
Automated Floorplanning for Partially

Reconfigurable Designs on Heterogenrous FPGAs
Pingakshya Goswami, Dinesh Bhatia

University of Texas at Dallas

{pingakshya.goswam, dinesh}@utdallas.edu

Abstract—Floorplanning problem has been extensively explored

for homogeneous FPGAs. Most modern FPGAs consist of

heterogeneous resources in the form of configurable logic blocks,

DSP blocks, BRAMs and more. Very little work has been done for

heterogeneous FPGAs. In addition, features like partial

reconfigurability allow on-the-fly changes to the executable design

that can result in enhanced performance and very efficient

utilization of resources. In this paper, we have designed a

floorplanner for Partially Reconfigurable (PR) designs in FPGA

that smartly decides one of the three proposed resource allocation

schemes to floorplan a particular type of reconfigurable region.

We also propose a White Space Detection algorithm for efficient

management of white space inside an FPGA in order to reduce the

area and the wire length. The floorplanner is demonstrated on

Xilinx Virtex 5 and Artix 7 FPGA architectures and can be easily

integrated with existing vendor-supplied Place and Route tools.

The main objective of the floorplanner is to reduce the wire length,

minimize wasted resources and the area. The performance of our

floorplanner is evaluated using MCNC benchmarks. We have

compared our proposed floorplanner with other previously

published results reported in the literature. We observe a

substantial improvement in the overall wire length as well as the

execution time. Also, the floorplanner was integrated with vendor

supplied place and route tools (Xilinx Vivado) to automate the

floorplanning flow. The automation process was tested on a

partially reconfigurable median filter used in image processing

applications.
Keywords—Heterogeneous FPGA, Floorplanning, Partial

Reconfiguration

I. INTRODUCTION

 FPGAs are becoming more and more complex as different

types of resources like Configurable Logic Blocks(CLB), Block

RAM(BRAM), Digital Signal Processing(DSP) Blocks, Hard

Processors, Transceiver core, etc. are added to a single die.

Mapping designs on such heterogeneous architectures is a

difficult problem and automated floorplanning and placement

tools can greatly help to design using FPGAs. Advances in

manufacturing technologies have allowed Partial

Reconfiguration of an FPGA die. Partial Reconfiguration (PR)

allows on-the-fly changes to design during runtime. This added

feature adds complexity to the design as a given locality on an

FPGA no longer holds a designing statically. The configuration

changes with time and designing of such systems are not well

supported by EDA tools. Although PR is one of the special

features of FPGAs with lots of applications, this feature needs

a significant amount of manual interference and involves a

number of steps [1,2]. One of the biggest challenges in Partially

Reconfigurable design flow is the floorplanning of the

reconfigurable regions(RR) present in the design. The current

EDA tools are not smart enough to automatically partition the

PR design into static and reconfigurable regions and then

floorplan the RRs. Hence, floorplanning has to be done

manually for all the vendor supplied tools [2, 3]. Due to these

reasons, the designer needs to have a deep understanding of the

FPGA architecture which can vary from one FPGA device to

another. Since most of these operations in partial

reconfiguration have to be performed manually, especially the

floorplanning part, the designs are not well optimized in terms

of area, wire-length, resource wastage, and frequency of

operation.

 In this paper, we present the design of a floorplanner for

partially reconfigurable designs in heterogeneous FPGAs that

takes into consideration the variety of resources present in the

FPGA device. The floorplanner is based on fixed outline

simulated annealing algorithm. We propose a Priority-based

algorithm mimicking Olympic Medal Tally for initial

floorplanning. This preprocessing step is followed by simulated

annealing based optimization. Also, a White Space Detection

and storing algorithm for floorplanning of smaller module has

been introduced. We defined a cost function, which is

composed of a weighted sum of wire-length, area, and resource

wastage. We consider the base architecture of the FPGA as

Virtex 5 (for evaluating the performance of the tool) and the

latest Artix 7 in which one real sample design has been

floorplanned, implemented and configured on FPGA. Given

that most of the Xilinx devices have similar architecture, our

proposed methodology should easily map on to most of the

devices in the Xilinx family. We integrated our software with

Xilinx Vivado [8] to generate the floorplan of a partially

reconfigurable median filter used in image processing

applications. This application consists of seven reconfigurable

regions and we have compared the manually generated

floorplan with the one generated by the automatic floorplanner.

 The rest of the paper is organized as follows: In Section II

we discuss the related work. In Section III, we describe the

problem and definitions of the terms used; the proposed

floorplanner PR_FP_tool has been described in Section IV.

Section V presents the experimental results. Finally, we

conclude the paper and suggest some future extensions in

Section VI.

II. RELATED WORK

 The problem of floorplanning in FPGA has been studied in

the literature and, most of these works have addressed the

floorplanning problem for static as well as partially

reconfigurable designs on both uniform [7, 12 ,13] and

nonuniform heterogeneous FPGAs [4,5,6]. Here, non-uniform

refers to FPGAs that have uneven and scattered distribution of

resources. The first available work for floorplanning of

heterogeneous FPGAs was presented in [12] where the authors

have targeted the floorplanning problem using a slicing tree

based method and a modified version of Stockmeyer [16]

floorplan optimization algorithm. This algorithm works well on

the older generation of FPGAs like Spartan 3 and Virtex 2

devices from Xilinx. These older generation of devices make

use of only one type of resources, namely the configurable logic

block (CLB). In [13], the authors described a floorplanning

method on Spartan 3 FPGAs that is based on fixed outline

Parquet [15] floorplanner. In [4], the authors have defined a

floorplanner for the Virtex 5 FPGA architecture and the

floorplanning problem is represented as a sequence pair. The

floorplan is optimized using simulated annealing and has been

tested using MCNC benchmarks. The cost function defined in

[4] is biased towards wirelength only. Also, the floorplanner

does plan or account for wasted resources. A mixed integer

linear programming (MILP) based FPGA floorplanner is

proposed in [5] that takes into account most of the essential

factors in the cost function which includes wirelength, resource

wastage, and the perimeter of a device. The main drawback of

this floorplanner is that it takes a long time to solve even for

small design. This floorplanner gives a tight result but a lot of

dead space may be generated which in turn increases the area

and wirelength of the overall design.

 The floorplanning methodology we proposed here focusses

on shortcomings of previous works along with novel

innovations. These include white space detection for insertion

of black box modules, introduction of wasted resource, and area

as parameters in the cost function and absolute automation of

the process by integrating with Xilinx Vivado Design Suite.

Our floorplanner gives a feasible solution in each and every

move of optimization and there never arises a situation when

the number of resources allotted for a Reconfigurable Region is

less than the required number of resources.

III. FLOORPLANNER AND FPGA ARCHITECTURE

 The input to our PR_FP_tool tool is a synthesized netlist

which represents the partially reconfigurable design in terms of

resource requirement i.e. the number of CLBs, BRAMs and

DSPs required by each module and the connectivity between

each module is represented as a hypergraph netlist. Apart from

the netlist, other input to the tool is the FPGA device

architecture which is represented as an MxN matrix, where M

is the number of rows and N is the number of columns in the

device. The output of the tool gives the coordinates of each of

the Reconfigurable Regions inside the FPGA fabric Figure 1

illustrates the tool with input and outputs type.

Fig. 1: Inputs and Outputs of the proposed floorplanner.

A. Modelling of the FPGA Architecture

The FPGA architecture used for mapping is similar to the

Xilinx Virtex 5 family of devices. Figure 2 illustrates an

abstract view of one of the Virtex devices. The device has eight

clock-regions laid out in four rows and two columns. A clock-

region is 20 CLBs tall and spans half the length of the die. Each

clock region consists of one of more number of DSP and

BRAM columns. Majority of clock region is occupied by the

CLBs. In the literature, the height of the clock regions inside

the FPGA is considered as the size of the device used for

mapping [5, 6, 9]. Some of the important architecture related

definitions include:

Static Region (SR): Area inside the FPGA chip which remains

constant during reconfiguration. The static region contains the

processor or the control unit which decides when to switch

between modules for the reconfiguration regions along with the

clock and the I/O blocks.

Reconfigurable Region/Reconfigurable Area (RR): Partitions

inside the FPGA chip inside which the reconfigurable

components reside. Reconfigurable regions can accommodate

one or multiple instances of reconfigurable modules.

Reconfigurable Modules(RM): Different instances of a

functional unit which resides inside the RR. A RR

accommodates different instances of RM keeping the input

output pins similar. For example, A RR named “math” may

have two instances of RM named adder and multiplier having

the same pin connections.

Frame: The smallest reconfigurable unit present in a FPGA is

called frame. A frame is one CLB column wide and one device

row high [10]. Fig. 2 illustrates the structure of frames of

different resources in Xilinx Virtex 5 FPGA device. A BRAM

frame consists of 2 BRAM slices, DSP consists of 4 slices while

a CLB frame consists of 20 CLB slices in Virtex 5.

Fig. 2: A Virtex 5 style FPGA architecture used for

floorplanning. Each CLB frame is one CLB wide and has

height that is same as the clock-region height.

B. Floorplanning Constrainsts for PR Design

In order to generate feasible floorplan, the following constraints

are satisfied by our floorplanner PR_FP_tool in a

heterogeneous FPGA:

i. None of the RRs should overlap. For two modules A and B

not to overlap with each other, the following conditions are

need to be satisfied:

(������ ≥ 	���
� || ����
� ≤ 	�����) && (������ ≥
	���
� || ����
� ≤ 	�����) (1)

Here, A and B are two modules and x-min and x-max

represents the extremes in horizontal direction while y-min

and y-max represents the extremes in vertical direction of the

two modules.

ii. Total resource available inside the FPGA chip must be

greater than the sum of the resources of all RR and the SR

����� + ∑ ������
���� ≤ �� ���� (2)

 ���!"# + ∑ ����$%&
���� ≤ �� ��!"# (3)

��'() + ∑ ���*+,
���� ≤ �� �'() (4)

In the above equations, SR represents resource consumned by

static region and RR represents resource consumed bt

reconfigurable regions. The total resource of each type inside

the FPGA is represented by PGACLB, FPGABRAM and
FPGADSP respectively.

iii. The rectangular area alloted to a particular RR must contain

all the resources of each type required by the largest

instance of PR module going into that region

 RRaCLB ≥ max(RMa1clb , RMa2clb ………RManclb) (5)

 RRaBRAM ≥ max(RMa1BRAM , RMa2BRAM…RManBRAM) (6)

 RRaDSP ≥ max(RMa1DSP , RMa2DSP…… RManDSP) (7)

Here, RRa represents reconfigurable region named ‘a’ and RMa1,

RMa2 … RMan represents different instances of reconfigurable

modules which are going into reconfigurable region RRa.

iv. The shape, size and location of each static module should

remain same across different instances of PR.

IV. PROPOSED FLOORPLANNER

The entire design methodology consists of 8 stages which

starts with synsthesis of the design in Xilinx Vivado[3] and

ends with configuring the device using Vivado Hardware

Manager. The important stages of the proposed design flow are:

i. Synthesize the static module using Xilinx Vivado and

generate a netlist.

ii. Synthesize each of the partially reconfigurabe module

using Xilinx Vivado and generate a netlist.

iii. Import the generated static and partial reconfiguration(PR)

netlists to Vivado,

iv. Collect resource requirement statistics and wire connection

information from Vivado and generate file that can be

accepted by our PR_FP_Tool.

v. Run PR_FP_tool and generate a constraint file with the

coordinates of each RR module

vi. Using the xdc file generated by the PR_FP_tool, create and

implement design runs in Vivado..

vii. Generate bitstream for each configuration of PR designs

viii. Configure device and store PR bitstreams in on-board

memory.

A. Priority Sort of Reconfigurable Regions

The RRs present in the design are classified into four different

categories:

• Type1: #DSP>0, #BRAM>0, #CLB>0

• Type2: #DSP>0, #BRAM=0, #CLB>0

• Type3: #DSP=0, #BRAM>0, #CLB>0

• Type4: #DSP=0, #BRAM=0, #CLB>0

 Type1 modules are floorplanned first, followed by Type 2,

Type 3 and Type 4. The order in which the RRs are to be

allotted are stored in a sorted region list. The resources, which

are more readily available, are given lower priority (e.g. CLB)

and the ones which are least available are more costly and are

given higher priority (e.g. DSPs).

 The sorted region list created above is used for building the

initial floorplan that will be perturbed during simulated

annealing.

B. Allocation of Reconfigurable Regions

 As mentioned in the previous section, the RR present in a

design is classified into four different categories. For the

floorplanning of the four different types of RR, three distinct

types of resource allocation schemes are adopted. These three

resource allocation schemes are discussed here:

B.1. Resource Allocation Scheme 1

 This scheme is used to floorplan RRs that consist of all the

three types of resources (CLB, BRAM and DSP). First we

allocate the DSP blocks required by the RR as DSP has the

highest priority and most expensive in Virtex 5. After DSP

requirement of a RR is fulfilled, BRAM blocks are allotted in a

similar manner. DSP and BRAM block allocation is followed

by CLB allocation. CLB frames are also addressable

individually and one CLB frame contains 20 CLB blocks. Fig.

3 shows how a Type 1 RR is floorplanned in the FPGA. As

shown in Fig.3, we allocate block labeled A first which is DSP,

followed by block B (BRAM) and finally C, which are the

surrounding CLBs.

B.2. Resource Allocation Scheme 2

 This method is used to pack RRs that consists of only two

types of resources; either DSP and CLB or BRAM and CLB.

While allotting the CLB blocks, it is ensured that the device

rows occupied by the CLB blocks are same as the DSP or

BRAM rows. If more CLB blocks are required, CLB blocks

towards the left or the right of the higher priority column are

allotted. As shown in Fig.3, we allocate block labeled D (DSP)

first which is DSP, followed by block E which represents the

surrounding CLBs.

C. White Space Detection and Calculations

 White Space represents the largest continuous rectangles of

free space which are available inside the FPGA fabric after the

allocation of Static Region, Type 1 and Type 2 RRs. The white

space detection algorithm scans the FPGA from left to right and

finds the largest free rectangles inside the device. Once all the

white space rectangles are formed, the coordinates and resource

availability information of each of the rectangles are stored in a

list called white space region list. This list is later used for

Resource Allocation Scheme 3.

C.1 Resource Allocation Scheme 3

 The white space available inside the FPGA is used for

resource allocation of Type 4 RR which contains only one type

of resource i.e. CLBs. The Type 4 RR are allocated to white

spaces based on a cost function associated with each white

space region. For each region, we compute a cost,

cost =α*Freedsp+β*Freebram+γ*Freeclb+δ*dist_centroid (8)

Fig. 3: Illustration showing resource allocation scheme 1 and

resource allocation scheme 2 inside the FPGA device.

Here, Freedsp, Freebram and Freeclb represents number of free

DSP, BRAM and CLB blocks respectively in the white space,

and dist_centroid represents the distance of the white space

centroid from the centroid of the whole design

 α, β, γ and δ are weights assigned to each factor which can

be customized by the user. We have considered α>β>γ>δ as

DSPs are more valuable as compared to other resources. The

white spaces inside the white space region list are sorted in

ascending order based on the cost provided by equation (8). In

order to floorplan a Type 4 RR, we choose the white space

which has the minimum cost as well as it contains sufficient

number of CLB blocks to fulfill the CLB requirement of the

RR. This scheme minimizes the wastage of high priority and

costly resources. This list is recreated after allocation of each

new RR inside the FPGA.

D. Resource Wastage Calculation in an FPGA

Owing to the fact that no two RR can share a same frame in

the same clock region or in the same device row a number of

resources are wasted which are external to the allotted rectangle

of the RR. Here, we have shown the calculation for wasted

resource calculation for each resource in a frame. A frame is

one row high. We have assumed that the resources are allotted

only in the vertical direction.

Definitions of terms used to calculate wasted resource in a row:

ndsp , nbram, nclb : number of DSP, BRAM, CLB blocks required

respectively by a RR

DSPper frame , BRAMper frame , CLBper frame : number of DSP, BRAM

and CLB blocks present in a frame respectively

fdsp , fbram , fclb : number of DSP, BRAM, CLBs frame required

by a RR respectively

RWdsp , RWBRAM , RWCLB : number of DSP, BRAM, CLB blocks

wasted respectively

Number of DSP blocks wasted is given by:

 -./0 = 2 �345
'()567897:;6

< (9)

 RWdsp= fdsp*DSPper_frame – ndsp (10)

Number of BRAM blocks wasted is given by:

 -=>
� = 2 �?7:;
�!"#567897:;6

< (11)

 RWbram= fbram*BRAMper_frame – nbram (12)

Number of CLB blocks wasted is given by:

 -@A= = 2 �BC?
���567897:;6

< (13)

 RWclb= fclb*CLBper_frame – nclb (14)

Observation: If ndsp, nbram and nclb are not integer multiples of fdsp

, fbram and fclb respectively, there will always be RWrec number

of resources that are wasted. RWrec is given by:

 RWrec= frec*RECper_frame – nrec (15)

Here, rec represents the type of resource which can be CLB,

BRAM or DSP. Resource wastage due to the restriction in

sharing of a frame by two RRs occur if we allocate resource in

the vertical direction. Since, CLBs are abundantly available in

all directions, CLB block allocation in the horizontal direction

in the same row should be given preference over extending

CLB blocks in the vertical direction. This way, CLB resource

wastage can be prevented significantly. But in case of BRAM

or DSP, horizontal allocation of blocks are not possible as

single block wide BRAM and DSP columns are aligned in the

vertical direction only.

E. Cost Function

 The initial floorplanning which is done via priority sorting

algorithm and white space based region allocation method is

perturbed by simulated annealing which minimizes the cost

function given by equation (16).

DEFG = H ∗ JK + L ∗ MNOM + P ∗ J� (16)

 Here, WL represents half perimeter wirelength(HPWL), area

represents total area of the design and WR total wasted resource

in the design and α, β and γ are weights assigned to each

parameter by the user.

Wirelength (WL): The wirelength is calculated using HPWL

method. For a particular design, the total wirelength is

calculated as the sum of HPWLs of all the nets present in the

design.

Area (Area): The total area represents the area of the bounding

box enclosing the entire design. The area is calculated as:
MNOM = MQF(R#"� − R#TU) ∗ MQF(V#"� − V#TU) (17)

 The X and Y coordinates of equation (18) represents the

extremes of the entire design, not the reconfigurable regions.

Wasted Resource (WR): Wasted resource represents the

blocks present inside a RR rectangle which are not actually

utilized during placement. WR is calculated as:

NW@X/Y = YXY
A 764Z[7B6
YXY
ABC?

∗ D\Q]
/Y^. + YXY
A 764Z[7B6
YXY
A?7:;

∗ QNM_]
/Y^. +
 YXY
A 764Z[7B6

YXY
A345
∗ `Fa]
/Y^. (18)

 Equation (19) makes sure that the weight assigned to each

wasted resource is proportional to the total number of elements

of that particular resource present in the device. rwcost is passed

to the cost function defined in equation (16).

F. Representation of Floorplan and Simmulated Annealing

 We represent the floorplan using sequence pair. The sequence

pair consists of two sets of permutations of the blocks present

in the design [19]. The two sequences present in a sequence pair

depict the relative alignment of the modules with respect to each

other. The following relationships represent sequence pair:

(<…..p,……q,….>,<…..p,……q,….>) => p is to the left of q

(<…..p,…...q,….>,<…..q,……p,….>) => p is above q

 Simulated annealing is used to minimize the cost function

defined in equation (16) in order to generate an improved

floorplan. The input to the annealer is the sequence pair of the

current floorplan. The simulated annealing moves are described

below:

Move 0: Shuffle: In this move, the annealer shuffles both the

sequences in the sequence pair and starts floorplanning from the

beginning. This move is very random and is generally

performed at higher frequency when the temperature is high.

Move 1: Swap two RR: In this move, the annealer randomly

chooses two RRs and swaps their positions in both the sequence

pair. If two modules are swapped in both the sequences, they

swap their positions in the actual floorplan.

Move 2: Remove and Replace: In this move, the annealer

randomly chooses a RR and deletes it from both the sequences.

The remaining RRs are floorplanned and the removed module

is floorplanned after all others modules are packed.

Move 3: Shift a RR Left/Right: In this move, the annealer

randomly chooses a RR and shift it either towards the right or

to the left by certain number of CLB blocks. If the resource

requirement of the RR is violated due the shifting operation, the

move is ignored and the previous configuration is restored.

V. EXPERIMENTS AND RESULTS

 We have tested our floorplanner on an AMD Opteron(tm)

Processor 3GHz work station. The floorplanner was tested on

three different FPGA devices:

a. A user defined 10x23 FPGA

b. Xilinx Virtex 5 F110xt

c. Xilinx Artix 7 XCA100T

 The user defined 10x23 FPGA is a small heterogeneous

FPGA which is modelled based on the Virtex architecture. It

consists of 10 CLB rows and 23 columns. This will represent

one clock-region. The columns are divided into 1 DSP column,

2 BRAM columns and remaining 20 CLB columns. The

reconfigurable regions allotted to this FPGA are generated as a

task flow graph using TGFF [14] graph generator. Also, it is

assumed that the frame size is one, i.e. on each frame, only one

type of resource will exist. Next, we have tested our

floorplanner on Virtex 5 FPGA. We have used the 5 MCNC

circuits and 1 GSRC circuit taken from [4] in order to evaluate

the performance of our floorplanner. Finally, in order to

validate our floorplanner we integrate it with Xilinx Vivado.

We have taken the Xilinx Artix 7 device as our base architecture

and floorplanned a partially reconfigurable median filter used

in image processing applications using our tool. The median

filter consists of seven reconfigurable regions.

A. Result Analysis

 We have evaluated the performance of our floorplanner using

the 6 MCNC benchmarks. We calculated the wirelength, area,

wasted resource and execution time for each of the benchmarks

and compared our results against the existing work. The results

presented here are based on Virtex 5 FPGA are shown in Table

I and Table II.

TABLE I. WIRELENGTH COMPARISON WITH SIMILAR WORKS

 [13] [7] [12] Ours

Circuit HPWL HPWL HPWL HPWL

apte --- 213540 2704 42940

hp --- 113652 3286 40242

xerox --- 536450 10476 112630

ami33 89283 51356 4060 71280

ami49 1173000 1001462 14050 218800

n100 358338 132682 26355 189470

TABLE II. RUNTIME COMPARISON WITH SIMILAR WORKS

 [13] [7] [12] Ours

Circuit Time(sec) Time(sec) Time(sec) Time(sec)

apte - 1.22 343 0.45

hp - 0.96 531 0.47

xerox - 1.02 353 0.58

ami33 2.71 1.39 369 2.71

ami49 4.95 3.84 585 4.59

n100 8.86 8.87 573 15.24

 As shown in Table I, we have calculated the wirelength as half

perimeter wirelength (HPWL) which is in terms of CLB blocks.

This means that the unit for wirelength is one CLB unit long. It

has been found that our floorplanner PR_FP_TOOL gives an

average 37% improvement of wirelength than the works

mentioned by Banerjee et. al.[7]. In [7], the FPGA used for the

testing the benchmark was Xilinx Spartan-3 XC3S5000 where

the distribution of resources is uniform and follow a repetitive

pattern. In this work, the authors have partitioned the FPGA

into basic tiles. Each basic tile consists of 96 CLBs, 1 BRAM

and 1 DSP block. The wirelength is measured in terms of basic

tiles.

 The work mentioned by Mehta et. al. in [13] was also tested

on Spartan 3 and Virtex 2 FPGAs. Here the authors

concentrated only on minimization of wirelength. Resource

wastage is not accounted for in the cost function. The unit for

calculation of wirelength is taken as CLBs which is similar to

ours. When we compared our works with [13], we found that

there is 49% improvement in wirelength for the last three

benchmarks and the run time is comparable in both the cases.

 The results in [12] were derived for Xilinx Spartan 3

XC3S500 FPGA. The floorplan was scaled [15] so that the

bounding box of the entire floorplan is same as that of the FPGA

chip. They have calculated the wirelength using center to center

HPWL of all the nets. The floorplanner takes much more time

to generate the floorplan as compared to other state of the art

works [4, 7, 13]. Our tool runs at around 500 times faster than

the one mentioned in [12] since we apply pre-processing using

white space detection and priority based sorting algorithms.

 Table III shows the resource wastage for each type of

resource. The average resource wastage for CLB, DSP and

BRAM are 14.7%, 19% and 3.28% respectively which is very

less as compared to other state of the art works [4,7,16].

TABLE III. PERCENTAGE OF RESOURCE WASTED FOR EACH CIRCUIT

circuit %clb

wasted

%bram

wasted

%dsp

wasted

apte 12 2 3

hp 12 5 0

xerox 11 2 3

ami33 20 23 0

ami49 17 21 14

n100 17 40 3

B. Integration With Vivado

 We have integrated our floorplanner with Xilinx Vivado and

tested on a filter designed for image processing application. The

PR_FP_TOOL gives the output in a format which is similar to

the xdc file which can be read by Xilinx Vivado tool. The image

processing filter consists of 7 reconfigurable regions. Each

reconfigurable region supports two reconfigurable modules:
a. Median Filter

b. Mean Filter

 The resource requirement vector of actual design is

significantly different from the resource requirement in MCNC

benchmark. In the actual design, resource requirement is

expressed in terms of SLICE_L and SLICE_M, RAM32 or

RAM16 and DSP48 for Artix 7 FPGA. Figure 5(b) shows a

design which is floorplanned by our tool on Vivado which is

compared against a manually floorplaned design shown in

Figure 5(a). Our floorplanner takes into account the edges to

which the IOBs of the netlist are connected and places the

modules near that edge.

 When we compared the performance of our PR_FP_TOOL

to a manual floorplanner, we found significant improvement in

terms of area, maximum clock frequency and implementation

time. It has been found that our floorplanner is able to reduce

the total area of the reconfigurable modules by more than 80%

and the frequency of the design has been increased by

approximately 4%. Table IV compare the automatic floorplan

performance against a manual one while Figure 5 shows the

manual floorplan against the automatic one.

TABLE IV. MANUAL FLOORPLAN VS AUTOMATED FLOORPLAN

Parameter Manual Automatic

Design Frequency 26.85 MHz 28.054MHz

Area 3242 CLB2 513CLB2

Place & Route Time 4 hours 19mins 23 secs

VI. CONCLUSION

We have presented a floorplanner for heterogeneous FPGAs

that is capable of mapping partially reconfigurable designs. We

have produced very efficient results with respect to the

wirelength and the area. We have compared our work with the

other approaches and have shown better results primarily due

to the application of our novel white space detection algorithm

that very effectively manages the dead space inside the device.

Here, we have managed to reduce wasted resources by adopting

three different resource allocation schemes for four different

types of RRs. Also, our floorplanner can be easily integrated

with vendor supplied place and route tools which we have

proved by floorplanning a partially reconfigurable image

processing median filter. In the future, this work can be

extended to 3-D heterogeneous FPGAs.

(a) (b)

Fig. 5 (a) Initial Manual Floorplan, (b) Optimized

automatic floorplan generated by PR_FP_TOOL

REFERENCES

[1] Xilinx Partial Reconfiguration User Guide, UG702 (v14.1) April 24, 2012

[2] Xilinx Partial Reconfiguration of a Processor Peripheral Tutorial

PlanAhead Design Tool UG744 (v14.5), 2013

[3] Vivado Design Suite User Guide Partial Reconfiguration; UG909

(v2014.4) November 19, 2014

[4] Bolchini, Cristiana, Antonio Miele, and Chiara Sandionigi. "Automated

resource-aware floorplanning of reconfigurable areas in partially-

reconfigurable FPGA systems." Field Programmable Logic and

Applications (FPL), 2011 International Conference on. IEEE, 2011.

[5] Rabozzi, M.; Lillis, J.; Santambrogio, M.D., "Floorplanning for Partially-

Reconfigurable FPGA Systems via Mixed-Integer Linear Programming,"

in Field-Programmable Custom Computing Machines (FCCM), 2014

IEEE 22nd Annual International Symposium on , vol., no., pp.186-193,

11-13 May 2014

[6] K. Vipin and S. A. Fahmy. 2012. Architecture-Aware reconfiguration-

centric floorplanning for partial reconfiguration. In Proceedings of the 8th

international conference on Reconfigurable Computing: architectures,

tools and applications (ARC'12)

[7] Banerjee, P.; Sur-Kolay, S.; Bishnu, A., "Floorplanning in Modern

FPGAs," in VLSI Design, 2007. Held jointly with 6th International

Conference on Embedded Systems., 20th International Conference on ,

vol., no., pp.893-898

[8] Vivado User Guide UG632 (v14.3) October 16, 2015

[9] Vipin, K.; Fahmy, S.A., "Efficient region allocation for adaptive partial

reconfiguration," in Field-Programmable Technology (FPT), 2011

International Conference on , vol., no., pp.1-6, 12-14 Dec. 2011

[10] Virtex-5 FPGA Configuration User Guide UG191 ; Xilinx

[11] Murata, H.; Fujiyoshi, K.; Nakatake, S.; Kajitani, Y., "VLSI module

placement based on rectangle-packing by the sequence-pair,"

in Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on , vol.15, no.12, pp.1518-1524, Dec 1996

[12] Cheng, Lei, and Martin DF Wong. "Floorplan design for multimillion gate

FPGAs." Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on 25.12 (2006): 2795-2805.

[13] Yan Feng and Dinesh P. Mehta. 2006. Heterogeneous Floorplanning for

FPGAs. In Proceedings of the 19th International Conference on VLSI

Design held jointly with 5th International Conference on Embedded

Systems Design (VLSID '06).

[14] Keith Vallerio, Task Graphs for Free (TGFF v3.0), available at

http://ziyang.eecs. umich.edu/wdickrp/tgff/manual.pdf

[15] S. N. Adya and I. L. Markov, "Fixed-outline Floorplanning : Enabling

Hierarchical Design", IEEE Trans. on VLSI Systems, vol 11(6), December

2003, pp. 1120-1135

[16] L. Stockmeyer, "Optimal Orientations of Cells in Slicing Floorplan

Designs," Information and Control, Vol. 57, 1983. pp. 91-101

[17] Murata, H.; Fujiyoshi, K.; Nakatake, S.; Kajitani, Y., "VLSI module

placement based on rectangle-packing by the sequence-pair,"

in Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on , vol.15, no.12, pp.1518-1524, Dec 1996.

