
Design of an Actor Language for Implicit Parallel Programming

Yar iv A r i d o r S h i m o n C o h e n A m i r a m Y e h u d a i
Computer Science Department

Tel-Aviv University, Tel-Aviv 69978, ISRAEL

PH: +972-3-6409299, FAX: +972-3-6409357, E-maih yarivalamiram@math.tau.ac.il

A b s t r a c t

Software tools that support implicit parallel programming hold the key to reducing the com-
plexity of parallel programming and realizing more ubiquitous parallel computation. This paper
addresses the topic of implicit concurrent object-oriented programming. It presents a new lan-
guage, SYMPAL, which unlike most existing COOP languages that provide explicit constructs for
concurrency control, is based on a unification of object orientation and pure functional program-
ming with the goals of supporting implicit programming and high efficiency in massively concurrent
object-oriented programming. Extensive experience with SYMPAL applications on a parallel machine
indicates that it achieves these goals.

key words: object-oriented programming, concurrency, functional programming, efficiency, implicit

programming, Actor-based languages.

1 Introduct ion

Concurrent Object-Oriented Programming (COOP) has been studied extensively in recent years with

the intention of using objects as concurrency units, executed in parallel, for massively parallel pro-
gramming. Much work has been done on the Actor [1] computational model, which integrates objects
and concurrency at the object level. To date, a wide variety of Actor-based languages have been

proposed [6, 3, 12], along with techniques their efficient implementation [11, 4, 2]. The languages com-
prise an extension of the Actor model, with special language constructs for concurrency control (see
section 3). Thus, they support explicit concurrent object-oriented programming, leaving to expert pro-
grammers the tasks of managing communication and synchronization among a vast number of objects

in massively parallel programs.
This paper is about simplifying concurrent object-oriented programming. It presents a practical

programming environment, SYMPAL, that incorporates object orientation and pure functional program-
ming with the goals of supporting implicit programming and high efficiency in massively concurrent

object-oriented programming. In $YMPAL, a pure functional base language provides an inherently par-
allel semantics, on top of which extensions to OOP (based on the Actor model) enhance practicality

by using mutable objects and notions such as inheritance and encapsulation.
SYMPAL is unique among Actor-based languages in being an inherently parallel language, relying

only on compilation technology to produce efficient code. In a more general context, while current

forms of implicit programming focus on regular programs and data-parallel algorithms, SYMPAL fills

the obvious need for an implicit form for task-parallel programming.
This paper focuses on the language design. Detailed descriptions of compile-time and run-time

optimization techniques and extensive experience with SYMPA~ applications on a parallel machine can

be found in [2].

ACM SIGPLAN Notices 39 V. 33(6) June 1998

http://crossmark.crossref.org/dialog/?doi=10.1145%2F284563.284574&domain=pdf&date_stamp=1998-06-01

2 The SYMPAL Language

SYMPAL is an untyped parallel language composed of a pure functional language, defined with inherently

parallel semantics, and extensions to concurrent object-oriented programming, based on the Actor
model [1]. This composition of object orientation and functional programming yields the following

features:

Improved Linguistic Support for Concurrency
SYMPAL extends support for concurrency in the Actor model beyond one-way asynchronous

message-passing.

Implicit Concurrent Object-Oriented Programming
Parallelism in SYMPAL is the default execution mode. Sequencing occurs only when it is neces-
sitated by data dependencies. Specifically, the language is based on (1) asynchronous message-
passing, (2) implicit synchronization (i.e., via special code generated automatically by the com-

piler) to wait for not-yet-ready values of parallel subcomputations (e.g., the reply values of asyn-

chronous messages) and (3) implicit intra-object parallelism (i.e., simultaneous method invoca-

tions on the s a m e object).

2.1 T h e C o m p u t a t i o n a l M o d e l

The computational model of SYMPAL is Actor [1], which combines objects and concurrency in such a

way that:

• Objects are dormant when created and perform actions (defined by methods) only in response

to the arrival of messages.

• Messages are handled one at a time, in the order of their arrival (an object has a private message

queue to enqueue incoming messages, if necessary).

• An object (actor) responds to a single message (i.e., performs the corresponding method) and

then terminates. Thus, every message is handled by a new task. The method may specify a
replacement behavior (e.g., assignment of new values to instance variables) that results in a new

copy of an object with the same message queue and new behavior. The new object will handle

the next message. Consequently, a replacement behavior is only visible in subsequent method
invocations. The replacement behavior can also specify what specific type of messages to accept

next.

SYMPAL's design extends the Actor model [1] as follows:

• Support of single inheritance. In addition, there is no notion of selecting only specific types of

messages to be handled, so inheritance anomalies are avoided [7].

• Replies to messages can be associated with variables.

• Replies to messages are automatically sent back to the sender objects.

• Update of instance variables and intra-object parallelism are supported without creating new

copies of objects.

These extensions are described later in the paper.

40

(DEFMETHOD (TreeNode search) (k)

(IF (= key k) data ; data,key, left and right are instance variables

(POR (IF right (SEND right :search k))

(IF left (SEND left :search k)))))

Figure 1: Searching in a Tree of Objects

2 .2 T h e P r o g r a m m i n g C o n s t r u c t s

SYMPAL inherits its d a t a types, primitive functions, and forms of definitions of classes and methods

from COMMON-LISP /F lavo r s [8]. However, (1) explicit assignment to variables is not allowed and

(2) All its constructs are defined to have parallel semantics, so tha t all expressions can be evaluated
in parallel. The const ructs are:

f u n c t i o n call (F a l . . . a ~) or (LET ((v t a l) . . . (Vn an)) body)

In both forms, the actual a rguments a l . . . a s and the body of the function are evaluated in

parallel.

i f - t h e n - e l s e (IF cond then else)
The cond expression is evaluated first. If its value is non-nil , then is evaluated: otherwise, else
is evaluated, i f - t h e n - e l s e is the synchronization construct .

por (POR q...cn)
All cl • • • Cn expressions are evaluated in parallel. The return value is tha t of the first expression ci
t ha t terminates with a non-ni l value, a l though the computa t ion of the other expressions continues.

If all the expressions are evaluated as nil, the return value is nil.

s e n d (SEND o meg el . . .en)
A message, rnsg is sent to a target object o. The parameters of the message, e l . . . e n , can
be any valid S Y M P A L expressions. A send expression is t reated as a function call: (1) all the

parameters are evaluated in parallel, (2) tile message is sent wi thout waiting for the completion

of the evaluation of all its parameters , and (3) its value is the return value of the corresponding

method tha t is invoked.

f ina l ly (FINALLY E ((Vl El) . . . (Vn En)))
An object is updated . For a detailed description, see section 2.3.

Figure 1 shows the 8 Y M P A L method for searching, in parallel, in a tree of objects, located by

keys. It demonst ra tes the usefulness of embedding send expressions within other expressions and using

functional constructs such as po r to coordinate activities among objects.

2 . 3 T h e : f i n a l l y C o n c e p t

The Actor model [1] includes the become primitive to specify a replacement behavior for an object. In
practice, a new copy of the object, with the same message queue and new behavior, is created. SYMPAL
uses a variation of the become construct , named FINALLY, to upda te instance variables of objects and
to control intra-object parallelism wi thout creating new copies of objects. The following is a typical
s t ruc ture of a me thod body:

41

(defmethod (<method> <class>) (<parameters>)
(if (<cond>)

(... ; actions
(finally (<continuation>) (<assignments>)))

(... ; actions
(finally (<continuation>) (<assignments>)))))

The finally expressions are used as tail expressions of a method, so exactly one finally expression

is executed during an invocation of a method. Actions may include message-passing and local com-

putation, but not explicit assignment. Once a finally expression is reached, it updates the instance

variables and unlocks the object. Execution of the current method proceeds with the continuation

part, in parallel with the handling of new messages (if any). A finally expression has the following

syntax:

(FINALLY E ((vl El)... (Vn En)))

where vl ... Vn are instance variables and E and El... En are SYMPAL expressions, excluding finally

expressions. The semantics is described by the following three steps:

• Each expression Ei is evaluated in parallel. Its future value is bound to the corresponding instance

variable vi. These future values are visible only to subsequent method invocations. 1

• The object is unlocked. New method invocations are allowed.

• The expression E is evaluated sequentially. Its value is the return value of the method invocation.

In practice, finally expressions will be located at the earliest point in a method body where all the

new values of variables can be specified. 2. The object remains locked exactly long enough to guarantee

that the next method invocation will use the most recently updated values of the instance variables.

This single-assignment scheme with the finally construct has the following consequences:

I. Intra-object parallelism:

Intra-object parallelism allows overlapped execution of several method invocations on the same

object, while preserving the semantics of the Actor model [i]. This is an improvement over other

Actor-based languages [3, 12] in which objects handle messages one at a time, often imposing

unnecessary sequencing on subsequent method invocations.

2. Inter-object parallelism:
Owing to the absence of assignments during the actions stage, all the concurrency among the

actions is based on the inherent parallelism of the pure base language. This way we provide a

language in which parallelism is the default execution mode.

As an example, consider the program in figure 2, which defines the basic operat ions of u p d a t e

and s u m on a linked list of l i s t n o d e objects. Any tail expression exp not wrapped by an explicit

f i n a l l y const ruct (e.g, the s u m method) is automatical ly t ransformed by the compiler into (f i n a l l y

exp nil). Although most of the source code in figure 2 is writ ten as a sequential program, high levels of

1 The values of instance variables accessed within the continuation expression and any of the E~ expressions are still
the same as at the beginning of the method invocation. In practice, these expressions access (i.e., read from) copies of
the referenced variables created automatically by the compiler before the object is updated [2].

2Either by the programmer or by compile-time optimizations [2].

42

(DEFCLASS listnode ((mydata nil) (next nil) (mykey nil)))

(DEFMETHOD (listnodeupdate) (key value)
(IF (= mykey key)

(FINALLY t
((mydata (updatedata mydata value))))

(IF next
(SEND next :update key value))))

(DEFMETHOD (listnode sum) ()
(IF next

(+ mydata (SEND next :sum))
mydata))

(DEFUN u p d a t e d a t a (d a t a v a l u e)

; . . c o m b i n e data w i t h value)

Figure 2: Parallel Operations on a List

concurrency can be exploited. For example, in s u m , an object is unlocked to process new messages,

while the current method is blocked to wait for the values of d a t a (if not yet ready) and the reply to

the s u m message sent to the next object before the addition operation takes place. Another example

occurs in the u p d a t e method. The object is unlocked to process new messages in parallel with the

computat ion of a new future value assigned to the d a t a variable.

3 Comparison of SYMPAL with other Actor-Based Languages

Consider a program for evaluating a numeric expression represented as a tree of objects. Each internal

object represents a numeric operation, and each leaf represents a value. Figure 3 compares a SYMPAL
version of the program with versions in two ancestor Actor-based languages, Sal and ABCL/1. It

includes the definition of one specific m i n i m u m class, which represents a binary operation to calculate

a minimum value among natural numbers. The SAL language [1] is a minimal Actor-based language

without any extensions, while ABCL/1 is a more recent language, including explicit constructs for

communication and synchronization.
Both the ABCL/1 and the S Y M P A L versions are much more simple than the Sal program, mainly

because variables can be associated with replies to asynchronous messages. Thus, the extra method

ge t - va lue and the two additional instance variables, f a t h e r and value, are eliminated.
The ABCL/1 version is based on the m a k e - f u t u r e and n e x t - v a l u e primitives, associated with

asynchronous message-passing, which save its reply value and suspend execution, awaiting the reply
value for a message, respectively. With respect to synchronization and communication, the SYMPAL

version is, actually, an implicit version of the ABCL/1 one, based on asynchronous message-passing

and implicit synchronization.
SYMPAL maintains the intra-object parallelism supported in the Actor-model. Thus, both SYMPAL

and SAL allow a m i n i m u m object to handle messages such as i s -b ina ry while waiting for replies to

eval asynchronous messages. In contrast, ABCL/1 handles messages, by default, in sequence.
ABCL/1 has an explicit notation, "!", for sending back early replies to messages, thus minimizing

the delay of a sender object until it receive back a reply. It is currently unclear how to support this

feature in the functional context of SYMPAL.

43

def minimum (value,right,left,father)
[case operation of

eval : (customer)

get-value : (v,sender)
is-binary : (sender)

end case]

if operation = eval then
send eval request to right
send eval request to left

become minimum(O,right,left,customer)
fi
if operation = get-value then

let new-value = if value = 0 then v
else if value > v then v fi fi

{ if value =/ 0 then
send <[get-value request with new-value and self]> to father
become minimum(0,right,left,nil)

else
become minimum(new-value,right,left,father)

fi
}

fi
if operation = is-binary then

send <a reply message with a TRUE value> to sender

fi
end def

A) SAL version

[object minimum
(state left,right)

(script
(=> [:eval]

(temporary
[future1:=(make-future)]
[future2:=(make-future)]

L R)
[left <= [:eval] $ futurel]
[right <= [:eval] $ future2]

[L:=(next-value futurel)]
[R:=(next-value future2)]
!(if (> L R) R L))

(=> [:is-binary]

~T))]

(defclass minimum
(left, right))

(defmethod (minimum eval) ()

(finally (let ((L (send left :eval))
(R (send right :eval)))

(if (> L R) R L)))

(defmethod (minimum is-binary) ()

T)

B) ABCL/1 version C) SYMPAL version

Figure 3: Comparison of Three Different Actor-based Languages

4 An Example: Nbody simulation

The SYMPAL program in figure 4 is a parallel implementation of Nbody simulation. It computes the
motion (positions) of N bodies, attracted by a gravitational force, over a range of time steps. The

program has complex communication and synchronization patterns, and thus conveys the flavor of

SYMPAL and gives a general impression of its expressive power. The original program appears in [10].

Within the program,

44

o Each particle is represented by a SYMPAL object. All objects are connected (via the next instance
variable) in a ring structure. Each simulation step starts by sending s t a r t - p u s h messages to

activate all the objects in parallel.

® Once an object receives a s t a r t - push message, it starts to accumulate the forces applied to it
by the other objects: it sends a push message to its neighbor (pointed to by the next variable),
which finally returns the value of the accumulated forces applied to it by the next [@] objects

(starting from its neighbor).

Meanwhile, the object will receive [~-] push messages, sent by the other objects in the ring.
Each push message contains the position and velocity of the sender so the receiver object can
calculate and accumulate the force between it and the sender object. Once all the forces have

been accumulated, the object updates its position (the push method).

• In every simulation step, calculation of the force between every two objects is based on the values

of their positions as computed in the previous step. Thus, a simple protocol, implemented by the
r e a d y messages, guarantees that a new simulation step starts only after the positions of all the

objects have been updated.

• The p a r a l l e l construct is a macro defined on top of the built-in constructs of f u n c t i o n c a l l
and i f - t h e n - e l s e [2]. It spawns the evaluation of all its arguments in parallel, waiting only for

the evaluation of the last one to be completed.

5 Experience

Programming experience with SYMPAL includes several "real" irregular applications such as the SYMPAL

compiler itself and Nbody simulations of over 10,000 lines of source code. This experience strengthened
our feeling that programming in SYMPAL iS as practical and easy as sequential programming. The only
difference lies in the single assignment update of instance variables, using the f i n a l l y construct. In
addition, its design features of implicit parallelism, intra-object parallelism, and Actor-based semantics,

are applicable to a broad class of languages, other than functional ones, such as C + + [2].
SYMPAL has been efficiently implemented on an MIMD machine with eight processors, and on

several other machines. Its efficiency is proved by the high performance achieved in the aforementioned

SYMPAL applications on these machines [2].

6 Other Languages for Implicit COOP

There are considerable similarities between SYMPAL and a more recent language named UFO [9].
The latter also unifies object orientation and functional paradigms for implicit parallel programming,
supporting intra-object parallelism with single-assignment scheme for objects. UFO introduces an

alternative approach to the design of an inherently parallel COOP language, based on a data-flow
model and a construct for a single assignment inside loops and methods. The compiler detects the

point inside a method where the object can be safely unlocked to accept new method invocations (an
approach also taken by Hal [6]). More experience is required to compare the pros and cons of every

design in terms of simplicity of programming and efficient implementation.
Another implicit COOP language is Mentat [5], a C++-based medium-grained language. However,

in comparison with SYMPAL, it is not an Actor language and does not support intra-object parallelism.

45

(DEFCONSTANT N 101)
(DEFCONSTANT N2 (quotient N 2))
(DEFCONSTANT dt 1.0)

;num of particles must be odd !

; simulation time step

(DEFCLASS body (index N2) next pos ready (force 0.0) mass vel)

(DEFCLASS rootbody :body ; subclass of body
((steps 0)))

;; constructor methods (missing due to lack of space)

(DEFMETHOD (body start-push) nil
(parallel (SEND next :start-push)

(FINALLY t ((force (+ force (SEND next :push n2 0 pos mass)))))))

(DEFMETHOD (rootbody start-push) nil
(FINALLY t ((force (+ force (SEND next :push n2 0 pos mass))))))

(DEFMETHOD (body push) (hops accforce otherpos othermass)
(LET* ((f (interforce mass othermass pos otherpos))

(newforce (+ force f))
(v (IF (= hops I) (- accforce f)

(SEND next :push (- hops I) (- accforce f) otherpos othermass))))
(IF (= index I)

(parallel (SEND self :ready)
(LET ((new-vel (+ vel (* (/ newforce mass) dt)))

(FINALLY v
((vel new-vel)
(pos (+ pos (* new-vel dr)))
(index N2)
(force 0))))

(FINALLY v
((force newforce)
(index (- index I))))))

(DEFMETHOD (body ready) nil
(parallel (IF ready (SEND next :ready))

(FINALLY t ((ready (not ready)))))

(DEFMETHOD (rootbody ready) nil
(parallel (IF ready

(SEND self :start)
(SEND next :ready))

(FINALLY t ((ready (NOT ready)))))

(DEFMETHOD (rootbody start) nil
(IF (> steps O)

(FINALLY (SEND next :start-push)
((steps (- steps I)))))

(DEFUN main (steps)
(LET ((root (NEW :rootBody N steps))) ; creating a ring of objects

(SEND root :start)))

(DEFUN interforce (ml m2 pl p2)
(LET* ((r (- p2 pl))

(r2 (* r r)))
(/ (* r (* 1.0 (* ml m2))) (* r2 (abs r))))) ; 1.0 is the gravitation constant

Figure 4: N-b~d6y simulation

7 Conclusion

We have presented a programming language for implicit concurrent object-oriented programming. The

complexity of programming is simplified by a division of labor among the language, compiler and run-

time system. The language is inherently parallel, thus facilitating the extraction of large amounts of
parallelism. The optimizing compiler and the run-time system are responsible for efficient management

of parallelism. The language is simple, yet achieves a high level of expressive power using a minimal
set of constructs:

While the work so far has been focused on designing the core language and reaching efficient
implementation, future work includes extending the language with features such as synchronization

constraints and support for object placement, better modularity (e.g., direct invocation of methods
within other methods) and exception handling.

8 Acknowledgments

We thank Mike McDonald of IBM Japan for checking the wording of this paper.

References

[1] G. Agha. ACTORS: A Model for Concurrent Computation in Distributed Systems. MIT press, 1986.

[2] Y. Aridor, S. Cohen, and A. Yehudai. Sympah a software environment for implicit concurrent object-
oriented programming. Object-Oriented Systems, 4:53-81, 1997.

[3] W. C. Athas. Fine grain concurrent computations. Technical Report TR-87-5242, Computer Science Dept.,
California Institute of Technology, 1987.

[4] A. Chien, V. Karamcheti, J. Plevyak, and W. Feng. Techniques for efficient execution of fine-grained
concurrent programs. In Proceeding of the Workshop on Language and Compilers for Parallel Machines,
1992.

[5] A. Grimshaw. Easy-to-use object-oriented parallel processing with MENTAT. IEEE Computer, 26(5), 1993.

[6] W. Y. Kim and G. Agha. Compilation of a highly parallel Actor-based language. In Languages and Compilers
for Parallel Computing. Springer-Verlag, 1992.

[7] S. Matsuoka, K. Taura, and A. Yonezawa. Highly efficient and encapsulated re-use of synchronization code
in concurrent object-oriented languages. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 109-126, 1993.

[8] D. Moon. Object-oriented programming with FLAVORS. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications, pages 1-8, 1986.

[9] J. Sergeant. Uniting functional and object-oriented programming. In S. Nishio and A. Yonezawa, editors,
Proceeding of the 1st JSSST int'l symposium on object technologies for advanced software, 1993.

[10] C. L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-33, 1985.

[11] K. Taura, S. Matsuoka, and A. Yonezawa. An efficient implementation scheme of concurrent object-oriented
languages on stock multicomputers. In Proceedings of the Fourth A CM Sigplan Symposium on Principles
and Practice of Parallel Programming, 1993.

[12] A. Yonezawa. ABCL: An Object-Oriented Concurrent System. The MIT Press, 1990.

47

