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Chip multicore processors (CMPs) are the preferred processing platform across different domains such as
data centers, real-time systems, and mobile devices. In all those domains, energy is arguably the most
expensive resource in a computing system. Accurately quantifying energy usage in a multicore environment
presents a challenge as well as an opportunity for optimization. Standard metering approaches are not
capable of delivering consistent results with shared resources, since the same task with the same inputs
may have different energy consumption based on the mix of co-running tasks. However, it is reasonable for
data-center operators to charge on the basis of estimated energy usage rather than time since energy is more
correlated with their actual cost.

This article introduces the concept of Sensible Energy Accounting (SEA). For a task running in a multicore
system, SEA accurately estimates the energy the task would have consumed running in isolation with a
given fraction of the CMP shared resources. We explain the potential benefits of SEA in different domains
and describe two hardware techniques to implement it for a shared last-level cache and on-core resources in
SMT processors. Moreover, with SEA, an energy-aware scheduler can find a highly efficient on-chip resource
assignment, reducing by up to 39% the total processor energy for a 4-core system.
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1. INTRODUCTION

Energy is becoming the most expensive resource in computing systems. This trend
will continue as the price of energy continues to rise (increasing in recent years by
up to 70% in several European countries [European Statistics 2014]). Under these
circumstances, metering energy consumption of a computing system enables energy
optimizations, ultimately helping to reduce system operation costs. In a data-center
or supercomputing setting, charging users for energy rather than time makes sense
because energy usage is more proportional to the cost of operations. The establishment
of multicore and manycore as the de facto hardware paradigm across most computing
domains, together with increasing core counts in each new generation, highlights the
need for energy metering. Furthermore, applications are increasingly diverse, with
many different providers and quite different energy profiles. Thus, accurate energy
metering and optimization techniques are essential.

There are two main approaches when it comes to metering energy usage in a com-
puting system:

—Per-Component Energy Metering (PCEM) derives the energy consumed by the main
hardware components such as the CPU and memory. For instance, in the case of
smartphones, several techniques [Carroll and Heiser 2010; Nokia 2012; Pathak et al.
2011] estimate overall system energy consumption, breaking it down per component
(e.g., CPU, memory). Many proposals [Bircher and John 2012; McCullough et al.
2011; Pusukuri et al. 2009] use performance-monitoring counters (PMCs) or system
events such as system calls to carry out such measurements. Power models rely on
collecting data from a set of PMCs, and voltage and temperature information, to
estimate power through correlation.

—Per-Task Energy Metering (PTEM) [Liu et al. 2013, 2014] estimates the energy ac-
tually consumed by each application simultaneously running in a multicore system.
The main challenge of PTEM is dealing with shared hardware resources, as the en-
ergy consumption of applications significantly changes depending on the co-running
applications. Unfortunately, PTEM metered energy for a given task is affected by the
behavior of other tasks running on the same processor. We regard as inappropriate
that the same program with the same inputs should be assigned different energy
costs based on factors beyond the end user’s control.

This article makes the case for Sensible Energy Accounting (SEA). Given a workload
composed of n tasks! T4, Ts, ..., T, running on a processor with n hardware threads
(e.g., n single-threaded cores), SEA consists of estimating, for a given task T;, the
energy that it would have consumed if it had run in isolation with a given fraction
of the hardware resources, denoted fhr. Thus, SEA does not give the actual energy
consumption of a task, but rather an abstraction of the energy consumption that the
end user can rely on to be fair and consistent.

Let us illustrate the concept of SEA and how it differs from PTEM with an example.
We simulate several SPEC CPU 2006 benchmarks on a 4-core multicore architecture
comprising a shared last-level cache (LLC)? and the PTEM technique [Liu et al. 2013].

1In this article, we use the term task to refer to hardware threads belonging to a single-threaded application.
2The experimental setup is described in Section 4.3.
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Fig. 1. Energy usage of namd, astar, and libquantum in different workloads with regard to their energy
usage when executed in isolation with a fair share of resources.

We choose namd, astar, and libquantum benchmarks since they have different (LLC)
utilization levels. We run each benchmark as part of 4 different 4-task workloads.
The other 3 tasks in the workloads are only considered as co-runners, affecting the
LLC behavior of the target benchmark. For instance, workload 1 comprises 3 copies
of namd, which will cause almost no conflict to the target benchmark in the LLC. In
contrast, workload 4 comprises 3 copies of [ibquantum, which makes the most intensive
LLC use across those benchmarks. Workloads 2 and 3 have a mix of benchmarks to
show some intermediate points in terms of LL.C contention. Figure 1 shows the energy
metered to the target benchmark in the workload, which is normalized to the energy
the benchmark consumes when it runs in isolation with a fair share of the cache
(i.e., 1/4 in our case). We observe that, despite the fact that each benchmark executes
exactly the same instructions in each run, the energy it consumes significantly varies
depending on the co-running applications. Sometimes the benchmark consumes much
more energy, up to 2.2x, than when it runs in isolation with 1/4 of the cache, and other
times it consumes as little as 11% of that.

This inconsistency is particularly problematic in environments in which users are
charged for the usage of resources, including energy. Users running the same applica-
tions with the same inputs would observe different energy profiles for their applica-
tions, hence would unfairly receive different amounts billed. SEA helps by providing,
for every task in a workload, the energy it would have consumed if run in isolation
with a fair share of the shared resources. The energy charged is not exactly the energy
consumed, but it is far more fair for end users (their billing solely depends on their
own tasks) and still appropriate for the data-center operator since, typically, actual
energy consumed is lower than energy measured due to using nonpartitioned shared
resources. Note that those energy savings for the operator can be shared with end users
by applying discounts for a mutual benefit. In this case, we assume that fhr = 1/N,
where N is the number of hardware threads (cores in this case) in the system. The best
value of fhr may vary across domains, as shown in the following sections.

In this article, we develop the concept of SEA from a theoretical point of view and
discuss how it can contribute to different computing domains. Then, focusing on the
on-chip resources, we present a low-overhead hardware mechanism to obtain SEA for
a shared last-level cache in a multicore architecture. Our results show that SEA allows

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 60, Publication date: December 2015.



60:4 Q. Liu et al.

savings of up to 39% of energy if used for scheduling purposes. Finally, we present an
SEA mechanism for on-core resources taking into account simultaneous multithread-
ing (SMT). Our results show that prediction error is only 5%, on average, for the core
and between 4% and 8%, on average, for the whole chip when using SMT cores and a
shared last-level cache. We also show how SEA attains much higher accuracy than other
state-of-the-art mechanisms such as evenly splitting the energy across tasks or dis-
tributing it based on several metrics (number and type of instructions, and so on).

The rest of this article is organized as follows. Section 2 provides background on the
different sources of energy consumption and existing approaches for energy metering
and performance accounting. Section 3 explains our theoretical approach towards SEA.
Section 4 presents SEA for a shared on-chip cache and its experimental results, while
Section 5 presents the approach and evaluation for SEA for the core resources and
integrates it with SEA for shared caches to cover the whole chip. Section 6 draws the
main conclusions of this work.

2. BACKGROUND ON ENERGY METERING

SEA comprises two main building blocks: PTEM techniques and performance (CPU)
accounting techniques. In this section, we elaborate on the state of the art for both.

2.1. Per-Task Energy Metering

As energy costs rise, interest in energy metering continues to increase in different
computing domains, from data centers to smartphones [Carroll and Heiser 2010; Nokia
2012; Pathak et al. 2011]. PCEM techniques [Bircher and John 2012; McCullough
et al. 2011; Pusukuri et al. 2009] focus on single-core architectures or multicores in
which only one application is executed at one time and provide per-component energy
estimations. However, processors incorporate an increasing numbers of cores, each
implementing SMT, and running several applications with different energy profiles.

In this scenario, it is essential to determine energy consumption for each task. Shen
et al. [2013] proposed a request-level OS mechanism to meter power consumption of
each server request based on PMCs [Bellosa 2000]. The authors consider both active
and maintenance power, attributing it to the responsible server requests. However,
per-task energy estimates obtained with this approach cannot be validated since, as
stated by the authors, “Request executions in a concurrent, multi-stage server contain
fine-grained activities with frequent context switches, and direct power measurements
on such spatial and temporal granularities are not available in today’s systems.”

Liu et al. [2013] covered this gap by proposing new hardware support for accurate
PTEM in multicores. They propose tracking utilization of hardware resources for each
task, including activities that they have incurred and the fraction of resources that
they have used, to determine their fraction of energy used. Results show that, under
different workloads, the variation of metered energy to some particular tasks can vary
in the range of [—25%,40%] with respect to their average energy.

2.2. Performance Accounting in Multicores

The concept of SEA is inspired by CPU accounting [Luque et al. 2009] developed
for multicores [Luque et al. 2012] and for SMT cores [Eyerman and Eeckhout 2009;
Eyerman et al. 2006; Luque et al. 2013]. CPU accounting measures the CPU utiliza-
tion of a given task during a period of time when it runs on a multithreaded processor.
CPU utilization depends on both the time the task is scheduled on the CPU and the
progress (or slowdown) the task experiences with the multicore. The latter is computed
by determining which accesses to shared resources of a given task are delayed due to
conflicts with other running tasks. For instance, if a task runs for a period of 1,000 cy-
cles, in which it suffers a slowdown of 30%), its progress is 70% of what it would be with
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Table I. PTEM and Performance Accounting in 2 Workloads

h264ref calculix povray namd
PTEM, EPI(nd) 0.41 0.25 0.39 0.27
CPU utilization 68% 83% 75% 64%

h264ref mile sjeng gee
PTEM, EPI(nd) 0.73 0.70 0.43 0.82
CPU utilization 24% 86% 45% 75%

regard to its execution with a fair share of the resources. Thus, it is only accounted
1,000 x 0.7 = 700 cycles.

Performance accounting has been shown to be a powerful tool for performance op-
timization. For instance, it can be used to predict the performance with different de-
grees of contention to co-locate applications within the system. Results show that an
individual application’s performance can be improved by up to 22% and system utiliza-
tion can be increased by 50% to 90% [Mars et al. 2010, 2011; Tang et al. 2011].

Using CPU accounting to scale energy estimated by PTEM as a way to achieve
sensible energy accounting leads to inaccurate results. For instance, instruction mix
and data locality have a large impact on energy that cannot be distinguished with
CPU utilization. To illustrate this point, consider the execution of benchmark h264ref
under two different 4-task workloads, as shown in Table I. In the first workload, h264ref
incurs an Energy-Per-Instruction (EPI) of 0.41 nanojoules (nd) and is accounted 68%
of CPU utilization; in the second workload, h264ref incurs 0.73 nd EPI and accounts
for 24% of CPU utilization. One intuitive way to scale energy is to map CPU utilization
to resource utilization. In this case, this method estimates that, under any resource
utilization ru and EPI, h264ref would incur SEA,, = N;,s * ru x EPI (where N;,s stands
for the instruction count). Thus, in the first workload, SEAq gs = N;,s * 0.279(0.41%x0.68),
and in the second, SEA( 24 = Nj,s * 0.175(0.73 % 0.24). As shown, the discrepancy across
energy estimates in different workloads is huge across workloads (around 60%) if only
CPU accounting is used; thus, SEA is needed.

2.3. Breaking Down Total Energy

Energy is conventionally divided into two main components: dynamic and leakage.
In this article, we further divide dynamic energy into active and maintenance en-
ergy [Shen et al. 2013].

Dynamic active energy corresponds to the energy consumed performing those actions
needed by the instructions executed, such as the energy used to read a register or to
issue an instruction. Conversely, dynamic maintenance energy is the energy wasted
in useless activities not triggered by any particular instruction, such as precharging
bitlines in SRAM arrays when no one accesses those arrays, or the energy used by the
selection logic in the issue queue when no instruction is ready. A perfect power gating
scheme would avoid all maintenance energy consumption.

Finally, all energy wasted due to imperfections of the process technology (e.g., current
leaks, short circuits from supply to ground, and so on) is considered leakage energy.

3. SENSIBLE ENERGY ACCOUNTING IN MULTICORES

In this section, we introduce our theoretical approach towards SEA showing some
cross-domain applications of SEA and present the scenario considered in the rest of
the article.
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3.1. Theoretical Approach to SEA

SEA estimates an accounting for each task 7; while it runs with other tasks (i.e., as a
part of a workload), the energy it would have consumed, E'% ", if it had run in isolation
with a certain fraction of hardware resources, fhr. Note that, in this abstract model,
when running in isolation, 7; would be granted access to that fraction of resources, but
is prevented from using more, although with shared resources 7T;’s usage may be more.

Interestingly, Ef;f " has to be estimated while 7} runs simultaneously with other tasks.
In varied workloads, T; can receive more or fewer resources than fhr, depending on
co-runners. SEA must provide an accurate E’;’f ", regardless of the particular usage of
hardware resources that other tasks have3.

Note that SEA’s accounting model is conservative. It is possible that a given task
may negatively affect co-running tasks by thrashing the cache, for example. In this
case, SEA’s abstract metering model would assign an overall energy cost to the tasks
that is less than the actual cost to the provider. For this work, we assume that such
situations would be dealt with by other means, for example, migrating cache-thrashing
or other misbehaving tasks to cores where they can do less damage. SEA provides the
means to detect those situations.

Problem Statement. Let’s define W as a set of workloads composed of N tasks,
in which a given task 7; is always present. Further define W; € W as W; =

W, W, W, w; . .
<71, T,",....T; >, where T; "’ corresponds to the actual execution of 7} in the

workload W;, and TJ:Vj are any other tasks executing in the workload. In this sce-
nario, the energy accounted to task T; in a workload W, th’(Tin ), has to be as close
as possible to the energy consumed in isolation with the same resource usage fhr by
this task, E’g‘ ". This means that, with SEA, for any workload W; € W, we expect that
B = (T,

Next, we illustrate two concrete applications of SEA: one particularly suitable for

environments in which users are charged by the use of resources they incur and a
second suitable across multiple domains.

Billing. When billing users for their use of resources, it is desirable to ensure that
the same execution of the same application with the same input data result in the
same charge. However, as shown in Figure 1, the energy consumed by a task can vary
drastically depending on the co-runners. In this scenario, SEA can be deployed with
fhr = %, where N is the number of hardware threads (i.e., the number of cores in a
multicore processor) so that fhr corresponds to a fair share of the resources. Each task
T; is always charged E;/ N , which is independent of the actual energy consumed by the
task, since the latter depends on T; co-runners. If the actual energy consumed when

1
running a workload E,;; is smaller than the energy accounted Zf\i 1 ETJ{ , the owner
1
of the data center benefits from the (Zf\; 1 ETI‘{ — E,;q) energy not actually consumed.
This encourages the data-center owner to apply SEA, while the user enjoys workload-
1

independent accounting. In our view, if E,;; > Zfi 1 ETN , it should be the data-center
owner taking this extra cost, since assigning it to any task or proportionally to all tasks
will break the principle of workload-independent energy accounting. As mentioned

3The SEA hardware support proposed in this article is able to estimate the energy a task should be accounted
under several values of fhr at once, not just one. For the sake of clarity, we will be talking about a single fhr
value without loss of generality.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 60, Publication date: December 2015.



Sensible Energy Accounting with Abstract Metering for Multicore Systems 60:7

Table Il. Synthetic Example of Energy Consumption
(in Arbitrary Units) under Different Fractions of Resources
EVA(Ty) E?N(T)) E3¥4Ty) | EYMTy)
Ty 1.7 1.4 1.0 1.3
Ty 1.1 1.0 1.1 1.3

before, these situations can be prevented by properly allocating cache trashing tasks,
for instance.

Energy optimization. Energy efficiency is pursued in all computing domains. Predict-
ing the energy consumed by each task (or the system as a whole) under an arbitrary
workload a priori is complex due to the many different ways the tasks composing the
workload can interfere with each other. SEA can help in this respect. As we show later,
SEA hardware support allows predicting the energy consumed by each task with an
arbitrary fraction of the resources (fhr). For a discretized number of m valid values
F =A{fhry,..., fhry} for fhr, SEA can predict the energy consumed by any task with
any of those fractions of resources, resulting in m estimations. If this is done for ev-
ery task in the workload, we can identify the resource partition that minimizes the
total energy consumed by all tasks: FHR,;, = min ), E:};flr” with >, fhr;, = 1%, and
i; € [1, N]. Note that partitioning of shared resources is not needed by SEA. This
example assumes it as a way to implement this optimization.

For instance, assume a 2-core processor with single-threaded (i.e., non-SMT) cores
comprising a shared 4-way, last-level cache implementing way partitioning. Further
assume two tasks 77 and T so that energy consumption under each different fraction
of LLC is as shown in Table II. We can see that total energy is minimized when
FHR,,;, = <3/4,1/4>, as this leads to a total energy of 2.1 units. Any other partition
leads to higher energy consumption. Also, if tasks are given the whole LL.C space and
executed serially, energy would also be higher (2.6 units) than for FHR,,;,,.

3.2. SEA for On-Chip Resources in Multicores

SEA can be applied to any component of a computing system. In this article, we fo-
cus on on-chip resources in multicore processors, since the CPU is one of the major
energy-consuming hardware blocks. In particular, we focus on a homogeneous multi-
core architecture deploying a shared last-level cache as the one described in Section 4.3.

SEA, as shown later, incurs some hardware overheads. As a result, SEA must be
applied judiciously, taking into account the trade-off between accuracy in the energy
predictions and hardware cost. With that goal, on the one hand, we apply SEA only
to those resources that account for most of the energy consumed on-chip. We first con-
sider the LLC of multicores. In a second step, we consider SMT cores whose resources
are shared (i.e., the core itself, L1 data, and instruction caches). On the other hand,
accounting for the energy for all possible fractions of resources would be infeasible.
Hence, we focus on a set of predefined fractions. We consider each resource as a sepa-
rate entity with a set of predefined granularities that represent the relative amount of
resources assigned. In general, we will have granularities g = %, where M < N.

For the LLC, we consider only set-associative caches in this article, and define cache
ways as the atomic granularity unit. For instance, in a 4-way LLC, N is 4, then, M
is an integer in the range of (0, 4]. % LLC for task T; means that T; can use 1 way in
each set of the LLC. Note that, although SEA partitions the resources for accounting
purposes, this is applied only to an abstract model to estimate energy consumption.
SEA can target either shared or partitioned resources.

4Note that we could distribute less than 100% of the resources, but for the sake of simplicity, we assume that
all resources are used by running tasks.
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For the core, we use the fetch bandwidth as N, so that fetch bandwidth determines
the partition granularity. Then, all other resources in the core, including all hardware
blocks and bandwidths, are partitioned with the same degree. For instance, in an SMT

core fetching up to 4 instructions per cycle, if T; is given % of the core, it receives %

fetch bandwidth, % registers, i issue queues entries, % L1 ways, and so on. By doing so,
we have a limited number of possible partitions for each hardware resource, and their
granularities facilitate the hardware implementation of such partitions.

The main challenge for SEA is how to compute E’;Zl " for any task and any valid
fraction of the resources. In the next sections, we present our approaches in steps, first
for a multicore processor in which only the LLC is shared, and then for a processor in
which both core slices and LLC are shared. In both cases, we first propose an ideal SEA
mechanism, then an efficient solution with hardware support that approximates such
ideal values, assessing how our implementation of SEA performs in comparison with
the ideal scenario.

4. SEA FOR MULTICORES: THE LLC

This section presents our approach for SEA in the presence of a shared LLC. First, we
describe an ideal SEA model. Then, we propose an accurate, yet low-cost, implementa-
tion. Finally, we evaluate the accuracy of our implementation and illustrate the use of
SEA for LLC in a practical case study.

4.1. Ideal SEA for the LLC

As explained in Section 2.3, dynamic active energy is proportional to the number of LLC
accesses performed by 7;. Maintenance energy and leakage energy are proportional to
the time and the fraction of the LLC used by T;.

Sensible LLC active energy accounting. The key insight to accurately accounting
for active energy, E,., is that each action type in the cache incurs different energy
consumption. For instance, a write operation requires more energy than a read. Hence,
in the ideal case, we should collect the number of events of each action type that a task
experiences with a given fraction A—J\{ of the LL.C space, denoted %LLC:

Mo ActionTypes Mire
Ea]\ét (Tl) = Z Numo%tionj(Ti) x Etfcltlgnj’ 1)
Jj=1
where EaL‘:Ltgnj stands for the energy per access to LLC of type action; (e.g., read-hit,

Yrrc

write-miss, and so on). Numg,, (T;) is the number of LLC accesses of type action;

performed by the task T if it is given M out of the N LLC ways.
M

The difficulty lies in estimating Numal‘éthL,s (T};) for any valid value of M (number of

cache ways) when T; runs as part of a workload using a fully shared LLC. This is so

because, under each workload, 7; may receive a variable amount of cache space, which

affects the number of events of each action it has.

Sensible LLC maintenance energy accounting. The dynamic maintenance energy of
the LLC is the energy consumed during idle periods due to useless activities such as
clocking and precharging bitlines when no access occurs. Potentially, LLLC maintenance
energy consumption could be avoided if we turn off unused LLC parts (e.g., banks, lines,
and so on). The fact that they are used by tasks prevents us from turning them off,

so thus account maintenance energy proportionately to the cache space each task is

entitled to use. Thus, maintenance energy to be accounted to 7; given a fraction %
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of the LLC space is the same fraction of the total maintenance energy. Such total
maintenance energy is the one that would be consumed assuming that the LLC is idle
when T; does not use it. Thus, maintenance energy is accounted as follows:

mam main

M LLC ‘ More ActionTypes
iy = ~ <P ExecTime N"C(T;) — Z Num[,. (T)xlatencyactwnj (2)

PLLC is the LLC maintenance power, ExecTime~ LLC(T )is the total time task 7; when

executed with 2 LLC ways, and Latencyactmn stands for the latency of an action of type

actionj. PLLC and Latency(fg;gn can be provided by the chip vendor. However, some

(T ), which is also needed to

account active energy, and the execution time that would be had with exactly 4 ~ LLC

parameters still need to be determined, such as Numg,,

ways, ExecTime™ LLC(TL). Note that such execution time cannot be easily estimated
from the actual execution time when running as part of a workload sharing the LLC
given that intertask interferences in the LL.C may increase execution time, and 7; may
use more than % cache space, thus decreasing its execution time.

Sensible LLC leakage energy accounting. Finally, accounting leakage energy to T; for
a given fraction % of the LLC space can be done based on the leakage energy per time
unit, the fraction of cache space used, and the execution time of T}, as follows:

M
EEEC(T)) = — x PELC x ExecTime NLLC(T,). 3)

N leak
PLLC is the LLC leakage power. As for the maintenance energy, we need to determine

ExecTime ™ EC (Ty).

4.2. Implementation of SEA for the LLC

The accounting mechanism introduced in Section 4.1 is based on the estimation of the
number of LLC accesses of each type (for active and maintenance energy accounting)
and execution time task of 7; (for maintenance and leakage energy accounting) with
% ways of the LLC. Next, we describe affordable ways to approximate those values
accurately.

Estimating access counts. Our approach to estimate the number of LLC accesses of
each type when % ways of the LLC are used relies on the Auxiliary Tag Directory
(ATD) proposed by Qureshi and Patt [2006], which focuses on a least recently used
(LRU) replacement policy. The LLC is shared among all tasks, each of which keep a
local copy of the tag directory, the ATD, which is only updated with the accesses of the
owner task. If the LLC implements LRU, one can predict whether an access would hit
in the LLC for any number of cache ways M lower or equal to the actual number of
LLC ways (V). This is so because LRU keeps in each set the position in the LRU stack
of each address, thus the order in which they will be evicted if they are not reused. For
instance, if in a 4-way LLC we access addresses A, B, C, D such that they are placed
into the same set, the LRU stack, from the most recently used (MRU) entry to the LRU
entry is as follows: <D, C, B, A>, thus meaning that if a new cache line is fetched into
this set A will be evicted.

Based on the LRU stack, one can determine whether a given access would hit or
miss with M ways (where M < N) by simply checking if it hits any of the M MRU
entries. For instance, in our example, if we want to know whether accesses would hit in
a 2-way cache given the LRU stack of the 4-way cache, we only need to check whether
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it hits in the 2 most recently accessed entries. In our example, only accesses to D and
C would be hits. In general, we can set up N + 1 counters, C1, ... Cy,1 so that C; where
1 < i < N is incremented every time there is a hit in the way; of any cache set, and
Cy.1 is incremented if X misses in all cache ways. Then, the number of hits and misses
for % ways of the LLC is obtained as:

M
Num ) = 3¢ )
Jj=1
Mirc N+1
Numpss (T;) = Z C;. (5)
J=M+1

If different types of accesses have different energy consumptions (e.g., read and write
operations), then N + 1 counters need to be kept by each operation type so that each
access updates the counter corresponding to its type. In practice, pseudo-LRU re-
placement is commonly used for LLCs. Although the ATD has been devised originally
for LRU caches, it has been shown to be highly accurate if pseudo-LRU is used in-
stead [Kedzierski et al. 2010]. Adapting the ATD to other replacement policies is left
as future work and beyond the scope of this article.

Therefore, the ATD allows computation of the number of accesses of each type

M
(Num(%f;l;,g(Ti)). However, keeping one ATD per thread may be overly costly. Thus,

Qureshi and Patt [2006] propose the Sampled ATD (SATD), which relies on keeping
the tags only for a reduced number of the cache sets. For those sets, also computed is
the overall hit probability for the different number of ways, A1, ..., hy, so that on access
to a set not present in the SATD, which will likely be the case of most accesses, it can
be predicted to be a hit or a miss. For that purpose, we use a Monte Carlo approach,
which offers a high degree of accuracy and can be applied to each access at runtime.
In particular, a random number RN is generated in the range [0, 1]. This RN and the
actual hit probabilities for each number of ways, A1, ..., hy, are used to decide whether
the current access should be a hit or a miss under each number of ways. Given that
increasing the number of cache ways can only increase the hit rate®, we have that
h; < h;;1 for 1 <i < N. In order to mimic a given hit probability A (e.g., h = 0.7), we
use RN such that the access is a hit if RN < h and a miss otherwise. Thus, we have
to find the value of £ where 1 < 2 < N + 1 so that h,_1 < RN < h;. Such a k value
indicates that the access is a hit for caches with M > k. For instance, in our example of
a 4-way cache, we could have hit probabilities 0.2, 0.3,0.7,0.9. If RN = 0.6, then £ = 3
as RN is between hy and h3, thus meaning that the access is assumed to be a hit if
M > 3, thus if the thread is given 3 or 4 LLC ways. Similarly, if RN = 0.95, then &£ = 5,
meaning that the access is a miss for any number of ways in the LLC.

The SATD trades hardware cost for accuracy: the lower the number of sets sampled,
the lower the cost, but the lower the accuracy. The particular degree of sampling used
for the SATD is indicated later in the Results section.

Estimating the execution time with a given cache fraction. CPU accounting for multi-
cores, introduced in Luque et al. [2009], relies on using the ATD to decide whether each
cache miss for a task T; would hit or miss with a given fraction of the cache (typically a

5Given a cache with X ways, increasing its size by any number of ways (Y) so that its total number of ways
becomes X + Y can only have a hit rate higher or equal than with X ways only. This is so because the LRU
stack for the X ways closer to the MRU position in the X+ Y cache is identical to the LRU stack of the X-way
cache. Thus, all accesses hitting in the X-way cache will hit in the X ways closer to the MRU position in the
X+ Y-way cache. Then, the remaining Y ways may provide some more hits.
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fair share of the cache space). A miss is caused by intertask interferences if the access
hits in the task’s local ATD and misses in the LLC. In that case, if the processor stalls,
the cycles needed to serve the miss are not “accounted” to the task, meaning that the
task would not suffer that miss, hence the associated penalty, if it had run a given
share of the cache. Similarly, this CPU accounting mechanism accounts extra cycles to
T; in the case of an LLC hit that would have been a miss if 7; had run with a given
fraction of the cache space.

This CPU accounting mechanism can be used to estimate the execution time that a

task would have used to run with a given fraction of the resources, ExecTime%LLC(Ti).
This helps in estimating the maintenance and leakage energy for a task since they are
affected by the time that the task would run with a given fraction of the resources.
Hence, we extend the CPU accounting mechanism for an N-way LLC to estimate the
execution time of the task under any fraction of cache ways (%, where 1 < M < N).
CPU accounting uses the ATD as if the full cache is allocated to the task T;. Cache
accesses are considered to hit if they hit in the ATD, and to miss otherwise. In our
case, we want to retrieve such information for different numbers of cache ways. The
ATD provides such information by considering only those M entries closer to the MRU
position. Thus, given a cache access, we can determine whether it would hit in any
cache with 1 < M < N cache ways by checking the M ATD entries closer to the MRU
position. Then, we can use such information to perform CPU accounting simultaneously
for all different cache sizes. For each task, we need N cycle accounting (CA) registers,
CA, ..., CAy, which are updated as described in Luque et al. [2012], but where the
decision on whether an access should be a hit or a miss — thus how CPU cycles need
to be accounted — for C Ay is done assuming ¥ cache ways. Finally, note that CPU
accounting can be implemented on top of the SATD with the same pros and cons as for
counting the number of events of each type.

Overall, hardware requirements of the SEA for the LL.C approach include an SATD
for each task, the minimal logic and registers for accounting the CPU cycles per task
introduced by Luque et al. [2012], and N+1 counters per task to obtain access counts
for different numbers of LL.C ways at once.

4.3. Evaluation

In this section, we assess the accuracy of SEA estimations for the LLC®. We also
compare SEA with other intuitive methods that could be used to account LL.C energy
consumption. Finally, we illustrate by means of a case study how SEA can be used for
energy optimization.

4.3.1. Experimental Setup. We use an enhanced version of SMTSim [Tullsen et al. 1998]
extended with power models analogous to those of Wattch [Brooks et al. 2000] and
MCcPAT [Li et al. 2009]. Those power models are built on top of the CACTI 6.5 simulation
tool [Muralimanohar et al. 2009]. CACTI is a flexible tool modeling delay, energy (active
and leakage) and area of cache memories and SRAM-based arrays. We assume CMP
architectures with single-threaded cores (SMT cores are covered in Section 5). Each
core has private data and instruction L1 caches, and a shared on-chip LLC accessed
through a shared bus. Details can be found in Table III. We have 4 processor setups,
1-, 2-, 4-, and 8-core setups.

Benchmarks. We use traces collected from the whole SPEC CPU 2006 benchmark
suite using the reference input set. Each trace contains 100 million instructions,

6Due to our proposed modifications to the microprocessor design, it is necessary to evaluate SEA in simulation
rather than on real hardware.
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Table IlI. Processor Configuration
‘ Chip details ‘

Core count 2,4,and 8
Core type 1-, 2-thread SMT (Section 5)
‘ Core details ‘
Core type out-of-order
Fetch, issue, commit bandwidth 4 instr/cycle
Issue queues size 48/48/48 entries for INT/FP/LS
Register file 80 INT, 80 FP
Inst L1 32KB, 4-way, 32B/line (2 cycle)
Data L1 32KB, 4-way, 32B/line (2 cycle)
Inst TLB 256 entries fully associative (1 cycle)
Data TLB 256 entries fully associative (1 cycle)
\ Shared L2 Cache \
| Unified L2 | 2, 4MB, 16-way, 13/300 cycle hit/miss |

selected using the SimPoint methodology [Sherwood et al. 2001]. Benchmarks in a
workload are rerun until all of them have executed at least once.

Running all N-task combinations is infeasible, as the number of combinations is
too high. Hence, we classify benchmarks into two groups depending on their memory
behavior. Benchmarks in the memory group (denoted M EM) are those presenting an
LLC miss rate higher than 1%, that is: mcf, milc, lbm, libquantum, soplex, gcc, bwaves,
and omnetpp. The rest of the benchmarks are CPU (ILP) bounded and are denoted ILP.
From these two groups, we generate 3 workload types denoted I, M, and X depending
on whether all benchmarks belong to group ILP, MEM, or a combination of both.

We generate 8 workloads per group and processor setup. Benchmarks in each work-
load are randomly picked out from all the benchmarks of the corresponding type. In
the case of X, half of the benchmarks belong to ILP and the other half to MEM. We
do not put any constraint on whether benchmarks can repeat in a particular workload
since the random selection of benchmarks is always performed out of the corresponding
(original) group of benchmarks.

Metrics. In order to evaluate the accuracy of SEA, we use as a reference the actual
energy consumption of a benchmark when it runs alone with the corresponding resource
fraction. For instance, if we aim to estimate the LLC energy of a benchmark when it
has only half of the LLC ways, the reference is a single-core processor setup with an
LLC with half of the cache ways, for which the benchmark runs alone. Hence, in each
experiment, we measure the prediction error of each model with respect to the actual
energy consumed when one task runs with the specified fraction (%) of resources alone,
which is computed as follows:

EnergyAccount,,, 4,

(6)

PredictionError = |1
EnergyConsum u

4.3.2. Other Accounting Mechanisms. For the sake of completeness, we consider the en-
ergy estimates with some other intuitive and simplified models:

(1) Evenly split model (ES). This model assumes that energy consumption is split
evenly across tasks during the execution of the program. Note that this model is
applicable only when fhr = 1/N.

(2) Proportional to Access (PTA). PTA is a simple approach based on distributing the
LLC energy proportionally to the number of accesses performed by each task.
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Fig. 2. SEAprc prediction error for a workload consisting of benchmarks astar, libquantum, namd, and
sphinx3 in a 16-way associative LLC.

(3) PTEM. As mentioned before, PTEM meters the energy consumption for each task
based on the utilization of resources, including the activities incurred by each task
and the fraction of resources used.

4.3.3. SEA, ¢ Accuracy Evaluation. In our multicore architecture with single-threaded
cores, the main sources of intertask interferences are the LLC and the shared bus. Our
results show that the latter has negligible consumption in our architecture, thus we do
not consider it for SEA as it does not pay off the extra hardware requirements.

We start analyzing SEA results for a given 4-task workload consisting of the following
benchmarks: namd that has few LLC accesses regardless of the space available; astar,
which accesses LLC often and whose LL.C misses increase sharply when LLC space is
decreased; sphinx3, which also has frequent accesses to LLC, but its LLC misses mildly
increase when LLC space decreases; and libquantum, which has a large amount of LLC
accesses but barely reuses the data in LLC, thus it is highly insensitive to the available
LLC space and produces constant evictions.

From a single run of these benchmarks, SEA is able to obtain predictions of the en-
ergy that each benchmark would consume running in isolation under any partition of
the cache. We evaluate SEA accuracy by comparing those predictions with the actual
consumption each task has under each cache partition setup (see Figure 2). We can see
that the error of SEA, which is computed as shown in Equation (6), is low for all cache
partitions with a deviation of up to 4% and an average error always below 1.8%. In gen-
eral, the prediction inaccuracy of SEA mainly comes from two sources: the estimation of
the number of cache accesses by sampling the ATD and performance accounting based
on estimating the number of extra cache misses with a given cache size and conflict
misses incurred by co-runners. Some benchmarks show higher accuracy for a different
cache partition. For instance, namd and libquantum, whose miss counts barely change
with their varied given cache size, obtain highly accurate estimations across all cache
sizes. Somewhat higher variations are observed for those benchmarks that are more
sensitive to the space available, such as astar and sphinx3, with no particular trend
with regard to the number of cache ways. Oscillations for different numbers of cache
ways are mainly due to the fact that active, maintenance, and leakage energy are es-
timated separately, which may compensate or aggregate estimation errors depending
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Fig. 3. LLC energy accounting error, under CMP 4- and 8-core setups, using I, X, and M type workloads.

Table IV. SEA-SATD Prediction Error Standard Deviation
I | X | M| I | X | M
4 cores ‘ 3.5% ‘ 4.3% ‘ 3.7% H 8 cores ‘ 4.8% ‘ 4.2% ‘6.1%

on whether each source of energy consumption is overestimated or underestimated for
a given number of cache ways. Still, prediction error is rather low.

For the next experiment, we focus on the case in which fhr = 1/N, that is, SEA
predicts when each benchmark receives a fair share of the LLC. Figure 3 shows the
prediction error of the different models under 4-core and 8-core CMP setups: ES, PTA,
and PTEM. Two versions of SEA are evaluated: with full ATD and with SATD.

As we can observe from the figure, ES, PTA, and PTEM fail to accurately predict
the energy to account to each task. This is expected, as those models do not capture
intertask interferences that impact energy consumed and how energy consumption for
a task deviates from the reference. ES, PTA, and PTEM have prediction errors above
25% across all workload types and core counts and, on average, all of them produce
deviations above 70%. On the other hand, SEA has consistent prediction accuracy,
which has an error below 3% across all workload types and core counts, thus showing
the excellent improvement of the method. When using SEA-SATD, whose hardware
cost is lower, the error only grows to 4%. For the sake of completeness, Table IV shows
the standard deviation for SEA-SATD. As shown, the variation of the prediction error
across the whole set of workloads is moderate. Overall, SEA-SATD is highly accurate
and far better than any state-of-the-art method.

4.3.4. Energy-Oriented LLC Allocation. In this section, we present a case study that shows
how to use SEA as a powerful mechanism enabling energy savings. Similar approaches
have been proven effective for performance optimizations [Mars et al. 2010, 2011; Tang
et al. 2011]. Those approaches show that the performance gain could be significant
when performance can be accurately accounted. By tracking the tasks running in
a workload, SEA accurately estimates the energy consumed by each task under each
number of allocated LL.C ways, thus enabling efficient LL.C space allocation algorithms
with no need to run all programs under all configurations. In this section, we use a
simplified scenario to show the potential for energy saving if we can choose the most
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optimal resource allocation scheme for tasks in a multi-benchmark workload regardless
of the system throughput and per-task performance. In this case, we assume a CMP
architecture with a nonshared LLC, in which each task accesses its allocated LLC
space exclusively. In this experiment, we have included the energy consumption of the
memory. The memory system is simulated using DRAMsim2 [Rosenfeld et al. 2011],
which is connected to our processor simulator. The power model in it is obtained from
MICRON data sheets [Micron 2007]. Memory energy accounting is not in place and
decisions regarding the most convenient cache partition are performed only based on
core and LLC energy accounting. Thus, if memory energy accounting were in place,
there would be potential for identifying better cache way partitions to further increase
the energy saving. Sensible memory energy accounting would need a specific technique,
which is part of our future work. Based on the fact that per-task memory energy
metering has already been proposed [Liu et al. 2014] and SMT core and LLC energy
accounting has been proved doable on top of energy metering, we do not expect any
impediment in devising accurate memory energy accounting techniques.

At first, based on PTEM measurements, we can observe that benchmarks have var-
ious energy profiles with different numbers of allocated LLC ways. For some bench-
marks, their consumed energy increases with more LLC ways. This is due to the
correspondingly increased LLC power overlaps the reduction on execution time benefit
from more LLC space. In contrast, the energy consumption of some benchmarks de-
creases with more allocated LLC ways. Analogously, this happens because their LLC
misses reduce sharply with more cache space allocated, which significantly improves
their performance. Also, there are several benchmarks with varying behavior. For those
benchmarks, till a given point, allocating more LL.C ways pays off because the energy
saved due to the reduction in misses is higher than the extra energy consumed by those
ways. Beyond that point, their LLC misses do not further significantly decrease and
then, the energy consumed is increased.

Therefore, in this section, we classify benchmarks differently from what we showed in
Section 4.3.1, since this helps to better understand the different characteristics across
benchmarks. In particular, we divide programs into 3 categories: those whose energy
increases as LLC space increases (i), those whose energy decreases as space increases
(d), and the remaining ones that have a U-shape trend (u). i programs do not make
efficient use of the cache space, thus increasing LLC space will simply increase their
maintenance and leakage energy. They all have minimized energy consumption when
only 1 LLC way is allocated. In contrast, d programs exploit LLC space efficiently, thus
they minimize their energy consumed when they are allocated all LLC ways. Finally,
u programs minimize their energy consumption with a number of ways larger than 1
and smaller than the whole cache space.

We compare the energy savings with the best LLC allocation with a fair share al-
location in which each task gets the same number of cache ways. In Figure 4, bars
show average energy saving across workloads in a particular category while the lines
on top of them show the maximum savings. Workloads are built by combining half of
the benchmarks of one type and half of another type.

As shown, the lowest average energy savings correspond to the cases in which all
benchmarks are of type i (ii case) or of type u (uu case). This is expected, as i type
benchmarks have a near-constant active energy consumption, and the optimal mainte-
nance and leakage energy remain roughly constant regardless of how space is split. In
the case of uu workloads, the baseline space distribution is already close to the optimal
one as each program needs a fraction of cache space somehow in the central part of
the distribution. In other cases, it is easy to find some benchmarks with different sen-
sitivities to the amount of cache space, thus there are workloads with energy savings
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Fig. 4. Energy saving with varied LLC space allocation, comparing with fair allocation.

between 10% and 40%. These results confirm how SEA can be used to enable other
energy-saving techniques.

5. SEA FOR MULTICORES: SMT CORES

This section introduces our approach for SEA in the presence of SMT cores. Following
the same methodology in LLC, we first present the ideal SEA model in core and then
a feasible, yet accurate, implementation. Finally, we evaluate the accuracy of our im-
plementation for SMT cores and for a CMP architecture with shared LLC and SMT
cores.

5.1. Ideal SEA for an SMT Core

Active, maintenance, and leakage energy are accounted separately, as in the case of
the LLC.

Sensible SMT core active energy accounting. Active energy depends on the number
of actions performed in each hardware component by a task 7T;. Therefore, ideally,
we would like to track the number of actions that would be performed by 7; in each
resource if it was allowed to use % of this resource exclusively. While defining % of
the resources is relatively easy for storage resources (e.g., caches, register files, issue
queues, and so on), bandwidth resources (e.g., fetch bandwidth, issue bandwidth, and
so on) can be split by allowing different tasks to use a fraction of the bandwidth [Huang
et al. 2003b]. However, other resources, such as functional units, may need to be split
in a different way. Given a partition granularity of N, if a task is allocated ¥ of the
resources, this bandwidth splitting can be achieved exactly by allowing this task to use
all resources during M out of N cycles. Still, in order to provide homogeneous behavior,

we do so by providing the closest fraction to A—A{ every cycle. For instance, if we have
4 adders and a task is allocated % of the resources, it will get 2 adders every cycle.

Similarly, if there are 2 adders and a task is allocated % of the resources, it will get 1
adder every two cycles.
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Active energy is, therefore, accounted as follows:

Res [ Actions(k)

M
Eg M) =" Y Numlp (T x Ekacsion, |. (7

k=1 j=1
where Res stands for the number of different resources in the SMT cores, Actions(k) for
the number of action types in resource k, N umaczon(k) (T;) for the number of actions of

type j performed by task 7} in resource k£ when given 3 M of this resource, and E(R)action,
for the energy of one action of type j in resource k.

Sensible SMT core maintenance energy accounting. In order to determine the mainte-
nance energy to be accounted to one task 7; when given % of the core resources, we use
the same approach as in Liu et al. [2013]. First, we classify resources into two differ-
ent categories: occupancy-based (o Res) and nonoccupancy-based (nRes). Maintenance
energy for o Res is accounted exactly as for the case of the LLC. Conversely, nRes main-
tenance energy (e.g., selection logic in the issue queue when no instruction is ready)
is simply split proportionally to the fraction of resources allocated. Thus, maintenance
energy is accounted as following:

oRes nRes [ ExecTime N cm(Tl)
lilvacz(:zre(T) - Z mam(T ) + ~ X Z Z mam(x) : (8)
x=1

mam(T) for oRes is obtained as for the LLC (see Equation (2)). ExecTime~ COre(T)

stands for the execution time of 7; when given 3 M of the core resources and E (x) is

mam
the maintenance energy consumed by resource % in cycle x when T; executes with 3- M of
the resources.

Sensible SMT core leakage energy accounting. Leakage energy can be accounted using
the same methodology as in the LLC. Given a fraction % of the core resources, leakage

energy accounted to task T; derives from the core leakage power per time unit (P

and the execution time of 7; with % of the core:

M

EY(T) = ~ < P ExecTime ¥ (T}). (9)

5.2. Implementation of SEA for an SMT Core

Tracking the activities of a given task T; in all resources in the core is unaffordable.
Instead, we propose periodically running a task 7; in isolation with a given fraction
of the core resources and directly measure the energy, based on which we account
the energy sensibly. Thus, we make use of the Micro Interval-Based Time Accounting
(MIBTA) approach introduced in Luque et al. [2012], which has been used for per-
formance accounting, and PTEM [Liu et al. 2013] for per-task energy measuring to
derive the accounting energy to T;. MIBTA divides execution time into time intervals
in which the execution of running tasks are sampled alone in turn. During these sam-
ple phases, while one task has been granted the use of all resources in the core, the
other running tasks are stalled temporarily. In our case, we need to carry out such
sampling, but only allowing 7; to use ]‘—13 of the core resources. The purpose of using

these approaches is to sample T;’s energy consumption periodically when it uses % of
the core resources alone. During the sampling phases, PTEM can be used to measure
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T;’s actual energy consumed in the core. PTEM provides accurate measurements of the
active, maintenance, and leakage energy consumption in the core, thus their addition
during the sampling intervals provides an accurate estimate of the energy accounting
to Tl‘.

In the case of accounting active energy, the metered energy is nearly the energy
that needs to be accounted. However, maintenance and leakage energy to account
correspond to the fraction of maintenance and leakage energy of the whole core. Thus,
SEA.,. is estimated as follows:

M M
N core ~ core

M

EX"(T)) = P2 ppy(T) x ExecTime gy, (T)) (10)
M M u u

Epgin (T)) = ~ Py e (Ty) x ExecTimey o, (T;) (11)
¥ core M M core . L. 4 core

E;,. (T) = ~ X [)le]\([zk,PTEM(Ti) x ExecTimeypra (T;). (12)

M M M
P(,Ig:;r;EM(Ti), Pml‘;fZ?;TEM(Ti), and H;Z?;;EM(TL') stand for the active, maintenance,

and leakage power, respectively, estimated by the PTEM mechanism when running T;

M
Nceore

during sampling periods. ExecTimeyp,(T;) stands for the execution time predicted
during the MIBTA phases when 7j is running with % of the core resources.

Before entering the MIBTA phases (every 2.6 million cycles [Luque et al. 2013]), the
execution of all tasks is stalled. Then, a controller restores the execution of a particular
task to allow it to run alone in the core for 50,000 cycles to warm up. When time is
up, the controller grants it another 50,000 cycles, during which some specified events
are monitored to predict its execution time and energy consumed in this condition. The
state of the other tasks is stored in the LLC when they get stalled, and their execution
is restored after each MIBTA phase. In order to provide SEA,,,. capability, right after
stalling the execution of the other tasks, the core is reconfigured to use % resources.
Adaptive processors (or reconfigurable processors) have already been studied to reduce
power consumption [Albonesi et al. 2003; Dhodapkar and Smith 2002; Huang et al.
2003b]. In each component, such as the branch predictors and the buffers [Huang
et al. 2003a]; register files [Abella and Gonzalez 2003; Homayoun et al. 2008]; issue
queues [Cazorla et al. 2004; Folegnani and Gonzalez 2001; Petoumenos et al. 2010];
caches [Albonesi et al. 2003; Qureshi and Patt 2006; Suh et al. 2002]; functional units;
and fetch, decode, and issue bandwidth [Albonesi et al. 2003; Dhodapkar and Smith
2002; Huang et al. 2003b], power gating techniques have also been proposed with
minimal area and energy overheads to power down different sections, with negligible
impact on the delay.

With these techniques that we assume to be already in place, in the cache-like
blocks, SEA..r. can assign X of the ways to T; during the MIBTA phases with the
remaining ways power gateé\’. Similarly, during the sample phases, T; is only allowed
to use % entries in the SRAM-like components, such as the issue queues and renaming

registers. In contrast, nonoccupancy-based blocks are reconfigured in a way that A—Z\f of
the bandwidth and the resources can be used in every cycle. If this fraction cannot be
applied exactly, the closest value is enforced while still allowing 7; to progress. For
instance, if T; is entitled to use % of the resources and there are 3 adders, it will be
allowed to use either 1 or 2. In this case, we break the tie by providing the lowest
value (1 adder) given that, for some resources, fractions can only be rounded up (e.g.,
if there is just 1 integer multiplier). SEA.,. has considered ALUs; on-chip network
bandwidth; as well as fetch, decode, issue, and commit bandwidth. Note that, during
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Table V. SEA Hardware Requirements

‘ ‘ Description ‘ HW overhead (8-core) ‘
(S)ATD ATD with sampled sets Total of 1920B per task, e.g.,
LRU stack distance counter 0.7% of the LLC space
ITCA logic to determine IT misses Negligible

logic to account CPU cycles

Reconfig. core Branch predictor and buffers [Huang Negligible
et al. 2003al, register file [Homayoun
et al. 2008], issue queue [Cazorla et al.
2004; Folegnani and Gonzalez 2001;
Petoumenos et al. 2010], ALU, and
fetch, decode and issue

bandwidth [Albonesi et al. 2003].

MIBTA CycleAccountyipra 2B per task

InstCommitygra 2B per task
PTEM Energy Metering Registers 0.63% chip area overhead,

Occupancy Counters 0.3% energy overhead [Liu et al. 2013]
SEA Energy Accounting Registers 2 counters of 4B per task

Target core and LLC resources 2 counters of 4B per task

each MIBTA phase, some instructions may be squashed (i.e., when tasks are stalled
to run one of them in isolation). They are reexecuted when the corresponding task is
resumed since the program state (register contents) has been saved. In addition, the
stalled task may have its used cache lines evicted by the running task, and thus incur
extra cache misses. The result performance loss is detailed in Luque et al. [2013] and
described in later sections.

5.3. Putting It All Together

We have introduced the SEA proposals in LL.C and SMT core separately; the correlation
must be taken into account when integrating them. In general, there is no conflict on
the configurations of SEA;;¢c and SEA.,., in the sense that one can use any fraction
of their resources. Note that SEA.,. needs to account energy of each task in the
core sequentially by sampling them one after another in a particular order. However,
the SEA;c does not impose any constraint on how tasks must run to account their
energy. Therefore, while MIBTA, needed by SEA.,., samples one task at a time in any
particular core, this can occur while other tasks run in other cores. Thus, the overhead
of serializing task execution for sampling is limited by the degree of multithreading
in one core, but not by the number of tasks in the whole processor chip. Therefore,
one can sample tasks in different cores simultaneously in a way that scalability is not
challenged when a large number of cores is in place.

Tasks interacting in the L1 cache have an impact on the number of LLC accesses,
potentially causing inaccuracy in SEA.;;,. To eliminate this effect, we monitor the
number of LL.C accesses per instruction during MIBTA phases when tasks run in iso-
lation, thus have exclusive access to the L1 cache. The resulting LLC access frequency
is assumed constant until the next MIBTA phase.

SEA hardware support and overhead. Regarding the hardware support-incurred
overheads, SEA mostly inherits them from PTEM and MIBTA, as shown in Table V.
Such overhead has been proved low, as can be seen in the same table with an 8-core
configuration. Both PTEM and MIBTA require the SATD, whose area overhead is
around 0.7% of the LL.C [Luque et al. 2012, 2013; Qureshi and Patt 2006]. Few extra
registers are needed by PTEM and MIBTA with negligible area overhead. In terms of
energy, overheads are largely below 1%, which have been reported for PTEM, and they
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have been shown not to grow with the number of cores [Liu et al. 2013]. MIBTA also
introduces some performance overhead, which ranges between 1.0% and 3.2% [Luque
et al. 2013]. Given that we have enhanced the MIBTA approach by allowing sampling
tasks in all cores simultaneously instead of serializing task samplings across cores, the
overhead is mildly reduced and does not grow with the number of cores. Our results
show that MIBTA performance overhead remains around 2%, on average, regardless
of the number of cores. In terms of energy, reconfiguring components in the core needs
little extra logic to perform clock (or power) gating of unused parts during MIBTA
monitoring periods. Such logic has been proven to have negligible area and power
overhead and, in fact, it has been used to implement low-power mechanisms sharing
the costs [Albonesi et al. 2003; Cazorla et al. 2004; Folegnani and Gonzalez 2001;
Homayoun et al. 2008; Huang et al. 2003a; Petoumenos et al. 2010]. Finally, SEA
incurs very low overhead on its own due to those registers to store the accounted
energy per task for the target core and LLC resources.

Other considerations. SEA may require considering temperature and voltage changes
due to DVFS. We note that the LL.C typically operates in a separate voltage domain, as
its voltage cannot be easily decreased. Memory cells are sized to maximize integration,
thus small transistors are used that are highly susceptible to process variations re-
quiring high-voltage operation to read/write cells. Still, this is not a concern given that
LLC active energy is low and idle banks are typically kept at lower voltages. Tempera-
ture variation is negligible in the LLC as its low activity keeps it at a mostly constant
temperature.

Regarding the core, we note that DVFS becomes harder to use due to the need for
decreased voltage for energy savings and increased minimum operating voltage to tol-
erate process variations [Bickford et al. 2008]. As a consequence, the acceptable voltage
range narrows down in each technology generation. On the other hand, temperature
variations in the core can occur. SEA can deal with voltage and temperature variations
in both the core and the LLC by having as many energy constants (those that need to be
provided by the chip vendor) as valid combinations of voltage and temperature ranges
are allowed for the corresponding hardware block. For instance, if the processor can
operate at 0.8V, 0.9V, and 1.0V, and temperature ranges are discretized as 320K-330K,
330K—340K and 340K-350K degrees, then 9 sets of constants are required to update
the energy accounted to the tasks depending on the current voltage and temperature.
Conversely, the ATD (or SATD) and the logic to predict whether accesses would hit in
cache do not need to be changed given that such information is voltage and temperature
independent. Overall, the overhead of this approach is low, as few hardwired constants
need to be replicated.

Some Operating System (OS) support is needed to read energy accounting registers
(EARs) when there is a context switch. This issue is analogous to the case of PTEM. In
particular, we must expose to software the EARs for each hardware thread so that on
a context switch the OS can reset it when a task is scheduled in and read it when it is
switched out; its value is aggregated to the corresponding task. On a context switch,
the contents of the ATD (or SATD) will likely differ from those that would be had if the
task was run to completion without being scheduled out. This might have some impact
on SEA accuracy. However, we have verified empirically that tasks typically fetch their
working set to different cache levels in less than 200,000 cycles, which is less than
0.1ms in a processor operating at 2GHz. On the other hand, OS quanta vary from
4ms to 100ms for common Linux and Windows implementations, thus making context
switch inaccuracy negligible; such inaccuracy falls below the inaccuracy of SEA method
itself. Moreover, many tasks are not scheduled out on a context switch, further reducing
such inaccuracy.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 4, Article 60, Publication date: December 2015.



Sensible Energy Accounting with Abstract Metering for Multicore Systems 60:21

The actions performed by the OS working on behalf of a given task (e.g., on a system
call) are assumed to be part of the task, thus the OS accounts such energy to that task.
The energy accounted to other OS activities (i.e., “housekeeping” activities) can be
evenly distributed across all running tasks, although any other policy can be followed
to distribute OS energy based on the EAR registers exported by SEA.

With such OS support, applying SEA to multithreaded applications is simple since
no additional hardware change is required. In fact, the OS can implement different
mechanisms to account the energy to multithreaded applications by reading EARs and
interpret the values in different ways. We illustrate some of these choices with a simple
example: let us assume an N-thread, multithreaded application running on a N-core

1
CMP, in which only the LLC is shared. In this case, we account each thread E}; . (%)

as if the LLC is fairly shared across threads (cores) so that each one is given % of the
LLC. Upon the completion of one thread, the OS can choose to read the EAR of that
thread and add its value to the total energy accounted to the application. Then, the
OS can keep accounting the remaining threads in the same way until they all finish.
Alternatively, the OS can read the EAR values of all active threads upon the completion
of one thread, and add those values to the application’s accounted energy. Then, the OS
can account the remaining threads until another one finishes by assuming that they
have extra LLC space to use. For instance, when the first thread finishes, each of the

1
remaining threads will be accounted for E;;(t;) of the LLC space until another one
finishes. The later approach is feasible as long as the thread completion and populating
frequency do not exceed the OS quanta.

5.4. SEA..re Accuracy Evaluation

In this section, we evaluate the accuracy of the SEA approach in SMT cores. In order
to account for the error of the core model, we discount the effect of the shared LLC in
this experiment. In particular, the LLC energy accounted to a given task is obtained
assuming that the full LLC space has been allocated to it. Therefore, energy variations
can only come from the error of the core energy model.

We consider 2- and 4-way SMT core setups. Analogous to the LL.C, the ES and PTEM
models lack the flexibility and adequate accuracy to predict the energy one task has
with a fraction of the core, thus we do not show them in the chart. On average, the ES
model has an over 38% prediction error, while PTEM has an over 27% prediction error,
when comparing their output with the energy one task should have consumed with the
full core.

The prediction error for SEA is shown in Figure 5. We observe that, across all setups
and types of workloads, SEA has stable prediction accuracy. For X type workloads,
the average prediction error is rather higher than the others. We have also shown
the standard deviation of SEA prediction error in the figure. While X type workloads
also have higher variation than the others, the variation remains rather low for all
workloads and setups. Nevertheless, SEA accuracy is still very high.

5.5. SEAchip Accuracy Evaluation
In this section, we combine the SEA in the LLC and the core. Actually, SEA.;, is
flexible with different combinations of SEA ;¢ for % of the LLC and SEA.,,. for % of

the core.

We analyze all configurations in which each task is accounted for half (1/2 core)
or all (I core) core resources, and for any number of cache ways between 1 and 16.
Average off-estimation is shown in Figure 6 across the different configurations. The
x-axis corresponds to the different number of cache ways (from 1 to 16). It can be seen
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Fig. 5. SEA_ o prediction error, under 2- and 4-SMT core setups, using I, X, and M type workloads.
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Fig. 6. SEAcpp prediction error for a 4-SMT core setup and 16-way LLC.

that the error is in the range of 4% to 8%, on average. In general, higher accuracy is
attained when accounting energy for the 1/2 core given that accuracy for the LLC is
higher than for the SMT core, and the total energy to be accounted to the core under
the 1/2 core setup is lower. We also observe that higher accuracy is achieved for lower
cache way counts. This occurs because miss rates are normally higher when fewer LLC
ways are allocated, thus increasing the portion of active energy. Although the extra
misses lead to more inaccuracies to the execution-time prediction, fewer LLC ways
contribute low maintenance and leakage power, thus less impact, when compared with
the increased but accurately estimated active energy.

Overall, SEA achieves very high accuracy estimating energy consumption under a
given fraction of resources despite the fact that it is estimated under workloads in
which many resources are shared in many different ways.

5.6. Energy Accounting Variability when Using ES, PTEM, and SEA

In order to illustrate the main conceptual differences between ES, PTEM, and SEA,
in this section, we analyze the variation in terms of energy consumed and in terms of
misprediction with regard to the energy that should be accounted. As for the actual
energy, we make use of the ideal PTEM model proposed in Liu et al. [2013], which
stands as an oracle version of PTEM that disregards the cost to measure energy. We
consider that the per-task energy measured by this model is the best approximation
of the actual energy consumed by tasks, thus, it is labeled as ACTUAL in the plot in
Figure 7. Since all solutions compared (ES, PTEM, and SEA) have negligible energy
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Fig. 7. The deviation of mispredicted energy account to tasks running in 8-task workloads under 4-core
SMT setup and 16-way LLC.

impact in practice, the actual energy consumed is essentially the same, thus we just
plot one column for ACTUAL. Note that accounting for a homogeneous share of the
resources across tasks is the only case in which ACTUAL, ES, and PTEM can attain
some degree of accuracy. In contrast, SEA is able to account energy for arbitrary
fractions of the shared resources. Therefore, for comparison purposes here, we consider
only a homogeneous share of the resources for each task.

In particular, we analyze the energy accounted to task 7; running in an SMT core of a
4-core, 16-way LL.C, when half of the core resources and 2 ways of the LLC are accounted
toit. In other words, T} is accounted for exactly 1/8 of the resources of the processor, as it
is able to run up to 8 tasks simultaneously. Figure 7 shows the average and maximum
energy prediction errors. In particular, we obtain for each benchmark its range of
variation (maximum minus minimum energy) with regard to its energy consumption
when running alone with 1/8 resources; then, we report in the figure the average and
maximum value across benchmarks.

We observe that the actual consumed energy has an average 15% prediction error
across benchmarks and the maximum error reaches 83%. When using the ES model for
energy accounting, we observe that variations are significant. On average, prediction
error is 22%, while the maximum for one benchmark reaches 130%. This would mean
that users would get 22% variations in the bills, on average, and those variations could
reach 130% for the very same task. In the case of using PTEM, results of the actual
implementation are very similar to those of the ideal PTEM model. On average, the
prediction error is around 14% and in some cases it may be as high as 84%. This reflects
the fact that many tasks may significantly overuse/underuse the resources with regard
to a fair share of them. This affects their own energy consumption and co-runners’
consumption. In contrast, SEA reduces the average error down to 4%, and maximum
is 19% for one benchmark. These prediction errors are far lower than those of ES and
PTEM, and can be hidden from end users to some extent by the fact that the cost per
watt also varies along time. SEA is able to accurately predict the energy consumed
with a fair share of the resources with negligible cost, as shown before, and allowing
tasks to freely share resources.

In addition, when we account one workload with the energy accounted to fhr = 1/8
resources of all its tasks, comparing with its actual energy consumption, we found that
the actual energy saved, on average, is 7.7% across all workloads because of resource
sharing. Thus, on one hand, data-center operators can leverage the use of SEA to
further reduce the actually consumed energy by finding an optimal point to co-locate
tasks, as we show in Section 4.3.4. On the other hand, SEA can qualitatively apply the
energy saving as a discount to end users as a mutual benefit.
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6. CONCLUSIONS

The advent of CMPs allows running many tasks simultaneously, thus allowing re-
sources to be shared and, generally, optimizing energy efficiency. Unfortunately, the
energy consumed by a given task strongly depends on the set of co-runners, which
create different intertask interferences. Therefore, energy consumption of a given task
with a given set of inputs can change noticeably across different executions. If energy
is used for billing, it is hard to defend charging end users largely different energy costs
for the very same service.

This article introduces the concept of Sensible Energy Accounting (SEA). SEA allows
accurate estimation of the energy that would be consumed by a given task if it were
running with a given fraction of the resources, despite the fact that the task shares
resources in a multitask workload. SEA thus opens the door to stable billing as well
as energy optimizations in CMPs. Our results show that SEA provides highly accurate
estimations for on-chip resources — as needed for billing — and can be used for scheduling
purposes, achieving up to 39% energy savings.
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