
Automatically assessed electronic exams in programming
courses

Teemu Rajala, Erkki Kaila, Rolf Lindén, Einari Kurvinen,
Erno Lokkila, Mikko-Jussi Laakso, Tapio Salakoski

Department of Information technology & University of Turku Graduate School (UTUGS)
University of Turku

20014 Turun yliopisto, Finland
{temira, ertaka, rolind, emakur, eolokk, milaak, sala} @utu.fi

ABSTRACT
Educational technology is nowadays utilized frequently in
programming courses. Still, the final exams are mostly done using
“traditional” pen-and-paper approach. In this paper, we present the
adaptation of automatically assessed electronic exams in two
programming courses. The first course was an introductory
programming course taught using Java and the second one an
advanced course about object-oriented programming. The usage of
electronic exams offers several potential benefits for students,
including, for example, the possibility to compile, test and debug
the program code. To study the adaptation of electronic exams, we
observed two instances of the courses mentioned above. Individual
scores, submission counts and time spent on each task were
analyzed. This data enabled us to classify the exercises in exams
according to their difficulty level. This information can be used to
further design exams to measure students’ knowledge and skills
adequately. The analyzed data and the student feedback seem to
confirm that electronic exams are an excellent tool for evaluating
students in programming courses, and can be recommended to
other educators as well.

Keywords
Electronic exams, Programming, Exercise difficulty, Automatic
assessment.

1. INTRODUCTION
Although teachers are using more and more educational technology
and new methods in their programming courses, the final exams are
still mostly taken in traditional pen-and-paper form. Various
studies have been conducted to improve the overall quality of
programming exams (see for example Simon et al. 2015). Still, pen
and paper as a medium is arguably not the best solution for testing
students’ programming skills. Writing program code with pen and
paper is slow and doesn’t allow testing the programs for syntax or
logical errors.

The utilization of electronic exams offers several benefits in the
programming courses. First, the students likely are used to writing
code using keyboard and a proper editor that takes care of code
indentation and color coding automatically. Second, if proper exam
tools are selected, the solutions can be compiled, executed, tested
and refactored after submission. After all, when testing for
programming skills, the situation should resemble “real”
programming as closely as possible. Still, most of the tools and
platforms used in electronic exams are not designed to support
programming.

With this in mind, we have designed and implemented a
collaborative education tool called ViLLE, with full support for
automatically assessed programming exercises. The exercises can
be used in electronic exams as well. The only difference in exams
is that the immediate feedback is hidden. In this paper, we report
the usage of automatically assessed exams in total of four instances
of two programming courses: one introductory course and one
course about object oriented programming. The scores, submission
counts and the time usage are observed, and the data collected is
used to identify the difficulty level of different kinds of exercises
used in the exams.

The paper is structured as follows: first, the existing literature about
programming education and electronic exams is reviewed. Then,
ViLLE and the electronic exams are presented, followed by the
research setup and course descriptions. After that, we present the
results and experiences collected from conducting the exams.
Finally, the results are discussed and some future possibilities for
research are presented.

2. RELATED WORK
There is some existing literature about designing and conducting
exams in programming courses. Daly & Waldron (2004) state, that
the current methodology for assessing programming skills after the
introductory courses is not sufficient. Though the study is more
than ten years old, the arguments provided are still somewhat solid:
pen and paper exams are not the best way to measure programming
knowledge. Regardless of the tools used, designing questions at
proper difficulty level is very important (see for example Harland
et al. 2003). Hence, the work done for classification of the exam
questions by Sheard et al. (2011) can be extremely useful when
designing the exams.

Various educational tools to be used in programming courses
(among others) have been developed in recent decades. Some of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ACSW '16 Multiconference, February 02-05, 2016, Canberra, Australia
© 2016 ACM. ISBN 978-1-4503-4042-7/16/02…$15.00
DOI: http://dx.doi.org/10.1145/2843043.2843062

most well-known general environments are Blackboard (Liaw,
2008) and Moodle (Dougiamas & Taylor, 2003). Typical for such
environments is that they can be used for various course needs, such
as delivering materials, answering exercises and for
communication (such as discussion forums and news). Examples
of more specific tools include different exercise systems designed
for programming courses. Ihantola et al. (2010) present various
tools for automatically assessing programming assignments.
Visualization tools (see for example Kaila et al. 2009, Korhonen &
Malmi, 2000) are typical examples of exercise-based tools
designed especially for programming courses. However, the tools
used in programming courses are rarely designed to be used in
exams.

There are luckily some experiments done on using electronic exams
to assess programming skills. Jacobson (2000) reported an
experiment where the assessment was changed from traditional
exams into on-computer exams. According to the author, the new
assessment system measured students’ programming skills more
accurately. Barros et al. (2003) confirm this approach: they argue,
that though the lab exams are more demanding than “traditional”
assessment, the students find them fairer than, for example, group
assignments. Navrat & Tvarozek (2013) replaced the whole exam
with summative assessment of data collected by interactive online
learning environment, and found out that the data collected can be
used to predict grades accurately enough. Kuikka et al. (2014)
compared Moodle, Optima, ViLLE, Soft Tutor and Tenttis as e-
exam platforms in a university of applied sciences in Finland. The
article lists extensively the challenges that were faced during the
comparison.

3. ViLLE – COLLABORATIVE
EDUCATION TOOL
ViLLE is a collaborative education tool, developed at Department
of Information Technology, University of Turku (see Figure 1).

The tool works as a web-based application with separate views for
teachers and students. ViLLE contains several automatically
assessed exercise types for programming, mathematics and for
general subjects. All exercises provide immediate feedback about
submission, with the possibility to make unlimited number of re-
submissions. Collaboration is encouraged for both students and
teachers: the registered teachers can share all of their resources with
other teachers in ViLLE and the students can answer the exercises
and tutorials in collaboration with other students. Moreover, other
means of student interaction (such as peer reviewing other students’
submissions) are supported as well.

4. ELECTRONIC EXAMS WITH
AUTOMATIC ASSESSMENT
Electronic exams in ViLLE can consist of automatically assessed
or manually graded assignments. In the courses included in this
research, only automatically assessed tasks were decided to be
used. The main reason for this was the number of students taking
the exams: since there were around ten exercises and around one
hundred students in each exam, the number of submissions would
have been too laborious to assess manually. Moreover, automatic
assessment and real-time compilation of student code enables
students to fix compilation or runtime errors after submitting their
code, and hence focus on creating the algorithmically correct
solution instead of worrying about syntax errors. Apart from
compilation and runtime errors and the program output, no
feedback was provided during the exam.

Number of submissions is not limited in ViLLE’s electronic exams.
Instead, there is a time limit for completing the exam; in the courses
described in this study, we decided to set the limit as three hours.
The exam was done supervised in a lecture hall or computer lab,
and the internet connection was restricted via firewall to only allow
access to ViLLE and into Java API. Three exams in total were

Figure 1. Example of ViLLE’s student view in exam mode

conducted for each course, and the students could participate in as
many as they wanted.

Since ViLLE was originally designed to be used solely in computer
science courses, it supports variety of programming languages
(including for example Java, Python, C, C++ and C#). Moreover,
several exercise types are designed specifically for programming
and computer science courses. The exercise types selected to be
used in the exams were the following:

· Quiz consists of multiple choice questions and short open
questions. The questions can be answered in any order,
and the students were able to change their answers later.
The questions were mostly designed to measure code
tracing skills (for example by providing a piece of
program code and asking the student to predict the
output) or general knowledge about programming and
Java (for example by asking to provide the instruction
that is used to terminate the execution of a loop).
Typically, one quiz was included in each exam.

· Coding exercise requires students to write a program (or
a missing part of a program) according to given
description. The code can be compiled and executed by
clicking a single button, after which ViLLE provides
either compilation or runtime errors or the program
output if it was executed successfully. The correctness is
decided by comparing the student program output to that
of the model solution. Though output comparison may
seem like a simple tool, it was actually found to be
powerful enough to test rather complicated tasks when
used creatively.

· Robot exercise is a specific type of coding exercise,
where the students need to write a Java program that
controls a crane to move boxes to their goal positions.
The crane (or a “robot”) is controlled via robot object that
offers methods for moving the crane’s arm and picking
up or dropping the boxes. The teacher can set limits for
the number of statements and the steps the robot can
move, and exceeding these limits subtracts the score
gained. This means that instead of listing the method calls
one after another the students need to utilize loops and
own methods to complete the task in more clever way.

· In Code shuffling exercise the students need to order the
shuffled code lines according to the given task. The
exercise, also known as Parsons Puzzle (Parsons et al.
2006), is designed to measure the students’ ability to
understand the program flow and algorithm execution.
Again, in the exam mode no feedback was provided,
meaning that the students needed to be able to understand
the execution of the program by looking at the code.
Hence, the tasks were designed to be quite simple.

· Connect the items is a simple exercise type where the
students need to drag the items in the right column in the
correct locations in relation to the items in the left
column. In the exams, the exercise type is usually used
to test the knowledge in some general issues, such as
combining the privacy definition (such as “public static
void calculate()”) with the correct definition (such as
“public class method”).

Since the ability to write programs is the most important outcome
of the course, most of the exercises in the exams were decided to
be coding exercises. Still, at least one quiz and one other exercise
type were included in each exam. The difficulty level of tasks was
designed to increase towards the latter exercises, and the exercises

were planned to measure the students’ skills in all topics taught
throughout the course.

5. RESEARCH SETUP
The exams were utilized in two programming courses during two
years, totaling to four course instances. Both courses are mandatory
for all computer science majors, and are typically taken during the
first academic year.

5.1 Courses and materials
The Basic Course of Programming and Algorithms (from now
on Course 1) is the first programming course in the curriculum
(although some fundamental issues are covered in the introductory
computer science course using Python). The course covers basic
programming topics in imperative paradigm using Java, including
for example variables, conditional statements, repetition, methods
and arrays. As a learning outcome, the students should be able to
design and implement simple algorithms in Java.

The exam was structured as described in Table 1.

Table 1. The exam structure at Course 1

Exercise # Type Description

1 Quiz Questions about code tracing and
general questions about
programming and Java

2 Coding Task about using conditional
statements, such as calculating the
speeding ticket based on speed

3 Coding Easy array question, such as finding
the minimum or maximum value in
an array

4 Code shuffle Typically string operations, such as
ordering charAt and substring
operations in correct order to form
the given word

5 Robot ViLLE robot exercise where five
boxes need to be moved into their
target positions

6 Coding Medium array question, where for
example the range of items or the
minimum and maximum item need
to be found and returned as a new
array

7 Coding Task about string operations (such as
changing the first character of each
word in a sentence into upper case)
OR a task about using the error
handling with try-catch-finally
structure

8 Coding Difficult array question, for example
finding the most frequent item in an
array.

9 Coding Question about two-dimensional
arrays, for example flipping the
matrix OR reversing the order of
some items in the middle of an array

As seen on the table, most of the exercises were selected to be
coding exercises. The first exercises are the easiest, and the latter

ones probably the most difficult. 50 % of the total score of 90 (ten
points per exercise) was required to pass the exam.

The Fundamentals of Object Oriented Programming (from now
on Course 2) is an advanced course, taken right after Course 1. The
concepts of objects and classes and writing own classes,
constructors and class members are taught. Additionally, some
more advanced OO concepts such as inheritance and polymorphism
are also discussed. As a learning outcome, the students should be
able to write their own classes and know how to utilize inheritance
and interfaces when designing and writing their programs.

The exam was structured as described in Table 2.

Table 2. The exam structure at Course 2

Exercise # Type Description

1 Quiz Questions about code tracing and
general questions about object
oriented programming techniques.

2 Coding Task about writing constructor(s)
and getter and setter methods for a
class with pre-defined attributes

3 Connect the
items

Task about connecting the variable
and method definitions with
different privacy declarations to
correct descriptions.

4 Coding Task about inheritance: a base class
is given, and the student needs to
write a class inheriting this base
class with some new attributes and
methods.

5 Coding Task about writing a new exception
class.

6 Coding Task about writing a class that
implements a given interface. For
example, an interface modeling a
shape might be given, and the
student needs to write a class that
models a cube.

7 Coding Task about defining an enum type
with given set of values. Typically
something like defining an enum
containing all Nordic countries.

8 Coding Task about using try-catch
mechanism to detect and (possibly)
re-throw errors.

9 Coding Task where a class definition is
given and the student needs to
implement either the equals or the
compareTo method.

10 Coding Task about polymorphism.
Typically, a list (or a vector)
containing different kinds of objects
with same parent class given, and the
objects need to be handled based on
their type.

In both courses, two instances of the exam are observed, totaling
four instances. The instances were taught during academic years of
2013-14 and 2014-15.

5.2 Utilizing ViLLE in the courses
Both courses were redesigned to utilize ViLLE for various aspects.

Enhancing active learning: For both courses, one weekly lecture
was transformed into a tutorial session. In these sessions, the
students answered a tutorial (a combination of automatically
assessed programming exercises and learning material, such as text,
images and tables) in collaboration with another student. The
sessions were organized in a lecture hall, with some older students
and course staff available to help the students with problems they
might have encountered answering the tutorial questions.

Facilitating communication: Two weekly surveys were conducted
each week in both courses: one after the lecture and one after the
tutorial. In these surveys, the students were asked to describe the
things they learned, things that remained unclear after the session,
and ways to improve the lecture or the tutorial. The answers to
surveys were briefly analyzed before the next session, and the
consecutive lectures and tutorials were improved based on the
feedback.

Electronic exam difficulty: The exam instances were evaluated by
two individual researchers who are not affiliated with this paper.
They both agreed that the exams in ViLLE were at least as difficult
as earlier instances, and likely even more challenging than the
previous exams,

The changes made to the courses significantly improved the pass
rate and the average grade for both courses. A detailed description
of the redesign can be found at Lokkila et al. (2015) and Kaila et al.
(2015).

5.3 Participants
The students taking the exam were mostly first year computer
science majors at the Department of Information Technology,
University of Turku. A total of 478 students participated in the four
exam instances. The instances are described at Table 3.

Table 3. Exam instances in the study

Exam Course Year N

Exam 1.1 Course 1 2013 133

Exam 1.2 Course 1 2014 149

Exam 2.1 Course 2 2014 85

Exam 2.2 Course 2 2015 111

Though there were three exams arranged each year at each course,
only the first instance per year was selected for this study. The
reason for this was the low number of participants in the resit
exams: almost all students had passed the course after the first
exam, regardless of the course or the year.

6. RESULTS
In order to estimate the difficulty level of the exercises we gathered
the scores, the submission counts and the answer times for each
student for each exercise in the exams. Figure 2 shows the averages
of these values in both instances of Course 1.

As maximum score for each exercise in the exam was 10, the figure
clearly shows that the average scores for the first six exercises were
high. Unfortunately the learning platform at the time didn’t record
the answer times for the robot exercise (E5). Otherwise the
answering times of E1-E6 are quite close to each other. The figure
also shows that there is a large difference in submission counts of
E1 and E4 when compared to the other exercises. All the other
exercises were program code writing tasks and the students could
debug the answers by submitting them, so naturally there is more
submissions to those than to quiz exercises (E1) and code shuffle
exercises (E4), which provided no feedback on submit.

From exercise 7 onwards, the students spent more time answering
to the exercises, got lower scores and submitted their answers more.
This is a clear indication that the last three questions were more
difficult. Exercise 7 seems to be the most difficult one, as it has the
lowest average score, the highest answer time and the most

submissions of all of the exercises. The exercises in both instances
were similar or as in most cases, the same, which is indicated by
the similar figures in both course instances.

Figure 3 shows the same average values for the Course 2 instances.
Exercise scores were scaled to a maximum of 10 points in both
course instances. Similarly to Course 1 instances, the E1 and E3
submission counts are lower because they weren’t program code
writing tasks. Here also the last three exercises show the highest
answering times and the highest submissions counts, although the
score averages are quite high in E9 and E10 in 2015 instance. Thus,
based on the data, the last three exercises are more difficult than
E1-E7, while E8 is clearly the most difficult one.

In both courses the corresponding exercises in the consecutive
instances were similar, and in most cases the same. Figures 2 and 3
also illustrate that the students performed and behaved similarly in
both instances. Based on this we decided to combine the instance
data to help discussing the results. Figure 4 shows the combined
data for both courses.

We also gathered student feedback about taking electronic exams
from both courses. Table 4 shows the results from the feedback

00:00

02:53

05:46

08:38

11:31

14:24

17:17

0

2

4

6

8

10

12

14

E1 E2 E3 E4 E5 E6 E7 E8 E9

Course 1, 2013

Score Submissions Time

00:00

02:53

05:46

08:38

11:31

14:24

17:17

0

2

4

6

8

10

12

14

E1 E2 E3 E4 E5 E6 E7 E8 E9

Course 1, 2014

Score Submissions Time

Figure 2. Score, submission and time averages of Course 1 instances

00:00

02:53

05:46

08:38

11:31

14:24

17:17

0
2
4
6
8

10
12
14
16

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Course 2, 2014

Score Submissions Time

00:00

02:53

05:46

08:38

11:31

14:24

17:17

0
2
4
6
8

10
12
14
16

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Course 2, 2015

Score Submissions Time

Figure 3 Score, submission and time averages of Course 2 instances

survey. The detailed description of the survey results can be found
in Rajala et al. (2015)

Table 4. Student feedback from the course exams. All
questions were answered on a Likert scale of 1 to 5 (1 = totally

disagree, 5 = totally agree), unless otherwise noted.

Statement (1 – strongly disagree, 5 –
strongly agree)

Avg. Course
1, 2014 (N =
130)

Avg.
Course 2,
2015 (N =
111)

There was enough time to take to the
exam

4.45 4.86

Answering to the exam was easy 3.59 4.17

The exam application was clear to use 3.98 4.24

I would prefer to use pen-and-paper over
ViLLE

1.42 1.39

ViLLE suits very well for the exam of
this study module

4.46 4.64

If possible, I would like to take the exam
of this study module at home

3.91 3.68

I would recommend ViLLE to other
students

4.11 4.31

Technically ViLLE is an excellent
solution

3.73 3.89

How would you grade ViLLE as an
exam platform

3.90 4.12

I got enough guidance on how to use
ViLLE before the exam

4.65 4.20

eThe difficulty of the exam content (1 –
low, 5 – high)

2.75 3.27

7. DISCUSSION
It seems that the exams we designed for both courses, respectively
can be used quite reliably to measure students’ programming skills
in the tasks given. There were practically no differences between
the scores, the submissions or on the time spent on the tasks
between the two instances of the same course. This also seems to
indicate that although the exam structure was quite similar between

the two instances, no major cases of plagiarism occurred. It is quite
typical (and in some cases even encouraged) in our university that
the students have a public archive for exam questions. However,
questions in electronic exams are more difficult to share, especially
since the students could not access the questions after the exam was
closed. Sharing was also made more difficult by parameterizing
some of the questions.

When two instances of the courses were combined (see Figure 4),
we could observe the difficulty level of the questions. The questions
can be roughly divided into three categories:

1) Easier coding tasks: the coding exercises where higher
scores could be obtained with less effort (either with
fewer submissions or in shorter time). In Course 1
exercises E2 and E3 fall under this category. Similarly,
in Course 2 exercises E2, E4 and E7 can be classified as
easier tasks.

2) More difficult coding tasks: the coding exercises where
a higher number of submissions (or more time spent
answering) was needed to obtain the score. Most of the
coding exercises in both courses fall under this
category.

3) Non-coding tasks: as seen on Figure 4, significantly
lower number of submissions were made to all other
exercise types. The average number of submissions done
to exercises E1 (quiz) and E4 (code shuffling exercises)
in Course 1 was just above one. The same applies to
exercises E1 (quiz) and E3 (connect the items) in Course
2.

Hence, from the students’ point of view, the ability to test and
resubmit code in the coding exercises is probably the most
beneficial factor of the electronic exam. The automatically assessed
quizzes and the sorting exercises definitely decrease the teacher’s
workload drastically, but do not offer similar advantages to the
students.

When observing the difficulty level of individual exercises, we can
see that E7 seemed to be the most difficult one in Course 1. The
exercise was about combining different string operations (such as
capitalizing the first letter of each word in a sentence) or about
handling errors with the try-catch structure. Somewhat
surprisingly, the average number of submissions done to E7 was a

00:00

02:53

05:46

08:38

11:31

14:24

17:17

0
2
4
6
8

10
12
14

E1 E2 E3 E4 E5 E6 E7 E8 E9

Course 1

Score Submissions Time

00:00

02:53

05:46

08:38

11:31

14:24

17:17

0
2
4
6
8

10
12
14
16

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Course 2

Score Submissions Time

Figure 4 Exam data combined

lot higher than that of exercises 8 and 9.There are likely two
possible explanations for this. First, it is possible that some of the
weaker students got stuck in E7 and never reached the final
exercises. While there is no way to tell if the students tried to solve
the exercises E8 or E9 without submitting them, we did find out
that roughly two tenths of the students who answered to E7 did not
have any submissions for E9, and half of those students had no
submissions to E8 either. Second, E7 might have been too
demanding, as it required of the students to apply multiple learned
skills in the same exercise. This claim is backed up by a qualitative
analysis on the types of errors that were present in the assignment
submissions for assignment E7 (omitted). In most of the cases,
errors were due to misconceptions about variable typing, arrays and
variable initialization. For instance, the students tried to test the
equality of strings and integers, or refer to an array element simply
by referring to the index variable. Similar rudimentary errors were
absent from Course 2. The qualitative analysis also revealed few
odd cases where the student displayed iterative behavior, or tried
unsuccessfully to fool the automatic checking mechanism by
inserting the desired answer directly to the output stream. The
difficulty level of individual tasks can be observed on Table 5,
where time on task and the number of submissions are shown
related to score obtained.

Table 5. Course 1 score per minute and score per submission
count values

Score per minute Score per submission
count

E1 1.23 6.46

E2 0.90 1.47

E3 1.18 1.55

E4 0.76 4.77

E5 1.41

E6 0.90 1.10

E7 0.34 0.41

E8 0.47 0.89

E9 0.40 0.55

Total 0.80 1.18

According to the data collected in Course 2 exam, the most difficult
exercise was E8. The relation between time on task and the number
of submissions to score obtained is displayed on Table 6. The
exercise was (again) about using the try-catch mechanism to catch
errors when reading data from a stream. Based on the student
submissions, the ones who didn’t manage to solve the exercise had
problems understanding on how to read from a stream of data. The
usual mistake was to use a for-loop to iterate through the stream
based on the length of the data. Additionally, in some instances the
student had correctly used the try – catch mechanism, but didn’t
handle the exception in the catch block. When evaluating the path
leading to a correct submission, the students usually started with a
solution that didn’t include any exception handling, then added the
catch mechanism, and finally tried to handle the exception. Again,
it is possible that some students got stuck in the eighth exercise and
never advanced to latter ones. Still, in both courses, the error
handling can be identified as the most difficult topic. Since the
ability to utilize the error handling mechanism is essential in Java,

more time and effort should definitely be addressed in teaching it.
Especially the combination of exception handling mechanisms and
loops should be covered with more detailed examples.

Table 6. Course 2 score per minute and score per submission
count values

Score per minute Score per submission
count

E1 2.44 12.37

E2 1.78 3.24

E3 2.49 3.92

E4 1.41 2.19

E5 0.71 0.70

E6 1.55 1.68

E7 2.11 1.48

E8 0.50 0.42

E9 0.81 0.75

E10 0.61 0.75

Total 1.20 1.40

The feedback collected from the students was mainly positive. The
students seemed to prefer the electronic exam over the pen and
paper version and they thought that ViLLE was very well adjusted
for a programming course exam. Notably, the students seemed to
think that there was plenty of time to take the exam (the average for
Course 2 being as high as 4.86 out of 5). This is remarkable, since
in the older instances of the course a pen and paper version of the
exam only contained two or three programming tasks, and the time
reserved was an hour more.

The electronic exam format works well at least for the subject of
introductory programming. In addition to some generally used
automatically assessed exercise types including quizzes and drag
and drop sorting and matching, the possibility for providing more
authentic programming environment to answer to the programming
tasks is a clear advantage. The programming assignments in the
introductory programming course exams are often quite short and
simple, so writing test cases to automatically assess the answers is
usually straightforward. Although preparing the exam takes more
time, the time saved in the assessment phase is manifold. For
example, nearly 5000 answers were assessed in the exams
presented in this paper, and this number includes only the final
answers to the assignments. Solving a programming problem
usually includes several tries and one of the major benefits of the
electronic platform is that all submissions leading to the final
submission can be stored. This offers vast possibilities for studying
how the problem solving process works and in more general how
the understanding of algorithmic thinking evolves.

However, some critique for the setup can be given: to get a more
comprehensive understanding about the difficulty level of the
individual exercises, students’ success in the course before the
exam could be observed. In the future, we plan to collect more data
from similar programming courses (and from more instances of the
courses discussed in this study), and use that data to develop a
model for properly categorizing the exam exercises based on their
difficulty level. When combined with the existing research about
exam question difficulty levels, (see for example Harland et al.

2003, Sheard et al. 2011) the model can be used by educators to
develop automatically assessed exams that reliably and effectively
test students’ programming knowledge and skills.

8. REFERENCES
[1] Barros, J. P., Estevens, L., Dias, R., Pais, R. & Soeiro, E.

2003. Using lab exams to ensure programming practice in an
introductory programming course. SIGCSE Bull. 35, 3 (June
2003), 16-20

[2] Daly, C. & Waldron, J. 2004. Assessing the assessment of
programming ability. SIGCSE Bull. 36, 1 (March 2004)

[3] Dougiamas, M., & Taylor, P. (2003). Moodle: Using learning
communities to create an open source course management
system. In World conference on educational multimedia,
hypermedia and telecommunications (Vol. 2003, No. 1, pp.
171-178).

[4] Harland, J., D'Souza, D, & Hamilton, M. 2013. A
comparative analysis of results on programming exams. In
Proceedings of the Fifteenth Australasian Computing
Education Conference - Volume 136 (ACE '13)

[5] Jacobson, N. 2000. Using on-computer exams to ensure
beginning students' programming competency. SIGCSE Bull.
32,

[6] Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O.
(2010, October). Review of recent systems for automatic
assessment of programming assignments. In Proceedings of
the 10th Koli Calling International Conference on
Computing Education Research (pp. 86-93). ACM

[7] Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T. 2009.
Effects, Experiences and Feedback from Studies of a
Program Visualization Tool. Informatics in Education, 8, 1,
17-34.

[8] Kaila, E., Kurvinen, E., Lokkila, E., Laakso, M.-J.,
Salakoski, T. (2015). Redesigning an Object-Oriented
Programming Course. Submitted to ACM Transactions on
Computing Education.

[9] Korhonen, A. & Malmi, L. 2000. Algorithm simulation with
automatic assessment. ACM SIGCSE Bulletin 32.3 (2000):
160-163.

[10] Liaw, S. S. (2008). Investigating students’ perceived
satisfaction, behavioral intention, and effectiveness of e-
learning: A case study of the Blackboard system. Computers
& Education, 51(2), 864-873.

[11] Lokkila, E., Kaila, E., Karavirta, V., Salakoski, T. & Laakso,
M.-J. (2015) Redesigning Introductory Computer Science
Courses to Use Tutorial-Based Learning. ICEE 2015 –
International Conference on Engineering Education.

[12] Navrat, P. & Tvarozek, J. 2014. Online programming
exercises for summative assessment in university courses. In
Proceedings of the 15th International Conference on
Computer Systems and Technologies (CompSysTech '14)

[13] Parsons, D. & Haden, P. 2006. Parson's programming
puzzles: a fun and effective learning tool for first
programming courses. In Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52. Australian
Computer Society, Inc., 2006.

[14] Rajala, T., Lokkila, E., Lindén, R. & Laakso, M.-J. 2015.
Student Feedback about Electronic Exams in Introductory
Programming Courses. Proceedings of EDULEARN15 – 7 th

International Conference on Education and New Learning
Technologies. IATED Academy.

[15] Sheard, J., Simon, Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D'Souza, D., Harland, J., Lister, R.,
Philpott, A &Warburton, G. 2011. Exploring programming
assessment instruments: a classification scheme for
examination questions. In Proceedings of the seventh
international workshop on Computing education research
(ICER '11). ACM, New York, NY, USA, 33-38

[16] Simon, Sheard, J., D’Souza, D., Lopez, M., Luxton-Reilly,
A., Putro, I. H., Robbins, P., Teague, D., & Whalley, J. 2015.
How (not) to write an introductory programming exam.
In Proceedings of the 17th Australasian Computing
Education Conference (ACE 2015) (Vol. 27, p. 30).

