut,sim : t = 1, . . . , d), and parameters λmin
PΠt|XΠt−1

, ∆PΠt|XΠt−1 , NPΠt|XΠt−1 ,
λmin

PΠt|YΠt−1
, ∆PΠt|YΠt−1 , NPΠt|YΠt−1 for t = 1, . . . , d and γ.

Output: Estimates ΠX and ΠY of Π
while Total communication is less than lmax bits, and simulation not ended do

Party 1 and Party 2, respectively, use estimates Πt−1
X and Πt−1

Y for Πt−1 ;
Parties use Protocol 4 for simulating PΠt(XΠt−1)(YΠt−1) with parameters λmin

PΠt|XΠt−1
, ∆PΠt|XΠt−1 ,

NPΠt|XΠt−1 , λmin
PΠt|YΠt−1

, ∆PΠt|YΠt−1 , NPΠt|YΠt−1 and γ ;
Update t→ t+ 1

if Total communication exceeds lmax bits then
Declare an error

September 6, 2018 DRAFT



39

The following lemma provides a bound on the simulation error.

Lemma 21 (Performance of Protocol 5). Protocol 5 sends at most lmax bits, and has simulation error

dvar (PΠXΠYXY ,PΠΠXY )

≤ Pr

(
ic(Π;X,Y ) +

d∑
t=1

δt > lmax

)

+

d∑
t=1

[
4Pr

(
(Πt, (Y,Π

t−1)) ∈ T (0)
PΠt|YΠt−1

)
+ 4Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
+ 3

(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

3

NPΠt|XΠt−1

+
3

NPΠt|YΠt−1

]
,

where

δt =

 NPΠt|YΠt−1 + 3 logNPΠt|XΠt−1 + ∆PΠt|YΠt−1 + ∆PΠt|XΠt−1 + 3γ odd t

NPΠt|XΠt−1 + 3 logNPΠt|YΠt−1 + ∆PΠt|XΠt−1 + ∆PΠt|YΠt−1 + 3γ even t
. (28)

Remark 5. The fudge parameters ε′ and λ′ are given by

ε′ =

d∑
t=1

[
4Pr

(
(Πt, (Y,Π

t−1)) ∈ T (0)
PΠt|YΠt−1

)
+ 4Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
+ 3

(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

3

NPΠt|XΠt−1

+
3

NPΠt|YΠt−1

]
,

λ′ =

d∑
t=1

δt,

where δt is given by (28).

Proof: Consider a virtual protocol which does not terminate even if the total number of bits exceed

lmax. Denote the output of this protocol by Π̄X = (Π̄1X , . . . , Π̄dX ) and Π̄Y = (Π̄1Y , . . . , Π̄dY). We have

dvar (PΠXΠYXY ,PΠΠXY )

≤ dvar
(
PΠXΠYXY ,PΠ̄X Π̄YXY

)
+ dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
≤ Pr

(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
+ dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
. (29)

First, we bound the second term of (29). By using triangular inequality repeatedly and by using Lemma

20, we have

dvar
(
PΠ̄X Π̄YXY ,PΠΠXY

)
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≤ dvar
(

PΠ̄1X Π̄1Y ···Π̄(d−1)X Π̄(d−1)YΠ̄dX Π̄dYXY ,PΠ1Π1···Π(d−1)Π(d−1)Π̄dX Π̄dYXY

)
+ dvar

(
PΠ1Π1···Π(d−1)Π(d−1)Π̄dX Π̄dYXY ,PΠ1Π1···Π(d−1)Π(d−1)ΠdΠdXY

)
= dvar

(
PΠ̄1X Π̄1Y ···Π̄(d−1)X Π̄(d−1)YXY ,PΠ1Π1···Π(d−1)Π(d−1)XY

)
+ dvar

(
PΠ̄dX Π̄dY(XΠd−1)(YΠd−1),PΠdΠd(XΠd−1)(YΠd−1)

)
=

...

=

d∑
t=1

dvar

(
PΠ̄tX Π̄tY(XΠt−1)(YΠt−1),PΠtΠt(XΠt−1)(YΠt−1)

)
≤
∑
t:odd

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+
(
NPΠt|YΠt−1 + 1

)
2−γ +

1

NPΠt|XΠt−1

]
+
∑
t:even

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+
(
NPΠt|XΠt−1 + 1

)
2−γ +

1

NPΠt|YΠt−1

]

≤
d∑
t=1

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
+
(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

1

NPΠt|XΠt−1

+
1

NPΠt|YΠt−1

]
. (30)

Denote

l(X,Y, Π̄X , Π̄Y) :=
∑
t:odd

hPΠt|YΠt−1 (Π̄tX |Y, Π̄t−1
Y )− hPΠt|XΠt−1 (Π̄tX |X, Π̄t−1

X )

+
∑
t:even

hPΠt|XΠt−1 (Π̄tY |X, Π̄t−1
X )− hPΠt|YΠt−1 (Π̄tY |Y, Π̄t−1

Y ).

Since (ΠX ,ΠY) coincides with (Π̄X , Π̄Y) when the accumulated message length of the protocol generat-

ing (Π̄X , Π̄Y) does not exceed lmax, and since the message length of each round is bounded by each term

of l(X,Y, Π̄X , Π̄Y) plus δt by Lemma 20 unless (Π̄tX , (Y, Π̄
t−1
Y )) ∈ T (0)

PΠt|YΠt−1
or (Π̄tY , (X, Π̄

t−1
X )) ∈

T (0)
PΠt|XΠt−1

, we have

Pr
(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
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≤ Pr

(
l(X,Y, Π̄X , Π̄Y) +

d∑
t=1

δt > lmax

)

+ Pr

(⋃
t:odd

(Π̄tX , (Y, Π̄
t−1
Y )) ∈ T (0)

PΠt|YΠt−1
or

⋃
t:even

(Π̄tY , (X, Π̄
t−1
X )) ∈ T (0)

PΠt|XΠt−1

)
(31)

Since

Pr
(
(X,Y, Π̄X , Π̄Y) ∈ E

)
≤ Pr ((X,Y,Π,Π) ∈ E) + dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
for any event E , it follows from (31) that

Pr
(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
≤ Pr

(
l(X,Y,Π,Π) +

d∑
t=1

δt > lmax

)

+ Pr

(⋃
t:odd

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1
or

⋃
t:even

(Πt, (X,Π
t−1)) ∈ T (0)

PΠt|XΠt−1

)

+ 2dvar
(
PΠ̄X Π̄YXY ,PΠΠXY

)
≤ Pr

(
l(X,Y,Π,Π) +

d∑
t=1

δt > lmax

)

+

d∑
t=1

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+ 2dvar

(
PΠ̄X Π̄YXY ,PΠΠXY

)
.

(32)

Thus, by combining this bound with (29) and (30), and by noting

l(X,Y,Π,Π) = ic(Π;X,Y ),

we have the desired bound on simulation error.

VII. ASYMPTOTIC OPTIMALITY

We now present the proofs of Theorem 3 and Theorem 7. Both the proofs rely on carefully choosing

the slice-sizes in the lower and upper bounds.
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A. Proof of Theorem 3

We start with the upper bound. Note that, for IID random variables (Πn, Xn, Y n), the spectrums of

h(Πn
t |Zn, (Πt−1)n) for19 Z = X or Y have width O(

√
n). Therefore, the parameters ∆s and Ns that

appear in the fudge parameters can be chosen as O(n1/4). Specifically, by standard measure concentration

bounds (for bounded random variables), for every ν > 0, there exists a constant20 c > 0 such that with

λmin
PΠnt |Z

n(Πt−1)n
= nH(Πt|Z,Πt−1)− c

√
n,

λmax
PΠnt |Z

n(Πt−1)n
= nH(Πt|Z,Πt−1) + c

√
n,

the following bound holds:

Pr
(

(Πn
t , (Z

n, (Πt−1)n)) ∈ T (0)
PΠnt |Z

n(Πt−1)n

)
≤ ν. (33)

Let T denote the third central moment of the random variable ic(Π;X,Y ). For

λn = nIC(π) +
√
nV(π)Q−1

(
ε− 9dν − T 3

2V(π)3/2
√
n

)
,

choosing ∆PΠnt |Z
n(Πt−1)n

= NPΠnt |Z
n(Πt−1)n

= γ =
√

2cn1/4, and lmax = λn +
∑d

t=1 δt in Theorem 2 (for

the definition of the fudge parameters, see Remark 5), we get a protocol of length lmax and satisfying

dvar
(
PΠnXΠnYX

nY n ,PΠnΠnXnY n
)
≤ Pr

(
n∑
i=1

ic(Πi;Xi, Yi) > λn

)
+ 9dν

for sufficiently large n. By its definition given in (28), δt = O(n1/4) for the choice of parameters above.

Thus, the Berry-Esséen theorem (cf. [18]) and the observation above gives a protocol of length lmax

attaining ε-simulation. Therefore, using the Taylor approximation of Q(·) yields the achievability of the

claimed protocol length.

For the lower bound, we fix sufficiently small constant δ > 0, and we set λ(1)
min = n(H(X,Y ) − δ),

λ
(1)
max = n(H(X,Y )+δ), λ(2)

min = n(H(X|Y,Π)−δ), λ(2)
max = n(H(X|Y,Π)+δ), λ(3)

min = n(H(XΠ4YΠ)−

δ), λ(3)
max = n(H(XΠ4YΠ) + δ), respectively. Then, by standard measure concentration bounds imply

that the tail probability εtail in (3) is bounded above by c
n for some constant c > 0. We also set η = 1

n .

19We use this notation throughout this section to avoid repetition.
20Although the constant depends on random variables appearing in each round, since the number of rounds is bounded, we

take the maximum constant so that (33) holds for every t.
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For these choices of parameters, we note that the fudge parameter is λ′ = O(log n). Thus, by setting

λ = λn = nIC(π) +
√
nV(π)Q−1

(
ε+

c+ 2

n
+

T 3

2V(π)3/2
√
n

)
= nIC(π) +

√
nV(π)Q−1(ε) +O(log n),

where the final equality is by the Tailor approximation, an application of the Berry-Esséen theorem to

the bound in (2) gives the desired lower bound on the protocol length. �

B. Proof of Theorem 5

Theorem 1 implies that if a protocol πsim is such that

log |πsim| < λ− λ′, (34)

then its simulation error must be larger than

Pr (ic (Πn;Xn, Y n) > λ)− ε′. (35)

To compute fudge parameters, we set λ(1)
min = n(H(X,Y ) − δ), λ(1)

max = n(H(X,Y ) + δ), λ(2)
min =

n(H(X|Y,Π)−δ), λ(2)
max = n(H(X|Y,Π)+δ), λ(3)

min = n(H(XΠ4YΠ)−δ), λ(3)
max = n(H(XΠ4YΠ)+

δ), respectively. By the Chernoff bound, there exists E1 > 0 such that

εtail ≤ 2−E1n.

Furthermore, Λi = O(n) for i = 1, 2, 3. We set η = 2−
δ

27
n. It follows that

ε′ ≤ 2−E1n + 2−
δ

27
n (36)

and

λ′ ≤ δ

3
n+O(log n). (37)

Finally, upon setting

λ = nIC(π)− δ

3
(38)

and applying the Chernoff bound once more, we obtain a constant E2 > 0 such that

Pr (ic (Πn;Xn, Y n) > λ) ≥ 1− 2−E2n. (39)
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The result follows upon combining (34)-(39). �

C. Proof of Theorem 7

For a sequence of protocols π = {πn}∞n=1 and a sequence of observations (X,Y) = {(Xn, Yn)}∞n=1,

let

H(Πt|Z,Πt−1) = sup
{
α : lim

n→∞
Pr
(
h(Πn,t|ZnΠt−1

n ) < α
)

= 0
}
, (40)

H(Πt|Z,Πt−1) = inf
{
α : lim

n→∞
Pr
(
h(Πn,t|ZnΠt−1

n ) > α
)

= 0
}
, (41)

where Z = X or Y, Πt = {Πn,t}∞n=1 and Πt−1
n = {Πt−1

n }∞n=1 are sequences of transcripts of tth round

and up to tth rounds, respectively. For achievability part, we fix arbitrary small δ > 0, and set

λmin
P

Πn,t|ZnΠ
t−1
n

= n
(
H(Πt|Z,Πt−1)− δ

)
,

λmax
P

Πn,t|ZnΠ
t−1
n

= n
(
H(Πt|Z,Πt−1) + δ

)
,

∆P
Πn,t|ZnΠ

t−1
n

= NP
Πn,t|ZnΠ

t−1
n

= γ =
√

2δn. We set

lmax = n
(
IC(π) + δ

)
+

d∑
t=1

δt

= n
(
IC(π) + δ

)
+O(

√
n),

where δt is given by (28). Then, by Theorem 2, by the definition of IC(π) and by (40) and (41), there

exists a simulation protocol of length lmax with vanishing simulation error. Since δ > 0 is arbitrary, we

have the desired achievability bound.

For converse part, we fix arbitrary δ > 0, and set λ(1)
min = n(H(X,Y)− δ), λ(1)

max = n(H(X,Y) + δ),

λ
(2)
min = n(H(X|Y,Π) − δ), λ(2)

max = n(H(X|Y,Π) + δ), λ(3)
min = n(H(XΠ4YΠ) − δ), λ(3)

max =

n(H(XΠ4YΠ) + δ), respectively, where

H(X,Y) = sup
{
α : lim

n→∞
Pr (h(XnYn) < α) = 0

}
,

H(X,Y) = inf
{
α : lim

n→∞
Pr (h(XnYn) > α) = 0

}
,

H(X|Y,Π) = sup {α : Pr (h(Xn|YnΠn) < α) = 0} ,

H(X|Y,Π) = inf {α : Pr (h(Xn|YnΠn) > α) = 0} ,

H(XΠ4YΠ) = sup {α : Pr (−h(XnΠn4YnΠn) < α) = 0} ,

H(XΠ4YΠ) = inf {α : Pr (−h(XnΠn4YnΠn) > α) = 0} .

September 6, 2018 DRAFT



45

Then, by the definitions, we find that the tail probability εtail in (3) converges to 0. We also set η = (1/n).

For these choices of parameters, we note that the fudge parameter is λ′ = O(log n). Thus, by using the

bound in (2) for

λ = λn = n
(
IC(π) + δ

)
, (42)

and by taking δ → 0, we have the desired converse bound. �

VIII. CONCLUSION

We have proposed a common randomness decomposition based approach (cf. [48]) to derive a lower

bound on communication complexity of protocol simulation by relating the protocol simulation problem

to the secret key agreement. A key step in our approach is identifying the amount of common randomness

generated through protocol simulation. Our estimate for the amount of common randomness does not

rely on the structure of the function to be computed. This is contrast to most of the existing lower bounds

on communication complexity for function computation, such as the partition bound or the discrepancy

bound, where the structure of the computed function plays an important role. In particular, a comparison

of our approach with other existing approaches for specific functions is not available. An important future

research agenda for us is to incorporate the structure of functions in our bound; the case of functions

with a small range such as Boolean functions is of particular interest.

APPENDIX

To illustrate the utility of our lower bound, we consider a protocol π which takes very few values most

of the time, but with very small probability it can send many different transcripts. The proposed protocol

can be ε-simulated using very few bits of communication on average. But in the worst-case it requires as

many bits of communication for ε-simulation as needed for data exchange, for all ε > 0 small enough.

Specifically, let X = Y = {1, . . . , 2n} and let π be a deterministic protocol such that the transcript

τ(x, y) for (x, y) is given by

τ(x, y) =



a if x > δ2n, y > δ2n

b if x > δ2n, y ≤ δ2n

c if x ≤ δ2n, y > δ2n

(x, y) if x ≤ δ2n, y ≤ δ2n

for some small δ > 0, which will be specified later. Clearly, this protocol is interactive.
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Let (X,Y ) be the uniform random variables on X × Y . Then,

Pr (Π /∈ {a, b, c}) = δ2.

Since

PΠ|X(τ(x, y)|x) =



1− δ if x > δ2n, y > δ2n

δ if x > δ2n, y ≤ δ2n

1− δ if x ≤ δ2n, y > δ2n

1
2n if x ≤ δ2n, y ≤ δ2n

and similarly for PΠ|Y (τ(x, y)|y), we have

ic(τ(x, y);x, y) =



2 log(1/(1− δ)) if x > δ2n, y > δ2n

log(1/δ) + log(1/(1− δ)) if x > δ2n, y ≤ δ2n

log(1/δ) + log(1/(1− δ)) if x ≤ δ2n, y > δ2n

2n if x ≤ δ2n, y ≤ δ2n

.

Consider δ = 1
n , and ε = 1

n3 . Note that for any λ < 2n,

Pr (ic(Π;X,Y ) > λ) ≥ Pr (Π{a, b, c}) = δ2 =
1

n2
> ε,

and

Pr (ic(Π;X,Y ) > 2n) = 0.

Thus, the ε-tail of information complexity density λε = sup{λ : Pr (ic(Π;X,Y ) > λ) > ε} is given by

λε = 2n. (43)

On the other hand, we have

IC(π) = H(Π|X) +H(Π|Y )

≤ 2δ[hb(δ) + log n− log(1/δ)] + 2(1− δ)hb(δ)

≤ Õ(δ2)

where hb(·) is the binary entropy function.

Also, to evaluate the lower bound of Theorem 1, we bound the fudge parameters in that bound. To that

end, we fix εtail = 0 and bound the spectrum lengths Λ1,Λ2,Λ3. Since (X,Y ) is uniform, h(X,Y ) = 2n
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and so, Λ1 = 0. Also, note that with probability 1 the conditional entropy density h(X|Π, Y ) is either 0

or log(δ2n), which implies Λ2 = O(n). A similar argument shows that Λ3 = O(n). Therefore, the fudge

parameter

λ′ = O(log Λ1Λ2Λ3) = O(log n),

which in view of (43) and Theorem 1 gives Dε (π) = Ω(2n). �

Lemma. Consider random variables X,Y, Z and V taking values in countable sets X , Y , Z , and a

finite set V , respectively. Then, for every 0 < ε < 1/2,

S2ε(X,Y |ZV ) ≥ Sε(X,Y |Z)− log |V| − 2 log(1/2ε).

Proof. Consider random variables K ′X and K ′Y with a common range K′ such that (K ′X ,K
′
Y) constitutes

an ε-secret key for X and Y given eavesdropper’s observation Z, recoverable using an interactive protocol

π′. Let QK′XK
′
YΠ′ZV denote the distribution P

′(2)
unifPΠ′ZV , where P

′(2)
unif denotes the distribution

P
′(2)
unif(kX , kY) =

1(kX = kY)

|K′|
, ∀ kY , kY ∈ K′.

Then, by definition of an ε-secret key, it holds that

dvar
(
PK′XK′YΠ′Z ,QK′XK

′
YΠ′Z

)
≤ ε. (44)

Note that Hmin(QK′XΠ′Z | Π′Z) ≥ log |K′|. Therefore, by Lemma 9 there exists a function KX = K(K ′X )

taking values in a set K with log |K| ≥ log |K′| − log |V| − 2 log(1/2ε) such that

dvar (QKXΠ′ZV ,PunifQΠ′ZV ) ≤ ε, (45)

where Punif denotes the uniform distribution on the set K. Upon letting KY = K(K ′Y) and defining

P
(2)
unif analogously to P

′(2)
unif with K in place of K′, we have

dvar

(
PKXKYΠ′ZV ,P

(2)
unifPΠ′ZV

)
≤ dvar

(
QKXKYΠ′ZV ,P

(2)
unifPΠ′ZV

)
+ ε

= dvar (QKΠ′ZV ,PunifPΠ′ZV ) + ε

≤ 2ε,

where the first inequality is by (44) and the second by (45), and the equality is by the definition of Q.

Therefore, (KX ,KY) constitutes a 2ε-secret key of length log |K′| − log |V| − 2 log(1/2ε) for X and Y

given eavesdropper’s observation (Z, V ). The claimed bound follows since K ′ was an arbitrary secret
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key for X and Y given eavesdropper’s observation Z. �
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