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1. INTRODUCTION

We present a fast and memory-efficient algorithm to numerically compute the topolog-
ical genus of all the surfaces associated with three-dimensional objects in a discrete
space. The paper is aimed at the turbulence community interested in the topology of

three-dimensional entities in turbulent flows such as coherent structures [del Alamo
et al. 2006; Lozano-Duran et al. 2012] or turbulent/non-turbulent interfaces [da Silva
et al. 2014a]. Konkle et al. [2003] describes fast methods for computing the genus of
triangulated surfaces which is usually a time and memory-consuming process. Our al-
gorithm does not rely on triangulation [Toriwaki and Yonekura 2002; Chen and Rong
2010; Ayala et al. 2012; Cruz and Ayala 2013] and is adapted to exploit the structured-
collocated grid commonly used in the largest direct numerical simulations of turbulent
flows [Kaneda et al. 2003; Hoyas and Jiménez 2008; Sillero et al. 2013]. Our goal is to
provide a clear and easy description of the algorithm and sample codes. More examples
in Fortran and Python are available at Lab. [2015].

The genus is a topologically invariant property of a surface defined as the largest
number of non-intersecting simple closed curves that can be drawn on the surface
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without separating it. The genus is negative when applied to a group of several isolated
surfaces, since it is considered that no closed curves are required to separate them.
Both spheres and discs have genus zero, while a torus has genus one. On the other
hand, two separated spheres or the surfaces defined by a sphere shell (or sphere with
an internal cavity) has genus minus one. For a set of objects in a given region, the genus
is equal to the number of holes - number of objects - number of internal cavities+1. The
concept is also defined for higher dimensions but the present work is restricted to two-
dimensional surfaces embedded in a three-dimensional space. In Integral Geometry,
the genus is part of a larger set of Galilean invariants called Minkowski functionals
which characterize the global aspects of a structure in a n-dimensional space. The
genus is also closely related to the Betti numbers, and more details can be found in
Thompson [1996].

Regarding its applications, the genus has proven to be very useful to characterize a
wide variety of structures in many fields, for instance, in cosmology and related cos-
mic microwave background studies [J. Einasto et al. 2007]. The large-scale structure
of the universe has been studied over the years through analyses of the distribution of
galaxies in three dimensions using the genus for characterizing its topology [Gott et al.
1986; Gott et al. 1987; Gott et al. 1989; Hamilton et al. 1986; Vogeley et al. 1994; Mecke
et al. 1994; Park et al. 2005b; Park et al. 2005a]. For a given threshold of the galaxy
density, an isosurface separating higher and lower density regions is defined and the
genus of such contour evaluated. This allows to compare the topology observed with
that expected for Gaussian random phase initial conditions [Guth 1981; Linde 1983].
In all these applications, the computation of the genus was performed by calculating
the discrete integrated Gaussian curvatures [Gott et al. 1986; Chen and Rong 2010]
following the Fortran algorithm by Weinberg [1988] based on the Gauss-Bonnet theo-
rem. As we will show in section 3, the present method does not rely on computing any
curvatures.

Other applications are oriented to medical and biological areas and use the genus of
surfaces or three-dimensional objects. For example, to compute adenine properties in
the biochemistry field [Konkle et al. 2003] and to evaluate the osteoporosis degree of
mice femur [Martin-Badosa et al. 2003] or human vertebrae [Odgaard and Gundersen
1993].

The Minkowski functionals have recently been introduced in the study of turbulent
flows through the so called shapefinders [Sahni et al. 1998]. Leung et al. [2012] studied
the topological properties of enstrophy isosurfaces in isotropic turbulence by filtering
the data at different scales and computing structures of high enstrophy together with
its corresponding Minkowski functionals. The geometry of the educed objects was then
classified with two non-dimensional quantities, ‘planarity’ and ‘filamentarity’, which
measure the shape of the structures.

In a recent work, Borrell and Jimenez [2013] followed an strategy based on the genus
to decide optimal thresholds in turbulent/non-turbulent interfaces extracted from nu-
merical data. Several surfaces were obtained by thresholding the fluctuating enstro-
phy field in a turbulent boundary layer and their associated genus was used as an
indicator of the complexity of the interface. This topological description was crucial
to decide the range of thresholds where a vorticity isocontour can be considered a
turbulent/non-turbulent interface.

The rest of the paper is organized as follows. Important definitions are provided in
section 2. The algorithm to compute the genus is described in section 3. An alternative
method is presented in §4, and validated with the previous one in section 5, which
also contains some scalability tests. Two applications to turbulent flows are shown in
§6. Finally, conclusions are offered in section 7.
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Fig. 1. (a) Two-dimensional example of a structured-collocated grid defined by the open and closed circles.
Points satisfying relation (1) are red closed circles and their corresponding voxels are solid lines. The exterior
edges are the thicker lines colored in red and the exterior vertices are marked by squares. Objects are built
by connecting orthogonal neighboring points with A = 1, which results in two objects in this particular
example. (b) Voxel around the grid point (i, j, k). Only edges e1, e2 and e3 (red lines), and vertex v; (triangle)
are taken into account to compute the number of exterior vertices and edges corresponding to the voxel
centered at (i, j, k).

2. DEFINITIONS

We will first introduce the definitions of object, voxel, surface, hole, cavity, and genus.
The starting point is a discrete three-dimensional scalar field, ¢ = ¢(i, j, k), with i =
1,..,ng,7=1,.,nyand k =1, ..,n,, where n,, n, and n, are the number of grid points in
each direction respectively, separated by a grid spacing §. Given a thresholding value
a, we define the points belonging to the three-dimensional objects as those satisfying

o(i, j, k) > o, 1)

which can be expressed a scalar field A = A(7, j, k) whose values are equal to 1 at
(i, 4, k) if relation (1) is satisfied, and O otherwise. The latter is refer to as an empty
region.

Three-dimensional individual objects in A are constructed by connecting neighbor-
ing points with value 1. Figure 1(a) shows a two-dimensional example. Connectiv-
ity is defined in terms of the six orthogonal neighbors in the grid, usually called
6-connectivity. Points contiguous in oblique directions are not directly connected, al-
though they may become so indirectly through connections with other points. This
remark is important since the 6-connectivity is built-in in the algorithm and, for in-
stance, the number of objects in the example shown in Figure 1(a) is not one but two.

We define the voxel associated with A(i, j, k) = 1 as the cube centered at (4, j, k) and
with edge length equal to § (see Figure 1b). For a given object, its surface is delimited
by the exterior faces of its voxels, i.e., those facing empty regions. In the 2D example
shown in Figure 1(a), the 1D ‘surface’ is highlighted with red lines. Actual 3D examples
are shown in Figure 4. A hole is a empty region piercing the object, as the torus in
Figure 4(a), and a cavity an internal empty region which is locally not connected to the
exterior. The term handle will be used occasionally as a synonym of hole, since they
are topologically equivalent.

Our goal is to compute the genus of all the surfaces contained in A. Mathematically,
the genus g is defined in terms of the Euler characteristic x via the relationship

X =2—2g. (2)
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The Euler characteristic can be calculated for continuous surfaces as

=L / / Kds, 3)
21
P

where K is the Gaussian curvature of all the objects considered and X their area.
However, we are more interested in the original discrete form for polyhedral surfaces,

x=F—-E+YV, 4)

where F, E, and V are, respectively, the number of exterior faces, edges and vertices
of all the polyhedra. In this case, the curvature can be considered to be located at the
discrete edges, but the calculations lead to the same results as (3). The connection
between the discrete and continuous formulations is the Gauss-Bonnet theorem
[Chavel 2006, p. 243]. Intuitively, in terms of the elements defined above, the genus is
equal to the number of holes - number of objects - number of internal cavities +1.

3. ALGORITHM

The present algorithm exploits formula (4) and the structured-collocated nature of
the data to compute the genus of all the surfaces contained in the three-dimensional
space defined by the scalar field A, without previous triangulation or calculation of the
Gaussian curvatures. Note that this differs from other works which compute the genus
of the three-dimensional objects themselves [Toriwaki and Yonekura 2002; Chen and
Rong 2010; Ayala et al. 2012; Cruz and Ayala 2013]. The method is conceived for large
datasets of the order of 102 GiB and takes A as input.

First, we provide a general description of the algorithm. The key idea is to place a
voxel around every (i, 7, k) point with A(i, j, k) = 1, as the example shown in Figure
1(b), and to create a virtual mesh using the exterior elements of the resulting polyhe-
dra. The term virtual is used here in the sense that no actual faces, vertices or edges
have to be stored for each object, i.e., there is no actual structure in the code to do so, in
contrast to the standard meshes obtained by triangulation, where these are saved in a
file or in memory for all the objects. Figure 1(a) shows an example of a virtual mesh in
a two-dimensional case.

The way to proceed is then to compute the Euler characteristic of the virtual mesh
and thereafter the genus. The value of y is easily calculated once the total number of
exterior faces, vertices and edges are known for all the objects within A. To achieve so,
three variables I, V and E are used to store the total number of exterior faces, vertices
and edges, respectively, which are counted looping once through the array A. At each
(i,4, k), a voxel is placed if A(i, j, k) = 1 and the counters F', V and FE (initially set to
zero) are increased accordingly every time faces, edges and vertices are identified as
exterior. The selection of edges and vertices taken into account at each (i, j, k), shown
in Figure 1(b), is deliberately chosen to avoid counting several times edges and vertices
already considered.

To prevent any problems at the boundaries of the field A, the original grid is ex-
tended by padding two extra planes of zeros at the beginning and at the end of each
dimension. The new field will be still called A, but now with dimensions N, = n, + 4,
N, = ny, +4 and N, = n, + 4. For simplicity, we consider that A is fully loaded in
memory, but note that this is not required and it could be loaded in small chunks or
planes.

A more detailed description of the algorithm is now presented:

(1) Initialize the variables. F,V, and E are integers containing the number of exterior
faces, vertices and edges, and are initially set to zero. For large cases, they must
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ALGORITHM 1: Count number of exterior faces at position (i, j, k).

Input: AF
Output: F
if A is equal to 1 at position (i,j,k) then
if A is equal to 0 at position (i-1,j,k) then
F+F+1;
end
if A is equal to 0 at position (i+1,7,k) then
F«F+1;
end
if A isequal to O at position (i,j-1,k) then
F+F+1,;
end
if A is equal to 0 at position (i,j+1,k) then
F«F+1;
end
if A is equal to O at position (i,j,k-1) then
F+F+1,;
end
if A is equal to 0 at position (i,j,k+1) then
F«F+1;
end
end

ALGORITHM 2: Count number of exterior vertices at position (3, j, k).

Input: AV

Output: V

cubel < slice of A from i — 1toi,j —1tojand k — 1 to k;

if any element in cubel is 0 and any element in cubel is 1 then
V < V + getconnected1(cubel);

end

be double precision. A(i, j, k) is the array whose points are set to 1 if they belong

to an object and to 0 otherwise. NV, NV, and N, are the sizes of A after extending it.

cubel and cube2 are auxiliary arrays of integers with dimensions 2 x 2 x 2 and 2 x 2,

respectively, and are used to store the slices of A shown in Figures 2(b,c).

(2) Loop through i = 2,..,N, -1, j =2,.,N,— 1, k = 2,..,N, — 1. For each (i, j,k)
proceed as follows:

(a) Count number of exterior faces. See algorithm 1. The six faces of the voxel at
(i, 4, k) are considered, and its six neighbors are defined in Figure 2(a). For each
neighboring voxel with coordinates (i + Ai,j + Aj, k + Ak), F is increased by
one if A(i,j,k) = 1 and A(i + Ai,j + Aj, k + Ak) = 0. The possible values for
(Z+AZaJ+A]7 k+Ak) are (Z_ 1aj7 k)a (Z—’_la]a k)) (iaj_la k)9 (%]""‘17 k)a (iaja k_l)
and (i — 1,5,k + 1).

(b) Count number of exterior vertices. See algorithm 2. Only vertex v; in Figure
1(b) is considered, and its eight adjacent voxels are defined in Figure 2(b). V is
increased by one if any of the eight adjacent voxels has value 1, and any other
value 0. In some cases, V must increase by a number dV larger then 1 if some of
the surrounding voxels are locally not connected. The value of dV is calculated
by procedure getconnectedl, which is discussed at the end of the section.
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ALGORITHM 3: Count number of exterior edges at position (i, j, k).

Input: AJE

Output: E

cube2 < slice of A from i — 1to 4, 5 — 1 to j and k;

if any element in cube2 is 0 and any element in cube2 is 1 then
E + E + getconnected2(cube2);

end

(@)

Fig. 2. Sketches of the neighboring voxels adjacent to voxel (i, j, k) used to compute the number of exterior
(a) faces, (b) vertices, and (c) edges. In all plots, the closed red dot denotes the center of the voxel (i, j, k) and
the triangle the position of its vertex v; as defined in Figure 1(b). Case (c) is particularized to edge e; and
similar configurations apply to edges e> and e3 (see Figure 1b).

(c) Count number of exterior edges. See algorithm 3. Only edges e, e and e3 high-
lighted in Figure 1(b) are considered. The four adjacent voxels for edge e; are
shown in Figure 2(c). F is increased by one unit if any of the four adjacent
voxels has value 1 and any other value 0. In some cases, the edges have to be
counted dE times when the voxels around are not locally connected. The incre-
ment dF is computed by procedure getconnected2. A similar algorithm applies
to the other two edges e; and e3 shown in Figure 1(b).

(3) Finally the Euler characteristic and the genus are computed as X =V — E+ F and

G=(2-X)/2

To complete the description of the algorithm, we now comment on the procedures
getconnectedl and getconnected2. Some edges or vertices has to be counted multiple
times in order to be consistent with the 6-connectivity of the voxels. An example is
illustrated in Figure 1(a). In contrast to other works [Toriwaki and Yonekura 2002;
Ayala et al. 2012; Cruz and Ayala 2013], this is achieved by counting the number of
local objects contained in the slices shown in Figures 2(b,c), i.e., the number of objects
in the 2 x 2 x 2 sub-volume satisfying the 6-connectivity disregarding any other con-
nections outside the slide. For example, the sub-volume denoted as C41 in Figure 3
contains one local object, and C33 contains three. Note that some voxels may be locally
disconnected but belong to the same object, since they may connect indirectly through
other voxels not considered in the slide. The purpose of procedure getconnectedl, de-
fined in algorithm 4, is to compute the number of local objects in the sub-volume shown
in Figure 2(b), which can be easily obtained by any labeling method like the Hoshen-
Kopelman algorithm [Hoshen and Kopelman 1976]. Note that there is one degenerated
case with a infinitesimally small hole, shown in case C63 in Figure 3, where there is
only one object but the vertex must be considered twice.

Procedure getconnected2 is presented in algorithm 5 and follows the same idea. In
this case, the only possible configuration to obtained more than one local object in the
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ALGORITHM 4: Procedure getconnectedl. It computes the increment dV for V.

Input: cubel

Output: dV

if cubel is degenerated case C63 in Figure 3 then
dV « 2;

else
dV < number of local objects in cubel;

end

ALGORITHM 5: Procedure getconnected2. It computes the increment dF for E.

Input: cube2

Output: dE

if all the elements equal to 1 in cube2 are locally connected then
dE <« 1;

else
dE <« 2;

end

slide shown in Figure 2(c) is with two voxels that do not share any face. In the rest of
the cases, the number of local objects is one.

4. ALTERNATIVE ALGORITHM

An alternative algorithm is introduced for the purpose of validating the approach pre-
sented above. Conceptually, it follows the same ideas discussed in section 3 but relies
on a pre-computed table of cases as in the work by Toriwaki and Yonekura [2002].
The process involves looping through all the vertices of the virtual grid, counting ver-
tices, faces and edges, but no effort is made to prevent multiple counts of the last two,
as opposed to the algorithm presented in section 3. This results in an extra number
of faces and edges that is easily corrected by dividing the total number of faces by 4
and of edges by 2, the reason being that each face and edge contains 4 and 2 vertices,
respectively.

The number of faces and edges at a particular vertex depends on its 8 surrounding
voxels as shown in Figure 2(b). In this scenario, there are 256 different cases that may
be reduced by symmetry to those shown in Figure 3. We will use the index [ to label
sequentially the vertices of the virtual mesh. The contributions of the /-th vertex to
the total number of faces, edges and vertices will be denoted by AF;, AE;, and AV},
respectively, and their values are tabulated in table I for all the possible cases. F, F
and V are then obtained as

Y AR Y AE B
F=St— E==5 ,vaIjsz, (5)

where the summation extends to all the vertices of the virtual mesh. Finally, the Euler
characteristic and the genus are calculated with (4) and (2), respectively.

The alternative algorithm is now briefly described following the same notation used
in the previous section:

(1) Initialize the variables. F,V, and E are equivalent to those described in section 3
and are initialized to zero.
(2) Loop through all the vertices in A. At the [-th vertex, proceed as follows:
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Cs3 Ce1 Ce2 Ce3 Cn Cs1

Fig. 3. All possible configurations of voxels in a 2 X 2 X 2 sub-volume considering symmetries. Grey cubes
represent voxels with value one. The cases are denoted by C;;, where i is the number of voxels with value
one in the sub-volume.

Table I. Contribution to the number of faces AF, edges AE
and vertices AF of each configuration of voxels in the 2 x 2 x 2
sub-domains shown in Figure 3.

Case AF AE AV Case AF AE AV

Coh1 0 0 0 Clya 8 8 2
Ci1 3 3 1 Cys 8 8 2
Co1 4 4 1 Clug 12 12 4
Cag 6 6 2 Cs1 5 5 1
Ca3 6 6 2 Cs2 7 7 1
C31 5 5 1 Cs3 9 9 2
C32 7 7 2 Cs1 4 4 1
C33 9 9 3 Ce2 6 6 1
Cin1 4 4 1 Ces 6 6 2
Claa 6 6 1 C71 3 3 1
Cy3 6 6 1 Cg1 0 0 0

(a) Find the case. Considering the 8 surrounding voxels at the [-th vertex shown in
Figure 2(b), search for the corresponding case in Figure 3, taking into account
symmetries.

(b) Contributions to F, E and V. From table I, obtain AF;, AE;, and AV, and com-
pute F+ F+AF,E <+ E+AFE andV < V + AV].

(3) Compute the actual number of faces and edges. F' <+ F/4 and FE + E/2.
(4) Compute the Euler characteristic and genus. X =V — E+ Fand G = (2 - X)/2.

The algorithm described in section 3 is between 1.2 and 2 times faster than the
one presented in this section, and roughly 3 times shorter in terms of lines of code,
which makes it more efficient and simple to implement. For those reasons, the former
approach is preferred and the alternative algorithm is only considered for validation
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Table Il. Contribution to the number of faces AF, edges AFE and
vertices AV of the different blocks shown in Figure 5.

Case end node connector typel connector type IT

AF 5 4 28 46
AE 12 12 52 88
AV 8 8 24 40

purposes in the next section.

5. VALIDATION AND SCALABILITY

Two approaches are followed to validate the algorithms detailed in sections 3 and 4.
First, synthetic cases whose genus are known beforehand are fed into the algorithms,
and the results are compared to the expected theoretical values. Second, different
datasets are used to compute the genus with both algorithms and the outputs are
shown to match.

The synthetic cases tested are the following: all possible configurationsina 2 x 2 x 2
volume, n number of isolated solid objects (g = —n + 1), n isolated objects with an
interior cavity each (¢ = —2n + 1), n isolated torus (¢ = 1) as the example shown in
Figure 4(a), and n torus connected by solid bridges (¢ = n) as in Figure 4(b). More
cases were tested by rotating the previous ones at different angles, for instance, as in
the case shown in Figure 4(b). The values of n tested range from 1 to 10°. One more
synthetic case tested consists of randomly generated structures built using the blocks
shown in Figure 5, referred to as nodes and ends and linked by two type of connectors.
The number of faces, edges and vertices of the resulting object is given by

F = neAFe-l-nnAFn-l-TL[AF]-i-TL[IAF]], (6)
E = neAEe+nnAEn+n[AE]+n[[AE]I, @)
V = nAVe +n, AV, +np AV +nprAVyg, (8)

where n., n,, n;y and n;; are the number of ends, nodes, and connectors of type I and II
that belong to the object. The increments AF;, AE; and AV, with i = ¢,b,I and I are
the contribution to the number of faces, edges and vertices of each block respectively,
and its values are tabulated in table II. Roughly 10° cases were randomly generated
and tested and two examples are shown in Figures 4(c,d). More synthetic cases similar
to those presented above but using differently shaped connectors were also successfully
tested (not shown).

We perform a second validation comparing the number of faces, edges and vertices
computed with the algorithm presented in section 3 and the alternative one in section
4, which of course, must be identical. This was verified for the synthetic cases described
above. More test cases are the three models from the Stanford 3D Scanning Repository
[Stanford 2014] voxelized with binvox [Min 2015] (see also Nooruddin and Turk [2003])
and shown in Figure 6. Finally, we tested 10 cases delimited by a cubical region and
with grid sizes from 16 up to 4096 whose voxels were randomly initialized with 0’s
and 1’s filling approximately 50% of the total volume. Two examples are shown in
Figure 7. The two algorithms yield identical results for all the cases tested, counting
exactly the same number of faces, edges and vertices, and therefore, the same genus.

Table III summarizes the number of voxels, faces, edges, vertices and genus of some
of the cases tested, which are available for download in our webpage [Lab. 2015].

The algorithm presented in section 3 was implemented in Fortran, compiled with
Intel Fortran Studio XE 2016 16.0.0 20150815 , and tested in an Intel® Xeon® CPU
X5650 2.67GHz with 192GiB of RAM for cubical arrays of different sizes and randomly
generated as those shown in table III. The average time elapsed to compute the genus
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(@)

Fig. 4. Examples of synthetic cases used to validate the algorithms. (a), isolated torus; (b), concatenated
torus; (c) and (d), synthetic random cases generated from the building blocks shown in Figure 5.

(@) ®) (© (@

Fig. 5. Building blocks of randomly generated test cases. (a), node; (b), end; (c), connector type I; (d), con-
nector type II.

of inputs with different sizes is presented in Figure 8(a), which shows linear scalability
and makes feasible applications to very large datasets.

The code was also parallelized using Fortran Coarrays. The domain decomposition
was performed by dividing the z direction in chunks of size V, x N, x AN, where AN,
is nint(N./nproc), and n,... the number of processing elements. Two overlapped z-y
planes are added at the beginning and end of each chunk in order to compute faces,
edges and vertices without any extra communication between images. Once this is
done, the genus is obtained by summing the faces, edges and vertices of all the chunks.
The parallelization works for any number of processing elements smaller than NV, and
the size of the last chunk may differ from the size of the others if IV, is not divisible by
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®)

(c)

Fig. 6. 3D models obtained from the Stanford 3D Scanning Repository and voxelized with binvox. (a), bunny
[Turk and Levoy 1994]; (b), Buda [Curless and Levoy 1996]; (c), dragon [Curless and Levoy 1996].

14 4

Fig. 7. Test cases of cubical domains with (a), 163 and (b), 323 voxels randomly initialized with 0’s and 1’s.

Table Ill. Summary of some of the datasets tested and available for download at [Lab. 2015]

Case Size Faces Edges Vertices Genus
Syntheticl 643 1924 3848 1880 23
Synthetic2 643 2174 4348 2120 28
Bunny 2563 309482 618964 309466 9
Buda 2563 129800 259600 129780 11
Dragon 2563 164494 328988 164494 1
Random1 643 297496 594992 280160 8669
Random?2 1283 2744830 5489660 2570182 87325
Random3 256° 23530742 47061484 21985520 772612
Random4 5123 194709102 389418204 181726644 6491230

Random5 10243 1584014008 3168028016 1477589086 53212462
Random6 20483 12778133206 25556266412 11916193918 430969645
Random?7 40963 102651228492 205302456984 95713851166 3468688664
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Fig. 8. (a) For the Fortran serial version, average time in seconds elapsed to compute the genus of cubical
arrays of size N3 randomly initialized to 0’s and 1’s with roughly 50% of the volume occupied. Results for
a single processor. The circles are the measured times and the solid dashed line is time ~ N. (b) For the
Fortran Coarrays version, strong scaling efficiency as a function of the number of processing elements, nproc,
for three different problem sizes, N = 10243 (&), N = 20483 (o), and N = 40963 (0).

Nproc. ' The reader is referred to the software component of the manuscript to cover all
the details of the parallelization. The strong scaling efficiency, where the problem size
stays fixed but the number of processing elements increases, is shown in Figure 8(b).
The results are quite satisfactory and the efficiency remains always above 90%.

6. APPLICATIONS TO TURBULENT FLOWS

We show two examples where the genus is used as a tool to characterize the topology
of regions of interest in turbulent flows. In the first example, the genus is computed
for millions of individual coherent structures extracted from a turbulent channel flow.
In the second one, the genus is used to identify physically meaningful interfaces sepa-
rating turbulent and non-turbulent flow in a time-decaying jet.

6.1. Topology of coherent regions in turbulent flows

We use three direct numerical simulations of turbulent channel flows (two parallel
walls delimiting a flow moving on average in one direction) from Lozano-Duran and
Jiménez [2014] at Reynolds numbers Re, = 934,2004 and 4180, with Re, = hu,/v
where h is the channel half-height, u., the friction velocity and v the kinematic vis-
cosity. More details about turbulent channel flows may be found in Pope [2000, Chap-
ter 7.1]. The streamwise, wall-normal and spanwise directions are denoted by =z, y
and z respectively. Very briefly, we compute the genus of coherent structures, namely,
regions of the flow where a variable is higher than a prescribed threshold. The three-
dimensional coherent structures under study are vortex cluster from del Alamo et al.
[2006] and Q-structures from Lozano-Duran et al. [2012]. The former are defined in
terms of the discriminant of the velocity gradient and are connected regions satisfying

D(x,y,2)/D'(y) > e, )

where D is the instantaneous discriminant of the velocity gradient tensor, D’(y) its
standard deviation at each = — z plane and « = 0.02 a thresholding parameter obtained
from a percolation analysis. Similarly, Q-structures are defined as places where

uo(z,y, 2)/w’ (y) > H, (10)
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Fig. 9. Examples of three vortex cluster (top row) and Q-structures (bottom row) extracted from a direct
numerical simulation of a turbulent channel at Re,; = 4180 [Lozano-Duran and Jiménez 2014]. The flow
goes from bottom-left to top-right. The axis are normalized with v/u-. The colors change gradually with the
distance to the wall, which is located at y = 0. Note that the objects are not to scale.

where uv is the instantaneous tangential Reynolds stress, being v and v the stream-
wise and wall-normal velocity fluctuations, uv’(y) its rooted-mean-squared value at
each y-position, and H a thresholding parameter equal to 1.75. Three-dimensional ob-
jects are constructed by connecting neighboring grid points fulfilling relations (9) for
vortex clusters and (10) for Q-structures and using the 6-connectivity criteria. Full de-

tails for both types of structures can be found in del Alamo et al. [2006], Lozano-Duran
et al. [2012] and Lozano-Duran and Jiménez [2014]. To compute the genus, each ob-
ject is circumscribed within a box aligned to the Cartesian axes which constitutes the
limits of the array A(i, j, k) discussed in section 3. Figure 9 shows several examples of
actual objects extracted from the flow and demonstrates the complex geometries that
may appear. The number of structures computed is of the order of 107, with a wide
spectrum of sizes ranging from ~ 303 to ~ 2000° voxels.

Each array A(i, j, k) contains just one single object and, hence, the only contributions
to the genus are the number of holes and internal cavities. The data reveals that only
0.05% of objects have negative genus and it was checked that most of structures are
solid. In this scenario, genus and number of holes can be used interchangeably.

The probability density functions (PDFs) of the genus, g, are presented in Figure
10(a) and most of the values concentrate around zero or a few holes, although the long
potential tails reach values up to 10* holes. Figure 10(b) shows the average number of
holes in the objects as a function of their volume, V,, normalized in Kolmogorov units,
n3 (see Pope [2000, Chapter 6]). It becomes clear that as the volume of the structures
increases, so does the genus, which is reasonable if we consider that the volume of the
object is related to its internal Reynolds number (or complexity), and increasing its
volume results in more complicated topologies. The curves for both vortex clusters and
Q-structures show good collapse for the three Reynolds numbers and follow the trend
(9) = pV,, with (g) the average genus for a given volume, and p a constant equal to
1073173 and 4 x 10~°n~3 for vortex clusters and Q-structures respectively.
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Fig. 10. (a) Probability density functions of the genus. The dashed-dotted line is proportional to g—1-2.
(b) Average number of holes (genus) of individual coherent structures as a function of their volume, V,,
in Kolmogorov units. The dashed-dotted lines are (g) = 10~3773(V,/n3) and (g) = 4 x 10~ %n~3(V,/n?).
For (a) and (b), the solid lines with open symbols correspond to Q-structures and the dashed lines with
closed symbols to vortex clusters. Different symbols stand for different Reynolds numbers; o, Re; = 934; O,
Rer = 2004; &, Re, = 4180.

From relation (g) = pV,, the genus may be understood as an alternative method to
characterize the level of complexity of the structures, with p a density equal to the
number of holes per unit volume. If we define / as the average distance between holes
within the structures, its value may be approximated as [ ~ (1073)~'/®y ~ 305 for
vortex clusters and | ~ (4 x 107°)~Y/@ey ~ 905 for Q-structures, with o, = 2 and
ag = 2.25 the average fractal dimensions of the objects computed by Lozano-Duran
et al. [2012]. These lengths are consistent with a model of coherent structures built
by small blocks of length 30 — 907 stacked together to create larger objects but not
perfectly compacted, which results in holes between the blocks. For a given volume,
V,, vortex clusters have on average 25 times more holes than Q-structures, suggesting
that their blocks and connections are fundamentally different. This is consistent with
Lozano-Duran et al. [2012] who showed that the Q-structures are flake-shaped while
vortex clusters are worm-shaped, also visible in Figure 9.

6.2. Turbulent/non-turbulent interface detection in a turbulent jet

We use a direct numerical simulation of a time-decaying turbulent jet (see Pope [2000,
Chapter 5]) by Vela-Martin and Borrell [2014] to identify a turbulent/non-turbulent
interface. A brief introduction about such interface is presented next.

Two regions can be distinguished in an unbounded turbulent flow, the fully turbulent
region, characterized by strong fluctuations, and the irrotational free stream. These
two regions are, in most cases, separated by a single thin layer, called turbulent/non-
turbulent interface. The first step to analyze the physical processes that happen within
this interface layer is to locate it. This interface is known to be fractal-like [Sreeni-
vasan et al. 1989] and it contains all the scales between the smallest and the largest
possible. Such a wide range of scales imposes a strong restriction on the size of the
domain that has to be studied, since small portions would only give reliable results for
the small scales. The most common method to locate the turbulent/non-turbulent in-
terface is to threshold a scalar field where the two characteristic states of the flow can
be easily distinguished. Sreenivasan et al. [1989] and Westerweel et al. [2009] use the
concentration of a passive scalar injected in the turbulent side, and threshold it at the
least probable value of the concentration. Bisset et al. [2002] and da Silva and Taveira
[2010] use a particular isocontour of the magnitude of vorticity |w|(z, y, z) = wo, where
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Fig. 11. Isocont(}g . of vorticity magnitude |w/|, at dig%ent thresholds for a turbulent jet. Figure (a) cor-
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|w|/wrms = 3, ané{@}to a threshold slightly higher t;ﬁf,

A
vorticity is defined as the rotational of the velocity vector, & = V A @. Gampert et al.
[2014] found that the isocontours obtained thresholding concentration and vorticity
magnitude are similar, and da Silva et al. [2014b] found that the least probable value
of vorticity magnitude can be used successfully as a threshold for a variety of turbu-
lent flows. Despite the convergence of some popular methodologies, other authors like
Chauhan et al. [2014] have proposed alternative strategies.

One important aspect of the choice of the threshold is the impact it has on the ge-
ometry of the interface. If the threshold wy is a low value of vorticity, like the detection
shown in Figure 11(a), the interface is relatively simple, showing that the perturba-
tion caused by the turbulent motion is smoothed out farther down the free stream. On
the other hand, as soon as the threshold is slightly increased, the surface is populated
with a large amount of handles (or holes), as can be seen in Figures 11(b,c). These
handles are most likely a geometrical feature of the fully turbulent flow. Depending on
the value of the threshold, the surface generated has different topological properties.

The geometrical complexity, measured in this case with the number handles, has an
important side effect on the analysis of the properties of the flow depending on the
relative position to the interface. Two relatively popular assumptions about the inter-
face are that there is a privileged direction across which the relative distance to the
interface can be measured [Westerweel et al. 2009; da Silva and Taveira 2010], and
that the interface is simple enough so that a local normal is meaningful [Bisset et al.
2002; Chauhan et al. 2014]. These two assumptions are not strictly correct if handles
are a dominant feature of the interface. At the same time, the criterion explored by
da Silva et al. [2014b] depends on the characteristics of the non-turbulent region. The
probability density function of vorticity in the same round jet of Figure 11 is shown in
Figure 12. It has been premultiplied to emphasize the fact that the PDF has two ma-
jor contributions, one from the bulk of the non-turbulent flow with low vorticity (left
peak), and a second one from the bulk of the turbulent flow with high vorticity (right
peak). Note that, if the flow was in an ideal state with no perturbations, the left peak
would be in in the limit of vanishing vorticity. In consequence, the outcome of the crite-
rion defined by [Sreenivasan et al. 1989] applied to the vorticity field can be intuitively
defined as the lowest threshold that is not affected by the spurious vorticity present in
the free stream. This criterion is strictly correct, but it may be more representative of
the smoothed out perturbations relatively far from the turbulent motion. It is there-
fore necessary to explore other complementary threshold choices that provide a more
complete description of the vorticity field.

The genus of the surface detected as a function of the value used to threshold the
vorticity magnitude is presented in Figure 12. The results have been averaged using
an ensemble of four equivalent cases. The curve shows that there is a gradual yet ev-
ident change in the topological properties of the vorticity interface from a threshold
wo ~ wrms. Beyond that value, handles are a dominant feature of the interface, and
the standard tools for the conditional analysis are probably not valid. If the criterion
of minimum probability provides a lower limit for the threshold, the genus of the in-
terface is an useful criterion for an upper limit.

Ab) |w|/wrms = 5.
b |wl/

7. CONCLUSIONS

We have presented and validated a simple algorithm to numerically compute the genus
of discrete surfaces using the Euler characteristic formula. The method is valid for
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Fig. 12. (Blue line with circles) Premultiplied PDF of vorticity magnitude |w| normalized with its root-mean-
squared value in a turbulent temporal round jet. (Solid black line) Genus of the turbulent/non-turbulent
interface as a function of the vorticity magnitude. The vertical dashed lines are the thresholds used in
Figures 11(a,b,c).

surfaces associated with three-dimensional objects obtained by thresholding a discrete
scalar field defined in a structured-collocated grid and offers several advantages. First,
it does not rely on any direct triangulation of the surfaces, which is usually memory
and time-consuming. Besides, the surfaces of all the 3D objects in the domain are au-
tomatically detected and the genus is exactly computed without any spurious holes.
Last, but not least, it needs practically zero memory, it is fast and scalable, with a
computational cost directly proportional to the size of the grid computed. The algo-
rithm is also highly parallelizable, and a Fortran Coarrays version was implemented
to take advantage of multicore processors without increasing the memory usage. This
makes the algorithm suitable for large datasets, like the ones encountered in direct
numerical simulations of turbulent flows. Two applications to the characterization of
complex structures in turbulent flows have been presented. In the first case, the genus
of coherent structures extracted from a turbulent channel flows is computed and found
to be proportional to the volume of the objects. In the second application, the genus is
used to find an appropriate threshold to detect the turbulent/non-turbulent interface
in a turbulent jet.
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