
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Satisfiability on Mixed Instances

Citation for published version:
Chen, R & Santhanam, R 2016, Satisfiability on Mixed Instances. in Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science. ACM, New York, NY, USA, pp. 393-402, 2016
ACM Conference on Innovations in Theoretical Computer Science, Cambridge, Massachusetts, United
States, 14/01/16. https://doi.org/10.1145/2840728.2840768

Digital Object Identifier (DOI):
10.1145/2840728.2840768

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 08. May. 2024

https://doi.org/10.1145/2840728.2840768
https://doi.org/10.1145/2840728.2840768
https://www.research.ed.ac.uk/en/publications/3ab11cb6-3091-4317-9107-eb422219b338


Satisfiability on Mixed Instances

Ruiwen Chen∗ Rahul Santhanam†

November 26, 2015

Abstract

The study of the worst-case complexity of the Boolean Satisfiability (SAT) problem has seen
considerable progress in recent years, for various types of instances including CNFs [16, 15, 20,
21], Boolean formulas [18] and constant-depth circuits [6]. We systematically investigate the
complexity of solving mixed instances, where different parts of the instance come from different
types. Our investigation is motivated partly by practical contexts such as SMT (Satisfiability
Modulo Theories) solving, and partly by theoretical issues such as the exact complexity of graph
problems and the desire to find a unifying framework for known satisfiability algorithms.

We investigate two kinds of mixing: conjunctive mixing, where the mixed instance is formed
by taking the conjunction of pure instances of different types, and compositional mixing, where
the mixed instance is formed by the composition of different kinds of circuits. For conjunctive
mixing, we show that non-trivial savings over brute force search can be obtained for a number
of instance types in a generic way using the paradigm of subcube partitioning. We apply this
generic result to show a meta-algorithmic result about graph optimisation problems: any opti-
misation problem that can be formalised in Monadic SNP can be solved exactly with exponential
savings over brute-force search. This captures known results about problems such as Clique,
Independent Set and Vertex Cover, in a uniform way. For certain kinds of conjunctive mixing,
such as mixtures of k-CNFs and CNFs of bounded size, and of k-CNFs and Boolean formulas,
we obtain improved savings over subcube partitioning by combining existing algorithmic ideas
in a more fine-grained way.

We use the perspective of compositional mixing to show the first non-trivial algorithm for
satisfiability of quantified Boolean formulas, where there is no depth restriction on the formula.
We show that there is an algorithm which for any such formula with a constant number of

quantifier blocks and of size nc, where c < 5/4, solves satisfiability in time 2n−nΩ(1)

.

1 Introduction

Boolean Satisfiability (SAT) is the canonical NP-complete problem. Much effort has gone into
designing and analyzing exact algorithms for SAT. Unless NP = P, we cannot hope to find a
polynomial-time algorithm for SAT. So we adopt a milder goal: finding algorithms that beat the
trivial brute-force search algorithm, which runs in time 2n poly(m) on Boolean circuits of size m
with n variables. There has been significant progress on this over the past couple of decades,
motivated by the theoretical significance of the problem and the practical success of SAT solvers
[11] in domains such as verification and automated planning.
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However, the performance of satisfiability algorithms depends critically on the type of the in-
stances. For k-SAT, which is the satisfiability problem on k-CNFs, algorithms running in time
2n−n/k are known [16, 20, 15]. Contrastingly, for satisfiability on general Boolean circuits, no upper
bound better than the trivial one is known. In general, the more expressive the class of instances on
which we are trying to solve SAT, the less we know about how to improve on brute-force search. A
partial explanation for this phenomenon is provided by the recent work of Williams [22, 23], which
connects progress on SAT algorithms to breakthroughs in circuit lower bounds.

Traditionally, satisfiability is studied for instances of a single fixed type, e.g., k-CNFs, CNFs
with a prescribed number of clauses, Boolean formulas of a prescribed size, constant-depth Boolean
circuits of a prescribed depth and size etc. We call such instances pure instances of the given
type. In this paper, we systematically investigate the worst-case complexity of SAT, when the
instance is mixed, i.e., has different parts of different types. A simple kind of mixing is conjunctive
mixing, where the instance is formed by the conjunction of pure instances of different types. A more
complex kind of mixing which we also study is compositional mixing, where the mixed instance is
formed by composing circuits corresponding to different types.

Our study of satsifiability of mixed instances is motivated by various considerations. From a
practical point of view, there has been a great deal of work recently on SMT (Satisfiability Modulo
Theories) solvers [13], which extend SAT solvers by being able to deal with instances which contain
not just propositional connectives, but various arithmetic operations, inequalities, etc. Studying
the exact complexity of mixed instances is a way of connecting with this work from the theoretical
side.

From a theoretical point of view, though we do have many interesting non-trivial satisfiability
algorithms now, we do not clearly understand what unifies these algorithms, and what their limits
are. Mixed instances provide a test for the flexibility of these algorithms, and analyzing mixed
instances gives us a deeper understanding of existing algorithmic ideas.

More compellingly, mixed instances of satisfiability can be used to capture, in a fairly direct
way, various NP-hard optimisation problems such as Clique, Vertex Cover, Dominating Set, etc.
Upper and lower bounds on the exact complexity of satisfiability for mixed instances translate
to these other problems. As a further example, the Max-SAT problem, where we ask for an
assignment maximizing the number of satisfied clauses of a CNF formula, can be modelled easily
by compositional mixing, where a CNF formula is composed with a threshold gate. The critical
thing about these correspondences between different problems is that they preserve the number of
variables of the instance, and thus results on exact complexity are easily transferrable from one
problem to the other.

Mixed instances also come up fairly naturally in the analysis of important algorithms, such as
the Sparsification Lemma of Impagliazzo, Paturi and Zane [7]. More specifically, the question of
how best to solve a conjunctive mixture of CNFs with different widths and sizes is still unresolved,
and might well play an important role in settling open questions such as deterministic counting of
satisfying assignments for k-CNFs.

To state our results, we need some notation. Given classes C1 and C2 of instances, we let
(C1 ∧ C2)-SAT denote the satisfiability problem for conjunctive mixing of C1 and C2. Also, given a
function f : N → N and a class C of instances, we say C-SAT has savings f if it can be solved in
time 2n−f(n) poly(m) time, where n is the number of variables of the instance, and m its size. We
say the savings f is non-trivial if f = ω(log(n)).

If C1-SAT has savings f1 and C2-SAT has savings f2, the best savings we can expect for (C1∧C2)-
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SAT is min{f1, f2}, without improving on the known algorithms for C1-SAT or C2-SAT. An initial
question is whether (C1 ∧ C2)-SAT can be shown to have non-trivial savings, given bounds on the
savings for C1-SAT and C2-SAT.

We give a positive answer to this question for a large number of types of interest, including
k-CNFs, Boolean formulas and constant-depth circuits. We critically use the fact that most known
algorithms for these problems can be captured by a paradigm called subcube partitioning. Algo-
rithms based on subcube partitioning “compose” well with each other, and therefore work well on
mixed instances.

As an application of this result, we show a meta-algorithmic result for exact complexity of
certain NP-hard optimisation problems, which are “expressible” by Monadic SNP formulas. Such
problems include Weighted Independent Set, Weighted Clique and Weighted Vertex Cover.

Theorem 1.1. Let r be a constant. Any Monadic SNP-expressible weighted optimisation problem
on graphs or r-uniform hypergraphs has savings Ω(n).

We then show how to get improved savings beyond the bound given by subcube paritioning for
mixtures such as conjunctive mixtures of k-CNFS and CNFs with m clauses, for which we get an
optimal result by exploiting more carefully the properties of the known algorithms.

In the final section, we move on to compositional mixing. We show how to interpret the
satisfiability algorithm of Impagliazzo, Mathews, and Paturi [6] for constant-depth circuits as an
algorithm for compositionally mixed instances. Then, we use the perspective of compositional mix-
ing of constant-depth circuits and de Morgan formulas, and show the first non-trivial algorithm
for satisfiability of quantified de Morgan formulas, where the formula has unbounded depth. San-
thanam and Williams [19] recently showed non-trivial results for the case where the formula is a
CNF, but nothing was known about the unbounded-depth case. Our algorithm and its analysis
combine various ideas from recent work on satisfiability and lower bounds for Boolean formulas
with the approach in [19].

Theorem 1.2. For quantified de Morgan formulas with n variables, q quantifier blocks and size at
most n5/4−ε, where ε > 0, there is a zero-error randomized satisfiability algorithm running in time
2n−n

Ω(ε/(q+1))
.

Our work is not the first to study satisfiability on mixed instances. The literature on satisfiability
of random formulas has results [12] on threshold phenomena concerning instances where some of the
clauses are 2-clauses and the others are 3-clauses. Patrascu and Williams [14] study the satisfiability
problem on mixtures of 2-SAT formulas with two clauses of arbitrary length, and show that under
the Strong Exponential Time Hypothesis, such mixed instances cannot be solved in time O(m2−ε)
for any ε > 0, where m is the size of the instance. Porschen and Speckenmeyer [17] study mixtures
of Horn clauses and 2-clauses, and show various positive and negative results.

However, as far as we are aware, we are the first to study satisfiability on mixed instances in
a systematic way, for various types of instances where polynomial-time algorithms are not known,
and indeed do not exist unless NP = P. We believe that our perspective might be useful in
unifying results on exact algorithms for various NP-hard problems, as well as in gaining a deeper
understanding of known satisfiability algorithms. In particular, the notion of compositional mixing
is novel, to the best of our knowledge.
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2 Preliminaries

2.1 Circuit Complexity and Satisfiability

Given a circuit class C, C-SAT denotes the satisfiability problem for circuits from C, and (∧C)-SAT
denotes the satisfiability problem for a conjunction of circuits from C. Given circuit classes C1 and
C2, (C1 ∧ C2)-SAT denotes the satisfiability problem for circuits C where C is the conjunction of
C ′ and C ′′, for C ′ ∈ C1 and C ′′ ∈ C2. Given circuit classes C1 and C2, (C1 ◦ C2)-SAT denotes the
satisfiability problem for circuits from C1 each of whose inputs is the output of a circuit from C2.

There are some standard circuit classes we will use repeatedly. Given a positive integer k, kCNF
is the class of CNFs of width k. Given a function m : N→ N, CNF[m] is the class of CNFs which
have n variables and at most m(n) clauses for some n. CNF is the class of CNFs which have n
variables, with no restriction on the number of clauses. Similarly, Formula[m] is the class of Boolean
formulas (with no depth restriction) which have n variables and at most m(n) literals for some n,
with Formula defined as the class of formulas with no restriction on the number of literals. Given a
positive integer d and m as before, AC0

d[m] is the class of unbounded fan-in Boolean circuits with
AND, OR and NOT gates which have n variables, size at most m(n) and depth at most d, for some
n. AC0

d is defined as the class of depth-d circuits with AND, OR and NOT gates, with no restriction
on the size. THR is the class of threshold functions, i.e., functions of the form Σiaixi > b, where
xi’s are input variables, and ai’s and b are arbitrary integers. Given a finite field R, LINR is the
class of systems of linear equations over R.

We review some known results about satisfiability algorithms. Several of these algorithms
exploit a structural property of certain circuit classes, namely the existence of better-than-trivial
subcube partitions. We first define this notion.

A restriction is a string over the alphabet {0, 1, ∗}. A subcube partition of size s over {0, 1}n
is a family of s restrictions in {0, 1, ∗}n such that for each string in {0, 1}n, there is precisely one
restriction in the family which agrees with the string on all non-∗ co-ordinates. A circuit C on
n variables is said to admit a subcube partition of size s if there is a subcube partition of size s
over {0, 1}n such that for every restriction in the partition, C is a constant under that restriction.
If C admits a subcube partition of size s, a subcube partition labelling for C is a list of pairs
(ρi, bi), i = 1, . . . , s such that {ρi}si=1 form a subcube partition, and for each ρi, C restricted to ρi,
denoted by C|ρi , has value bi.

Given a circuit class C and a function f : N×N→ N such that f(n, ·) 6 n for all n ∈ N, C-SAT
is said to have savings f is there is an algorithm for C-SAT running in time 2n−f(n,m) poly(m) time,
where n is the number of variables of the instance from C and m its size. On occasion, when the
parameter m does not appear in the analyzed savings, or is implicit, we model f as a function
purely of the number variables. By default, we assume our algorithms to be zero-error randomized
algorithms. C-SAT is said to have a subcube partitioning algorithm with savings f if there is an
algorithm, which for C from C of size m on n variables, outputs in time 2n−f(n,m) poly(m) a subcube
partition labelling for C. Note that the existence of such an algorithm implies in particular that
any circuit from C of size m on n variables admits a subcube partition of size 2n−Ω(f(n,m)) poly(m).

The following is a folklore result, which can be shown by analyzing a natural randomized
branching algorithm using Hastad’s Switching Lemma [5, 1].

Theorem 2.1. For any fixed k, kCNF-SAT has a zero-error randomized subcube partitioning algo-
rithm with savings Ω(n/k).
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Theorem 2.2 ([21, 6]). For a fixed d, AC0
d[m]-SAT has a zero-error randomized subcube partition-

ing algorithm with savings Ω(n/ log(m/n)d−1). In particular, the algorithm for CNF[m]-SAT has
savings Ω(n/ log(m/n)).

Theorem 2.3 ([18]). Formula[m]-SAT has a deterministic subcube partitioning algorithm with sav-
ings Ω(n3/m2). In particular, for m = O(n), the algorithm has savings Ω(n).

2.2 Logical Complexity

We first recall first-order logic on graphs. A graph is represented by the binary edge relation
E(x, y), whose arguments range over vertices of the graph. Assume an infinite supply of individual
variables ranging over vertices of the graph, denoted by (possibly subscripted) lowercase letters
x, y, z, . . .. Formulas of first-order logic over graphs are constructed from atomic formulas E(x, y)
and x = y using the propositional connectives ∧ (conjunction), ∨ (disjunction) and ¬ (negation),
as well as existential quantification ∃ and universal quantification ∀ over individual variables.

Now also assume an infinite supply of set variables ranging over subsets of vertices of the graph,
denoted by (possibly subscripted) uppercase letters X,Y, Z, . . .. Formulas of monadic second-order
(MSO) logic over graphs are constructed from atomic formulas E(x, y), x = y and X(x) (expressing
that vertex x belongs to the set X) using the propositional connectives, universal and existential
quantification over individual variables and existential quantification over the set variables. We
assume wlog that MSO formulas are in the prenex normal form, with the quantifiers over set
variables appearing first. Formulas of monadic second-order logic over graphs (MSNP) are MSO
formulas whose first-order part contains only universal quantification over variables.

We will be interested in expressing weighted graph optimisation problems such as Independent
Set, Vertex Cover and Dominating Set using these logical formalisms. A weighted graph G =
(V,E,w) is a graph (V,E) with a weight function w : V → R+. The weight function naturally ex-
tends to subsets S ⊂ V by w(S) =

∑
v∈S w(v). Given a MSO formula φ = ∃X1X2 . . . Xkψ(X1, X2 . . . Xk),

where ψ is first-order, the max-weighted (resp. min-weighted) optimisation problem Omax
φ (resp.

Omin
φ ) corresponding to φ takes as input a weighted graph G = (V,E,w) (where the weights are

representable in poly(|V |) bits) and outputs the maximum (resp. minimum) of
∑k

i=1w(Xi) over
X1 . . . Xk ⊂ V satisfying ψ(X1, X2 . . . Xk) in G. A weighted graph optimisation problem O is said
to be MSO-representable (resp. MSNP-representable) if there is a MSO formula (resp. a MSNP
formula) φ such that O is either Omax

φ or Omin
φ .

We are interested in solving MSO-representable and MSNP-representable optimisation problems
better than exhaustive search. Note that given an MSO formula φ quantifying existentially over q
subset variables, the optimisation problems Omax

φ and Omin
φ can be solved using exhaustive search in

time 2qn poly(n), where n is the number of vertices of the input graph. Given a function f : N→ N
with f(n) 6 n for all n and a formula φ as above, we say that Omax

φ (resp. Omin
φ ) has savings f(n)

if there is an algorithm for the problem running in time 2qn−f(n) poly(n).
A number of natural graph optimisation problems can be captured by the formalism above. It

is easy to see that Maximum Weight Independent Set, Maximum Weight Clique, Minimum Weight
Vertex Cover and Maximum Weight Dominating Set are all MSO-representable. The first three
of these problems are also MSNP-representable. In each of these cases, the corresponding MSO
formula existentially quantifies over a single subset of vertices.

The framework described above can be extended easily to optimisation problems on r-uniform
hypergraphs, with the change that the edge relation E is r-ary rather than binary.
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2.3 Random Restrictions

Let Rp be the random restriction where a subset U of pn variables is chosen uniformly at random,
and each variable not in U is assigned 0 or 1 each with probability 1/2. We give below the shrinkage
of formulas under random restrictions; although the parameters here are slightly weaker than those
obtained via greedy restrictions (as used in Theorem 2.3 [18] and also in [10]), we can use the results
to get satisfiability algorithms for mixed and composed instances. For completeness, we provide
proofs in the Appendix.

Lemma 2.4. Let F be a de Morgan formula of size cn where each variable appears at most O(c)
times. Then, for p 6 1/(20c)2,

Prρ∼Rp [ F |ρ depends on > 3
5pn variables ]

< 2−Ω(min{n/c4, pn}).

Lemma 2.5. Let F be a de Morgan formula of size L 6 n5/4−ε for ε > 0, where each variable
appears at most O(L/n) times. Then, for p = nε/2/n and any constant ε′ < ε/2,

Prρ∼Rp [ F |ρ depends on > nε
′

variables ] < 2−Ω(nε
′
).

Let φ be a CNF. We assume clauses and literals in φ are in a canonical order. The canonical
decision tree for φ is constructed as follows: If there is no clause left, return 1. If any clause is
empty, return 0. Otherwise, query all variables in the first clause; when a literal in a clause is
fixed to 0, remove the literal from the clause, and when a literal in a clause is fixed to 1, remove
the whole clause; then recurse. We denote by D(φ) the depth of the canonical decision tree for φ.
Canonical decision trees for DNFs can be defined analogously.

Lemma 2.6 (Hastad’s switching lemma [5, 1]). Let φ be a k-CNF or k-DNF on n variables. Then
for any s > 0 and p 6 1/7,

Prρ∼Rp [D(φ|ρ) > s] < (7pk)s.

3 Exploiting Subcube Partitioning for Mixed Instances

We are interested in designing and analyzing algorithms for (C1 ∧C2)-SAT which have performance
comparable to the best known algorithms for C1-SAT and C2-SAT.

First, we show a negative result. There are circuit classes C1 and C2 for which the satisfiability
problem is in polynomial time, but satisfiability of mixed instances requires exponential time to
solve under standard complexity-theoretic hypotheses.

Theorem 3.1. (2CNF∧THR)-SAT requires time 2Ω(n), assuming the Exponential Time Hypothesis.

Proof. Let C1 be 2-CNF and C2 be THR. Note that C1-SAT and C2-SAT are both polynomial-time
solvable. We show that (C1∧C2)-SAT is hard under the Exponential Time Hypothesis, by encoding
Independent Set into this problem.

Let (G, k) be an instance of the Independent Set problem, where the question is whether G has
an independent set of size at least k. Let n be the number of vertices of G. We reduce such an
instance to an instance of (2CNF ∧ THR)-SAT preserving the number of variables as follows. Let
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x1 . . . xn be propositional variables. The intended interpretation of the variables is that the set of
all variables assigned to true should form an independent set in G. To enforce this interpretation,
we define clauses as follows: for each edge (i, j) of G, where i, j ∈ [n], we add a clause (¬xi ∨¬xj).
Note that the collection of clauses of this form is a 2-CNF. We also add a single threshold gate
which checks if Σixi > k. Clearly, the resulting instance φ is satisfiable iff (G, k) is a YES instance
of Independent Set. It is known [8] that Independent Set requires time 2Ω(n) if the Exponential
Time Hypothesis holds, hence the same is true for (2CNF ∧ THR)-SAT.

Next, we show a positive result when C1-SAT has a subcube partitioning algorithm with non-
trivial savings, and C2-SAT is polynomial-time solvable. We do assume that C2 satisfies a certain
natural condition. We say that a circuit class C is closed under restrictions if for any circuit C
belonging to the class and for any partial restriction of the variables of C, the resulting circuit C ′

belongs to the class as well. All commonly studied circuit classes satisfy this condition.

Theorem 3.2. Let f : N × N → N be a function such that f(n, ·) 6 n for all n ∈ N. Let C1 and
C2 be circuit classes such that C1-SAT has a subcube partitioning algorithm with savings f(·, ·) and
C2-SAT has a polynomial-time algorithm. Moreover, assume C2 is closed under restrictions. Then
(C1 ∧ C2)-SAT has an algorithm with savings f(·, ·).

Proof. By assumption, there is an algorithm A1 which given any C ∈ C1 of size m over n variables,
outputs a subcube partition labelling for C in time 2n−f(n,m) poly(m). We define an algorithm A
to solve mixed instances over C1 and C2. Let C ∧ C ′ be an input to algorithm A, where C ∈ C1,
C ′ ∈ C2 and the total size of the instance is m. Algorithm A first runs A1 to give a subcube
partition labelling for C. For every element of the list which has bi = 1, the algorithm applies
the corresponding restriction ρi to C ′ and solves satisfiability on the resulting instance using the
polynomial-time algorithm for C2-SAT. If any of these calls accept, A accepts, otherwise it rejects.
Correctness follows from the definition of subcube partition labellings and closure of C ′ under
restrictions. The resulting algorithm has the same savings as for A1.

Corollary 3.3. Let R be a finite field. For any fixed k, (kCNF∧THR)-SAT and (kCNF∧LINR)-SAT
have savings Ω(n/k) using a randomized algorithm.

Proof. The result follows from Theorem 3.2 by using Theorem 2.1 and the facts that THR-SAT
and LINR-SAT have polynomial-time algorithms.

There are several interesting cases of mixed instances, where there are no polynomial-time
algorithms for pure instances of the constituent types unless NP = P, however there are algorithms
with non-trivial savings for the pure instances, and we would like to get non-trivial savings also for
the mixed instances. The following result shows generically how to achieve this, in the case that
the algorithms exploit subcube paritioning.

Theorem 3.4. Let f1 : N × N and f2 : N × N be monotone functions such that f1(n) 6 n and
f2(n) 6 n for all n ∈ N. Let C1 and C2 be circuit classes such that C1-SAT has a subcube partitioning
algorithm with savings f1 and C2-SAT has an algorithm with savings f2. Moreover, assume C2 is
closed under restrictions. Then (C1 ∧ C2)-SAT has an algorithm with savings f2(Ω(f1)).

Proof. Let the subcube partitioning algorithm for C1-SAT be A1 and the algorithm for C2-SAT be
A2. Given a mixed instance φ1 ∧ φ2, where φ1 ∈ C1 and φ2 ∈ C2, we first run A1 on φ1 to obtain
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a subcube partition labelling for φ1 of size at most 2n−f1(n) poly(m), where m is the size of the
mixed instance. For each pair (ρi, bi) in the labelling with bi = 1, we run the A2 on φ2|ρi , where
φ2|ρi denotes φ2 with all values fixed by ρi substituted into φ2. We accept iff A2 accepts for some
pair in the labelling with bi = 1.

Correctness of the algorithm follows from correctness of A1 and A2, and from the fact that
C2 is closed under restrictions. We now argue the stated bound on the time complexity. Let the
subcube partition labelling be {(ρi, bi)}si=1, where s 6 2n−f1(n) poly(m). For each restriction ρi in
the labelling, let ni be the number of ∗’s in ρi and let V (ρi) = 2ni . Since the ρi’s constitute a
subcube partition, we have that ΣiV (ρi) = 2n.

We consider two types of restrictions in the labelling, based on whether ni > f1(n)/2. If this
condition is satisfied, we call the restriction ρi fat; otherwise, we call it thin. Now, the time
complexity of the algorithm is at most Σi2

ni−f2(ni), using the assumption on the savings of A2. We
break up this sum into the corresponding sums for fat and thin restrictions. For thin restrictions,
we have that the sum is at most s2f1(n)/2 6 2n−f1(n)/2 poly(m), as there are at most s terms in
the sum, and each term is at most 2ni 6 2f1(n)/2. For fat restrictions, we have that the sum is at
most ΣiV (ρi)/2

f2(f1(n)/2), using monotonicity of f2. This sum is at most 2n−f2(f1(n)/2), using the
fact that ΣiV (ρi) 6 2n. Thus, the total sum is at most 2n−f2(f1(n)/2) poly(m), using the fact that
f2(n) 6 n for all n. This bound corresponds to savings f2(Ω(f1)).

In the case that f2 grows much smaller than n, we could optimise the parameters in the proof of
Theorem 3.4 to achieve savings f2(f1−f2(f1)). But in most cases of interest, this optimisation does
not give us significant benefits. The proof technique of Theorem 3.4 yields some other consequences.
If the algorithms for C1-SAT and C2-SAT are polynomial-space, the algorithm for mixed instances
can be designed to be polynomial-space as well. Moreover, if the algorithms for pure instances
count the number of satisfying assignments, a slight modification to the proof yields an algorithm
for mixed instances also counting the number of satisfying assignments. This consequence critically
uses the subcube partitioning.

Theorem 3.4 yields the following corollaries, using Theorem 2.1, Theorem 2.2 and Theorem 2.3.

Corollary 3.5. There are algorithms achieving:

• Savings Ω(n/(c2k)) for (kCNF ∧ Formula[cn])-SAT

• Savings Ω(n/k log(m/n)) for (kCNF ∧ CNF[m])-SAT

• Savings Ω(n/(c2 log(m/n))) for (Formula[cn] ∧ CNF[m])-SAT

All of the above algorithms can be modified to count the number of satisfying assignments
exactly. We will show in the next section how to get improved savings for items (1) and (2) above.
Also note a subtlety here: when there are subcube partitioning algorithms for both C1-SAT and
C2-SAT, the order in which we run the algorithms might matter in terms of the savings analysis.

We now explain how Theorems 3.2 and 3.4 have interesting consequences for exact algorithms
for commonly studied NP-hard graph problems. This involves using the connection in the proof
of Theorem 3.1 in the opposite direction, using satisfiability algorithms for mixed instances to get
graph algorithms. We are interested particularly here in meta-algorithmic results, which show that
interesting algorithms exist for a wide class of problems at once. A famous example of such a result
is Courcelle’s theorem [3], which states that any Monadic Second Order property of graphs can
be decided in linear time on graphs of bounded treewidth. Analogously, we wish to have a single
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result which implies non-trivial exact algorithms for a large number of NP-hard graph optimisation
problems. It is natural to use logical formalisms for graph properties to formulate such a result.

Theorem 3.6. For any MSO formula φ on graphs, the weighted optimisation problems Omax
φ and

Omin
φ have savings Ω(n/polylog(n)). For any MSNP formula φ on graphs, the weighted optimisation

problems Omax
φ and Omin

φ have savings Ω(n).

Proof. Let φ be a MSO formula. The idea of the proof is to “circuitify” the first-order part of φ,
converting it into a constant-depth circuit, and then to express the weighted optimisation problem
as a satisfiability problem on mixed instances, where one part of the mixed instance is a constant-
depth circuit and the other part is a linear inequality. When φ is MSNP, the circuitification yields
a bounded-width CNF formula rather than a constant-depth circuit, which enables us to get better
savings.

Assume without loss of generality that φ is of the form ∃X1∃X2 . . . ∃Xqψ(X1, . . . , Xq), where
ψ is a first-order formula. Suppose we are given a weighted graph G = (V,E,w). We give an
inductive procedure to construct a constant-depth circuit CG corresponding to G, which encodes
whether ψ(X1, . . . , Xq) holds. Let |V | = n. The circuit will have qn variables, denoted by yij , i =
1, . . . , q, j = 1, . . . , n. We will use yij = 1 to encode that vertex j of the graph belongs to Xi.

By the definition of first-order formulas, ψ is either of the form ∃xψ′(X1, . . . Xq, x), or of the
form ∀xψ′(X1, . . . Xq, x), or a propositional sentence constructed from the atomic formulas. In the
first case, we cycle over the n vertices of the graph. For each vertex k, by induction, there is a
constant-depth circuit C ′(k) in the y variables for ψ′ - we define CG to be the OR over all n of
C ′(k). Similarly, in the second case, we define CG to be the AND over all n of C ′(k). In the third
case, we can express the sentence as a bounded-width CNF in the variables {yij} after substituting
occurrences of E(j, k) for vertices j, k ∈ V by true or false depending on whether (j, k) ∈ E or not,
and similarly substituting occurrences of j = k by true or false, depending on whether j = k or
not. Any occurrence of Xi(j) is replaced by the variable yij .

The circuit CG has a fixed depth which depends on the quantifier depth of the MSO formula φ.
Now to solve the weighted optimisation problem Omax

φ , we construct mixed instances of the form
CG∧T , where T is a linear inequality we choose adaptively. Let Wmax = qΣv∈V w(v). We use binary
search to find the maximum weight W for which the mixed instance CG ∧ T is satisfiable, where T
is the linear inequality Σi,jwjyij >W . We initialize W to Wmax/2, using the binary search method
to update W depending on the result of our satisfiability query. We will use at most log(|Wmax|)
calls to the satisfiability algorithm, and by our assumption that the weights are representable by
poly(n) bits, this will incur at most a polynomial overhead over the running time of a single call
to the satisfiability algorithm. For the satisfiability algorithm itself, we apply Theorem 3.2 with
Theorem 2.2 and the fact that THR-SAT has a polynomial-time algorithm. This gives us savings
Ω(n/polylog(n)).

Solving Omin
φ is completely analogous, except that we attempt to find the minimum W for which

the mixed instance is satisfiable, where the linear inequality is now that Σi,jwjyij 6W .
In the case where φ is MSNP, the circuit CG produced by our procedure is in fact a k-CNF for

some fixed k. Hence in this case, we can use Corollary 3.3 to achieve linear savings.

Algorithms with linear savings are known for a large number of graph optimisation problems,
and Theorem 3.6 brings these linear savings results under one umbrella, for problems such as
Independent Set, Clique and Vertex Cover.
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4 Beating the Generic Subcube Partitioning Bound

Corollary 3.5 illustrates how Theorem 3.4 can be used to give non-trivial savings for several satis-
fiability problems with mixed instances. However, the savings obtained in these cases are not the
best for which one could hope. In general, if C1-SAT has savings f1 and C2-SAT has savings f2, we
could hope for savings min{f1, f2} for (C1 ∧C2)-SAT. Note that savings asymptotically better than
this would imply better algorithms for the pure satisfiability problems C1-SAT or C2-SAT. We are
able to achieve the optimal savings for mixed instances where one part of the instance is a k-CNF
and the other part consists of a prescribed number of clauses of arbitrary length. To achieve these
improved savings, we exploit the fact that the best known algorithms for CNF-SAT themselves
proceed through reductions to satisfiability of bounded-width formulas.

Theorem 4.1. For any positive integer k > 2 and any function m : N→ N, (kCNF∧CNF[m])-SAT
has savings Ω(min{n/k, n/ log(m/n)}).

Proof. Let φ = φ1 ∧ φ2 be the input formula on n variables, where φ1 is a k-CNF and φ2 is a
CNF with m′ 6 m(n) clauses. We apply a width reduction procedure due to Schuler [21], and
then use a standard algorithm for bounded-width satisfiability [16]. We use the tighter analysis of
width-reduction due to [2].

Let K > k be a parameter to be fixed later. We apply the following recursive procedure to solve
satisfiability on φ. If φ is a K-CNF, we use the PPZ satisfiability algorithm [16], which runs in
time 2n−n/K poly(n), to check if φ is satisfiable. If not, then pick the lexicographically first clause
C in φ2 with width greater than K. Assume wlog that the first K literals of C are x1, . . . , xK .
We construct instances φ′ and φ′′ as follows and recursively check satisfiability on these instances.
φ′ is produced by substituting x1, . . . , xK to false in φ and simplifying the resulting formula. φ′′

consists of φ, but with the clause C removed. Clearly, φ is satisfiable iff at least one of φ′ and φ′′

are satisfiable.
This recursive procedure for satisfiability corresponds to a recursion tree where left branches

represent substitutions for K literals, and right branches represent removals of a clause. The leaves
of this tree are labelled with K-CNFs, corresponding to using the PPZ satisfiability algorithm
rather than continuing to use recursion. This tree is highly skewed: there can be at most n/K
left branches, as each left branch gets rid of K variables, but there can be as many as m′ right
branches. The number of paths in the tree with r left branches is at most

(
m′+r
r

)
, and each leaf

corresponding to such a path is labelled with a formula on at most n−Kr variables.
Let α = 21−1/K . We can estimate the total running time of the satisfiability procedure as at

most:

n/K∑
r=0

(
m′ + r

r

)
αn−Kr 6

m′+n/K∑
r=0

(
m′ + n/K

r

)
αn−Kr

6 αn(1 + α−K)m
′+n/K

6 αneα
−K(m′+n/K)

6 2n−n/K+2(m′+n/K)/2K−1

To fix K, we consider two cases: either m′ > 2kn, or it is not. In the first case, by setting
K = C log(m′/n) for large enough constant C and using the fact that k > 2, it can easily be
checked that the savings of the satisfiability procedure is Ω(n/K). In the second case, by setting
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K = 3k + 1, it can be checked that the savings of satisfiability procedure is Ω(n/K). Thus the
savings of the procedure is Ω(min{n/k, n/ log(m′/n)}) > Ω(min{n/k, n/ log(m/n)}), as promised,
since m′ 6 m.

For mixed instances where one part of the instance is a Boolean formula with a prescribed
number of literals, and the other part is a k-CNF, we can again use specific properties of known
algorithms to combine them more cleverly than in the proof of the generic subcube paritioning
bound. However, we aren’t quite able to manage optimal savings in this case.

Theorem 4.2. (Formula[cn]∧kCNF)-SAT has (randomized zero-error) savings at least Ω(min{n/c4, n/k}).

Proof. Let φ1∧φ2 be a given instance where φ1 is a de Morgan formula of size cn, and φ2 is a k-CNF
formula, We first greedily restrict heavy variables in φ1. Let H be the set of variables appearing
at least 2c times in φ1. Then |H| 6 n/2. We build 2|H| branches by restricting variables in H. Let
n′ = n−|H| > n/2. For each restriction τ of variables inH, we have that L(φ1|τ ) 6 cn−2c|H| 6 cn′,
and each variable in φ1|τ appears less than 2c times.

For each τ , let φ′1 = φ1|τ and φ′2 = φ2|τ ; we next apply random restrictions to φ′1 ∧ φ′2. Let
p = min{1/(20c)2, 1/28k}. Consider the random restriction Rp = (U, σ) where we first choose
a random subset U of pn′ variables, and then fix variables not in U by a random assignments
σ ∈ {0, 1}n′−|U |.

For a random ρ ∼ Rp, by Lemma 2.4, the probability that φ′1|ρ depends on at least 3
5pn

′

variables is at most 2−Ω(min{n′/c4, pn′}). By Lemma 2.6,

Prρ∼(U,σ)[D(φ′2|ρ) > s] 6 (7pk)s 6 4−s.

For each ρ, if φ′1|ρ depends on at least 3
5pn

′ variables, then we enumerate assignments to
all remaining pn′ variables and check the satisfiability of φ′1|ρ ∧ φ′2|ρ. Otherwise, we enumerate
assignments to at most 3

5pn
′ variables on which φ′1|ρ depends (this fixes φ′1|ρ to a constant), and

then build decision trees for the restricted φ′2|ρ.
For a random ρ ∼ Rp, the expected number of branches we build for checking the satisfiability

of φ′1|ρ ∧ φ′2|ρ is at most

M = 2pn
′ · 2−Ω(min{n′/c4, pn′}) + 23pn′/5 ·

∑
s

2s4−s

6 2pn
′−Ω(min{n′/c4, pn′}).

Finally, the expected total number of branches (and the expected running time of the algorithm)
is bounded by

2|H|+n
′−pn′M 6 2n−Ω(min{n/c4, pn}) = 2n−Ω(min{n/c4, n/k}).

Note that Theorem 4.2 doesn’t always yield savings better than Corollary 3.5, however for large k
the savings is better, and in general we can achieve savings of the form Ω(max{n/(c2k),min{n/c4, n/k}})
by using either the algorithm of Corollary 3.5 or the algorithm of Theorem 4.2, based on the rela-
tionship between c and k.
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5 Exploiting Subcube Partitioning for Composed Instances

We now consider composed instances of the form C ◦ D, where each instance has a C-circuit at the
top whose inputs are D-circuits. We hope to design efficient algorithms for satisfiability checking
or truth-table enumeration, by exploiting existing efficient algorithms for pure instances C and D.

To start, we describe a simple strategy. Let C(D1, . . . , Dm) be an instance of C ◦ D, where
Di’s are over the same set of n variables. We first run a partitioning which works for all circuits
D1, . . . , Dm such that in each part j, each Di reduces to a D′ instance D′i,j , and we get a C ◦ D′
instance C(D′1,j , . . . , D

′
m,j); then, run an efficient algorithm for C ◦ D′. Obviously, to implement

this strategy we need both (1) an efficient partitioning for a collection of D-circuits, and (2) an
efficient algorithm for C ◦ D′.

Indeed, the AC0 satisfiability algorithm of [6] can be viewed as a recursive application of the
above strategy. First, an AC0

d circuit (with OR gates at the bottom) can be viewed as an AC0
d−1

circuit fed by clauses. Using Schuler’s width reduction [21], clauses of arbitrary length can be
reduced to clauses of length at most k; this gives AC0

d circuits with bottom fan-in at most k, which
can be viewed as AC0

d−2 ◦ kCNF. By an extension of Hastad’s switching lemma [6], there is a
(randomized) partitioning for a collection of kCNF’s such that restricted kCNF’s can be written as
kDNF’s; by merging into AC0

d−2, this gives AC0
d−3 ◦kDNF circuits. Then by recursively reducing the

depth, we finally get a kCNF or kDNF for each part. One subtlety is that, the partitioning given
in [6] there is not a subcube partitioning, but instead each part is defined by a kCNF; however, the
kCNF specifying a part can be combined with the final restricted instance (kCNF or kDNF), which
has a subcube partitioning by the extension of Hastad’s switching lemma in [6].

5.1 QBF-SAT

We next apply the strategy to give a non-trivial satisfiability algorithm for quantified de Mor-
gan formulas of superlinear size, by designing an efficient truth-table enumeration algorithm for
composed instances AC0 ◦ Formula.

Theorem 5.1. For quantified de Morgan formulas with n variables, q quantifier blocks and size
at most n5/4−ε for any ε > 0, there is a randomized satisfiability algorithm running in time
2n−n

Ω(ε/(q+1))
.

Before stating the proof, we outline the main ideas below. Given a QBF, we first use the
approach of [19] to “blowup” the instance; that is, enumerate assignments to the innermost nδ

quantified variables and construct an instance of AC0 ◦Formula. Following [19], if we can enumerate
the truth table of AC0 ◦Formula efficiently, then the original QBF can be evaluated efficiently (with
the savings coming from the blowup). To produce the truth table of AC0 ◦ Formula, we first apply
random restrictions to shrink all formulas such that they can be merged into AC0, and then use
fast truth-table enumeration for AC0 [19].

We first show that the truth table of AC0◦Formula (when the formula is small) can be efficiently
enumerated. We need the following lemma on AC0 truth-table enumeration [19].

Lemma 5.2 ([19]). There is a randomized zero-error algorithm that, given an AC0 circuit of depth

d and size s, outputs the truth table in time poly(n) · (2n + s2n−Ω(n/ logd−1 s)). In particular, there

is some small constant a > 0 such that when s 6 2an
1/d

, the algorithm runs in time 2n poly(n).
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Lemma 5.3. There is a randomized zero-error algorithm running in time 2n poly(n) which outputs
truth tables for AC0 ◦ Formula instances satisfying the following conditions:

• the AC0 circuit has depth d and size s 6 2n
δ
;

• each formula feeding into AC0 has size L 6 n5/4−ε, and each variable appears O(L/n) times
in each formula;

• δ 6 aε/(d+ 1) for some small constant a > 0.

Proof. Consider the random restriction Rp = (U, σ), where we first choose a random subset U of
pn variables, and then choose a random assignment σ ∈ {0, 1}n−pn to variables not in U . Let
p = nε/2/n. Let ε′ = 2δ < ε/2. For a formula G feeding into AC0, define

PU = Prρ∼(U,σ)[ G|ρ depends on > nε
′

variables ].

We say U is good for G if PU < 2−Ω(nε
′
). Lemma 2.5 gives that, EU [PU ] < 2−cn

ε′
, for some constant

c > 0. Then by Markov’s inequality,

PrU [PU > 2−cn
ε′/2] 6

EU [PU ]

2−cnε
′/2

< 2−cn
ε′/2.

That is, a random U is good for G with probability 1− 2−Ω(nε
′
).

By a union bound on the s 6 2n
δ

formulas feeding to AC0, a random U is good for all formulas

with probability 1− 2n
δ−Ω(nε

′
) > 1− 2−Ω(nε

′
),

The algorithm runs by choosing U randomly, and then enumerating assignments to variables
not in U . For a fixed good U , and a randomly chosen σ ∈ {0, 1}n−|U |, by another union bound on
all formulas, the probability that any of the restricted formula depends on more than nε

′
variables

is at most 2n
δ−Ω(nε

′
) 6 2−Ω(nε

′
).

This means, over the 2n−|U | assignments to variables not in U , all but 2−Ω(nε
′
) fraction will give

restricted instances with an AC0 of depth d and size 2n
δ

at the top, and formulas each depending on
at most nε

′
variables at the bottom. For each such instance, we express formulas as CNFs/DNFs

(of size 2n
ε′

) and merge them into AC0. This gives an AC0 circuit of depth d+ 1 and size 2n
δ+nε

′
.

(Note that, it has nε variables unfixed.) Then we use the truth-table enumeration algorithm for
AC0 by Lemma 5.2 [19]. Since ε′ = 2δ and δ = aε/(d + 1), for sufficiently small a, by Lemma 5.2,
this can be done in time 2n

ε
poly(n).

Thus, the running time for branches where all formulas depend on at most nε
′

variables is at
most 2n−n

ε · 2nε · poly(n) = 2n poly(n).
For branches where at least one of the formulas depend on more than nε

′
variables, we use

brute-force enumeration for the remaining nε variables to evaluate the circuit. Each such branch
takes time 2n

ε · 2nδ · poly(n). The running time for all such branches is

2n−n
ε · 2−Ω(nε

′
) · (2nε · 2nδ · poly(n)) 6 2n poly(n).
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Proof of Theorem 5.1. Consider a QBF with n variables and q quantifier blocks. Let F be the de
Morgan formula in the QBF, where the size L(F ) 6 n5/4−ε. Let H be the set of variables appearing
at least 2L(F )/n times; then |H| 6 n/2. Our algorithm has the following stages:

We first enumerate on the innermost nδ quantified variables, for δ = aε/(d+ 1) for some small
constant a > 0. Let B be the innermost nδ quantified variables. Build an AC0 circuit by enu-
merating assignments to all variables in B (replacing existential quantifiers by ORs and universal
quantifiers by ANDs), and let the bottom layer be fed by F under corresponding restrictions of B.
This gives an AC0 ◦ Formula instance over n− nδ variables, where the top AC0 circuit has depth q
and size 2n

δ
, and each formula feeding into AC0 has size at most L(F ).

If we can enumerate the truth table of this composed instance efficiently (in time 2n−n
δ

poly(n)),
then by the techniques of [19], the original QBF can be evaluated by traversing an AND-OR tree
based on the remaining quantified variables, and looking up in the truth table; the running time
for QBF-SAT will be 2n−n

δ
poly(n).

In the rest, we focus on enumerating the truth table of the composed AC0◦Formula instance. We
first enumerate assignments to variables in H \B, get at most 2|H| branches each with a restricted
instance where the formulas have no heavy variables. For each fixing of variables in H ∪ B, since
|H| 6 n/2 and |B| = nδ, the number of unfixed variables is n′ = n − nδ − |H \ B| = Θ(n). Thus,

each restricted AC0 ◦ Formula instance has an AC0 of depth q and size 2O(n′δ)) at the top, and each
formula feeding into AC0 has size at most L′ = O(n′5/4−ε), with all variables appear O(L′/n′) times.
Then by Lemma 5.3, the truth table of each such restricted instance can be enumerated in time
2n
′
poly(n).
Therefore, we can enumerate the truth table of the constructed AC0 ◦ Formula instance in time

2|H\B|·2n′ poly(n) = 2n−n
δ

poly(n), and thus QBF-SAT is in time 2n−n
δ

poly(n) = 2n−n
Ω(ε/(q+1))

poly(n).

6 Acknowledgments

Supported by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC Grant Agreement no. 615075

References

[1] P. Beame. A switching lemma primer, 1994.

[2] C. Calabro, R. Impagliazzo, and R. Paturi. A duality between clause width and clause density
for sat. In Proceedings of the 21st Annual IEEE Conference on Computational Complexity,
CCC ’06, 2006.

[3] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990.

[4] B. Doerr. Analyzing randomized search heuristics: Tools from probability theory. In A. Auger
and B. Doerr, editors, Theory of Randomized Search Heuristics, pages 1–20. World Scientific
Publishing, 2011.

14



[5] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

[6] R. Impagliazzo, W. Matthews, and R. Paturi. A satisfiability algorithm for AC0. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pages 961–972,
2012.

[7] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
In Proceedings of the Thirty-Ninth Annual IEEE Symposium on Foundations of Computer
Science, pages 653–662, 1998.

[8] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001.

[9] I. Komargodski and R. Raz. Average-case lower bounds for formula size. In Proceedings of the
Forty-Fifth Annual ACM Symposium on Theory of Computing, pages 171–180, 2013.

[10] I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for demorgan formula
size. In Proceedings of the Fifty-Fourth Annual IEEE Symposium on Foundations of Computer
Science, pages 588–597, 2013.

[11] S. Malik and L. Zhang. Boolean satisfiability from theoretical hardness to practical success.
Communications of the ACM, 52(8):76–82, 2009.

[12] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. 2+p-SAT: Relation
of typical-case complexity to the nature of the phase transition. Random Structures and
Algorithms, 15:414–440, 1999.

[13] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From an
abstract davis-putnam-logemann-loveland procedure to DPLL(T). Journal of the Association
for Computing Machinery, 53(6):937–977, 2006.

[14] M. Patrascu and R. Williams. On the possibility of faster SAT algorithms. In Proceedings of
the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1065–1075, 2010.

[15] R. Paturi, P. Pudlák, M. Saks, and F. Zane. An improved exponential-time algorithm for
k -sat. J. ACM, 52(3):337–364, 2005.

[16] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Chicago Journal of Theoretical
Computer Science, 1999.

[17] S. Porschen and E. Speckenmeyer. Satisfiability of mixed horn formulas. Discrete Applied
Mathematics, 155(11):1408–1419, 2007.

[18] R. Santhanam. Fighting perebor: New and improved algorithms for formula and qbf satisfia-
bility. In Proceedings of the Fifty-First Annual IEEE Symposium on Foundations of Computer
Science, pages 183–192, 2010.

[19] R. Santhanam and R. Williams. Beating exhaustive search for quantified boolean formulas
and connections to circuit complexity. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 231–241, 2015.

15
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A Shrinkage of Formulas under Random Restrictions

We prove concentrated shrinkage of de Morgan formulas under random restrictions. The results
here, in terms of the concentration parameters, are weaker than those obtained via greedy re-
strictions [18], or mixed greedy and random restrictions [9, 10], but they can be applied to get
satisfiability algorithms for mixed and composed instances.

We need the following version of Chernoff bounds on hypergeometric distributions.

Theorem A.1 (Chernoff bound [4]). Let U be a subset of size pn chosen uniformly at random
from {1, . . . , n}. For i = 1, . . . , n, let Xi = 1 if i ∈ U , and Xi = 0 otherwise. Let X =

∑n
i=1 aiXi

where ai ∈ [0, b]. Then, E[X] = p
∑n

i=1 ai, and, for t > 6E[X],

Pr[X > t] 6 2−t/b.

A sequence of random variables X0, X1, . . . , Xn is called a supermartingale with respect to
another sequence of random variables R1, . . . , Rn if E[Xi | Ri−1, . . . , R1] 6 Xi−1, for 1 6 i 6 n.

Theorem A.2 (Azuma-Hoeffding Inequality [4]). If {Xi}ni=0 is a supermartingale such that |Xi −
Xi−1| 6 ci for i = 1, . . . , n, then, for any λ > 0,

Pr[Xn −X0 > λ] 6 exp

(
− 2λ2∑n

i=1 c
2
i

)
.

Let Rp be the random restriction where a subset U of pn variables is chosen uniformly at
random, and each variable not in U is assigned 0 or 1 each with probability 1/2.

Lemma A.3. Let F be a de Morgan formula of size cn on n variables, where each variable appears
at most O(c) times in F . Then for pn > l2c2,

Prρ∼Rp [L(F |ρ) > 2p1.5cn = 2pn/l] 6 2−Ω(pn/l2c2).

In particular, for l = 20 and p = 1/(20c)2,

Prρ∼Rp [L(F |ρ) > pn/10] 6 2−Ω(n/c4);

for c = n
1
4
−ε, l = 20nε/2 and p = 1/(400n

1
2
−ε),

Prρ∼Rp [L(F |ρ) > pn/10nε/2] 6 2−Ω(n2ε).
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Proof. Consider a step-by-step process where at each step a variable is randomly picked and fixed,
and we run this process for n − pn steps. Let F0 = F , and Fi be the restricted formula after the
i-th step (which is simplified by eliminating redundant leaves). Note that Fi is over n− i variables.
We distinguish two cases based on the size of Fi.

First consider the case that Fi is already small for some i 6 n− pn, that is, L(Fi) 6 (n− i)/3l.
We then apply a random restriction Rp′ for p′ = pn/(n− i) on Fi; the restricted formula size is at
most the number of leaves left. By Theorem A.1,

Eρ∼Rp′ [L(Fi|ρ)] 6 p′L(Fi) 6 pn/3l,

and, since each variable appears at most O(c) times,

Prρ∼Rp′ [L(Fi|ρ) > 2pn/l] 6 2−Ω(pn/lc).

In the rest, we assume that L(Fi) > (n− i)/3l for i = 1, . . . , n− pn.
At the i-th step, we start with a formula Fi−1 on n− (i−1) variables. We have (n− i+ 1)/3l <

L(Fi−1) 6 cn, and each variable appears O(c) times. For a variable x in Fi, let cx be the number
of times where x appears in the form of x∧G or x∨G, and let c′x be the number of times where x
appears in the form of x ∨G or x ∧G. Note that we can eliminate 2cx + c′x leaves if we fix x = 0,
and eliminate cx + 2c′x leaves if we fix x = 1. We randomly choose x from the remaining variables
and randomly fix it; define the random variable

Yi =

{
2cx + c′x, if x is chosen and assigned 0

cx + 2c′x, if x is chosen and assigned 1.

Since
∑

x(cx + c′x) = L(Fi−1) and 0 6 {cx, c′x} 6 O(c), we have E[Yi] = 1.5L(Fi−1)/(n− i+ 1), and
Yi 6 O(c).

Define L∗i = L(Fi−1)− Yi, then we have L(Fi) 6 L∗i 6 L(Fi−1). For a fixed Fi−1,

E[L∗i ] = L(Fi−1)−E[Yi] = L(Fi−1)

(
1− 1.5

n− i+ 1

)
6 L(Fi−1)

(
1− 1

n− i+ 1

)1.5

.

We wish to compare L∗i with L(Fi−1)
(

1− 1
n−i+1

)1.5
. Define

Zi = ln

 L∗i

L(Fi−1)
(

1− 1
n−i+1

)1.5

 .

Then by Jensen inequality, E[Zi] 6 0 (conditioning on a fixed Fi−1).
Since L∗i 6 L(Fi−1), we get

Zi 6 −1.5 ln

(
1− 1

n− i+ 1

)
= 1.5 ln

(
1 +

1

n− i

)
6

1.5

n− i
,

where the last inequality is by the fact that ln(1 + x) 6 x.
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Since Yi 6 O(c) and L(Fi−1) > (n− i+ 1)/3l,

L∗i = L(Fi−1)− Yi = L(Fi−1)

(
1− Yi

L(Fi−1)

)
> L(Fi−1)

(
1− blc

n− i+ 1

)
,

for some constant b. This gives that,

Zi > ln

(
L∗i

L(Fi−1)

)
> ln

(
1− blc

n− i+ 1

)
= − ln

(
1 +

blc

n− i+ 1− blc

)
> − blc

n− i+ 1− blc
> − 2blc

n− i
,

where the last inequality follows from n− i > pn� lc. Therefore, |Zi| 6 2blc
n−i .

Let X0 = 0 and Xi =
∑i

j=1 Zi. Then {Xi} is a supermartingale with respect to the random
choices at each step. By Theorem A.2 (Azuma-Hoeffding inequality), for λ > 0,

Pr[Xi =

i∑
j=1

Zi > λ] 6 exp

(
− 2λ2∑i

j=1( 2blc
n−j )

2

)

6 exp

(
−2λ2(n− i− 1)

(2blc)2

)
,

by that
∑i

j=1
1

(n−j)2 <
∑i

j=1
1

n−j−1 −
1

n−j <
1

n−i−1 .

Since that

eXi =
i∏

j=1

L∗j

L(Fj−1)
(

1− 1
n−j+1

)1.5

>
i∏

j=1

L(Fj)

L(Fj−1)
(

1− 1
n−j+1

)1.5 =
L(Fi)

L(F0)
(
n−i
n

)1.5 ,
we have

Pr

[
L(Fi) > eλL(F0)

(
n− i
n

)1.5
]
6 exp

(
−2λ2(n− i− 1)

(2blc)2

)
.

Let λ = ln 2 and i = n− pn,

Pr
[
L(Fn−pn) > 2cnp1.5

]
6 2−Ω(pn/l2c2).

Lemma A.4 (Lemma 2.4 restated). Let F be a de Morgan formula of size L = cn where each
variable appears at most O(c) times. Then, for p 6 1

(20c)2 ,

Prρ∼Rp [ F |ρ depends on > 3
5pn variables ] < 2−Ω(min{n/c4, pn}).
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Proof. We first apply a random restriction Rp0 for p0 = 1/(20c)2. By Lemma A.3, with probability

1−2−Ω(n/c4), the restricted formula has size at most p0n/10, and thus depending on at most p0n/10
variables (although there are p0n variables left).

Then, apply another random restrictionRp1 for p1 = p/p0, leaving pn variables unfixed. For any
restricted formula F ′ depending on at most p0n/10 variables, by Chernoff bound (Theorem A.1),
in expectation, the restricted formula F ′|ρ depends on at most p1 · p0n/10 = pn/10 variables, and

Prρ∼Rp1 [ F ′|ρ depends on > 3
5pn variables ] < 2−Ω(pn).

Therefore,

Prρ∼Rp [ F |ρ depends on > 3
5pn variables ]

< 2−Ω(n/c4) + 2−Ω(pn) < 2−Ω(min{n/c4, pn}).

Lemma A.5 (Lemma 2.5 restated). Let F be a de Morgan formula of size L 6 n5/4−ε where each
variable appears at most O(L/n) times. Then, for p = nε/2/n and any constant ε′ < ε/2,

Prρ∼Rp [ F |ρ depends on > nε
′

variables ] < 2−Ω(nε
′
).

Proof. We first apply a random restriction for p0 = 1/400n
1
2
−ε. By Lemma A.3, with probability

1 − 2−Ω(n2ε), the restricted formula has size at most p0n/10nε/2, and thus depending on at most
p0n/10nε/2 variables (although there are p0n variables left). For any such “small” restricted formula
F ′, apply another random restriction Rp1 for p1 = nε/2/(p0n), leaving nε/2 variables unfixed.
By Chernoff bound (Theorem A.1), in expectation, the restricted formula depends on at most
p1 · (p0n/10nε/2) = 1/10 variables, and

Prρ∼Rp1 [ F ′|ρ depends on > nε
′

variables ] < 2−Ω(nε
′
).

Therefore,

Prρ∼Rp [ F |ρ depends on > nε
′

variables ]

< 2−Ω(n2ε) + 2−Ω(nε
′
) < 2−Ω(nε

′
).
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