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Abstract—Floorplanning problem has been extensively explored 

for homogeneous FPGAs. Most modern FPGAs consist of 

heterogeneous resources in the form of configurable logic blocks, 

DSP blocks, BRAMs and more. Very little work has been done for 

heterogeneous FPGAs. In addition, features like partial 

reconfigurability allow on-the-fly changes to the executable design 

that can result in enhanced performance and very efficient 

utilization of resources.  In this paper, we have designed a 

floorplanner for Partially Reconfigurable (PR) designs in FPGA 

that smartly decides one of the three proposed resource allocation 

schemes to floorplan a particular type of reconfigurable region. 

We also propose a White Space Detection algorithm for efficient 

management of white space inside an FPGA in order to reduce the 

area and the wire length. The floorplanner is demonstrated on 

Xilinx Virtex 5 and Artix 7 FPGA architectures and can be easily 

integrated with existing vendor-supplied Place and Route tools. 

The main objective of the floorplanner is to reduce the wire length, 

minimize wasted resources and the area. The performance of our 

floorplanner is evaluated using MCNC benchmarks. We have 

compared our proposed floorplanner with other previously 

published results reported in the literature. We observe a 

substantial improvement in the overall wire length as well as the 

execution time. Also, the floorplanner was integrated with vendor 

supplied place and route tools (Xilinx Vivado) to automate the 

floorplanning flow. The automation process was tested on a 

partially reconfigurable median filter used in image processing 

applications. 
Keywords—Heterogeneous FPGA, Floorplanning, Partial 

Reconfiguration 

I.  INTRODUCTION  

     FPGAs are becoming more and more complex as different 

types of resources like Configurable Logic Blocks(CLB), Block 

RAM(BRAM), Digital Signal Processing(DSP) Blocks, Hard 

Processors, Transceiver core, etc. are added to a single die. 

Mapping designs on such heterogeneous architectures is a 

difficult problem and automated floorplanning and placement 

tools can greatly help to design using FPGAs. Advances in 

manufacturing technologies have allowed Partial 

Reconfiguration of an FPGA die. Partial Reconfiguration (PR) 

allows on-the-fly changes to design during runtime. This added 

feature adds complexity to the design as a given locality on an 

FPGA no longer holds a designing statically. The configuration 

changes with time and designing of such systems are not well 

supported by EDA tools. Although PR is one of the special 

features of FPGAs with lots of applications, this feature needs 

a significant amount of manual interference and involves a 

number of steps [1,2]. One of the biggest challenges in Partially 

Reconfigurable design flow is the floorplanning of the 

reconfigurable regions(RR) present in the design. The current 

EDA tools are not smart enough to automatically partition the 

PR design into static and reconfigurable regions and then 

floorplan the RRs. Hence, floorplanning has to be done 

manually for all the vendor supplied tools [2, 3]. Due to these 

reasons, the designer needs to have a deep understanding of the 

FPGA architecture which can vary from one FPGA device to 

another. Since most of these operations in partial 

reconfiguration have to be performed manually, especially the 

floorplanning part, the designs are not well optimized in terms 

of area, wire-length, resource wastage, and frequency of 

operation.  

   In this paper, we present the design of a floorplanner for 

partially reconfigurable designs in heterogeneous FPGAs that 

takes into consideration the variety of resources present in the 

FPGA device. The floorplanner is based on fixed outline 

simulated annealing algorithm. We propose a Priority-based 

algorithm mimicking Olympic Medal Tally for initial 

floorplanning. This preprocessing step is followed by simulated 

annealing based optimization. Also, a White Space Detection 

and storing algorithm for floorplanning of smaller module has 

been introduced. We defined a cost function, which is 

composed of a weighted sum of wire-length, area, and resource 

wastage. We consider the base architecture of the FPGA as 

Virtex 5 (for evaluating the performance of the tool) and the 

latest Artix 7 in which one real sample design has been 

floorplanned, implemented and configured on FPGA. Given 

that most of the Xilinx devices have similar architecture, our 

proposed methodology should easily map on to most of the 

devices in the Xilinx family. We integrated our software with 

Xilinx Vivado [8] to generate the floorplan of a partially 

reconfigurable median filter used in image processing 

applications. This application consists of seven reconfigurable 

regions and we have compared the manually generated 

floorplan with the one generated by the automatic floorplanner.  

     The rest of the paper is organized as follows: In Section II 

we discuss the related work. In Section III, we describe the 

problem and definitions of the terms used; the proposed 

floorplanner PR_FP_tool has been described in Section IV. 

Section V presents the experimental results. Finally, we 

conclude the paper and suggest some future extensions in 

Section VI.   

II. RELATED WORK 

     The problem of floorplanning in FPGA has been studied in 

the literature and, most of these works have addressed the 

floorplanning problem for static as well as partially 

reconfigurable designs on both uniform [7, 12 ,13] and 

nonuniform heterogeneous FPGAs [4,5,6]. Here, non-uniform 

refers to FPGAs that have uneven and scattered distribution of 



resources. The first available work for floorplanning of 

heterogeneous FPGAs was presented in [12] where the authors 

have targeted the floorplanning problem using a slicing tree 

based method and a modified version of Stockmeyer [16] 

floorplan optimization algorithm. This algorithm works well on 

the older generation of FPGAs like Spartan 3 and Virtex 2 

devices from Xilinx. These older generation of devices make 

use of only one type of resources, namely the configurable logic 

block (CLB). In [13], the authors described a floorplanning 

method on Spartan 3 FPGAs that is based on fixed outline 

Parquet [15] floorplanner. In [4], the authors have defined a 

floorplanner for the Virtex 5 FPGA architecture and the 

floorplanning problem is represented as a sequence pair. The 

floorplan is optimized using simulated annealing and has been 

tested using MCNC benchmarks. The cost function defined in 

[4] is biased towards wirelength only. Also, the floorplanner 

does plan or account for wasted resources. A mixed integer 

linear programming (MILP) based FPGA floorplanner is 

proposed in [5] that takes into account most of the essential 

factors in the cost function which includes wirelength, resource 

wastage, and the perimeter of a device. The main drawback of 

this floorplanner is that it takes a long time to solve even for 

small design. This floorplanner gives a tight result but a lot of 

dead space may be generated which in turn increases the area 

and wirelength of the overall design. 

     The floorplanning methodology we proposed here focusses 

on shortcomings of previous works along with novel 

innovations. These include white space detection for insertion 

of black box modules, introduction of wasted resource, and area 

as parameters in the cost function and absolute automation of 

the process by integrating with Xilinx Vivado Design Suite. 

Our floorplanner gives a feasible solution in each and every 

move of optimization and there never arises a situation when 

the number of resources allotted for a Reconfigurable Region is 

less than the required number of resources. 

III. FLOORPLANNER AND FPGA ARCHITECTURE 

     The input to our PR_FP_tool tool is a synthesized netlist 

which represents the partially reconfigurable design in terms of 

resource requirement i.e. the number of CLBs, BRAMs and 

DSPs required by each module and the connectivity between 

each module is represented as a hypergraph netlist. Apart from 

the netlist, other input to the tool is the FPGA device 

architecture which is represented as an MxN matrix, where M 

is the number of rows and N is the number of columns in the 

device. The output of the tool gives the coordinates of each of 

the Reconfigurable Regions inside the FPGA fabric Figure 1 

illustrates the tool with input and outputs type. 

 

 
Fig. 1: Inputs and Outputs of the proposed floorplanner. 

A. Modelling of the FPGA Architecture 

The FPGA architecture used for mapping is similar to the 

Xilinx Virtex 5 family of devices. Figure 2 illustrates an 

abstract view of one of the Virtex devices. The device has eight 

clock-regions laid out in four rows and two columns. A clock-

region is 20 CLBs tall and spans half the length of the die. Each 

clock region consists of one of more number of DSP and 

BRAM columns. Majority of clock region is occupied by the 

CLBs. In the literature, the height of the clock regions inside 

the FPGA is considered as the size of the device used for 

mapping [5, 6, 9]. Some of the important architecture related 

definitions include: 

Static Region (SR): Area inside the FPGA chip which remains 

constant during reconfiguration. The static region contains the 

processor or the control unit which decides when to switch 

between modules for the reconfiguration regions along with the 

clock and the I/O blocks. 

 

Reconfigurable Region/Reconfigurable Area (RR): Partitions 

inside the FPGA chip inside which the reconfigurable 

components reside. Reconfigurable regions can accommodate 

one or multiple instances of reconfigurable modules. 

 

Reconfigurable Modules(RM): Different instances of a 

functional unit which resides inside the RR.  A RR 

accommodates different instances of RM keeping the input 

output pins similar. For example, A RR named “math” may 

have two instances of RM named adder and multiplier having 

the same pin connections. 

 

Frame: The smallest reconfigurable unit present in a FPGA is 

called frame. A frame is one CLB column wide and one device 

row high [10]. Fig. 2 illustrates the structure of frames of 

different resources in Xilinx Virtex 5 FPGA device. A BRAM 

frame consists of 2 BRAM slices, DSP consists of 4 slices while 

a CLB frame consists of 20 CLB slices in Virtex 5. 

 

 
Fig. 2: A Virtex 5 style FPGA architecture used for 

floorplanning. Each CLB frame is one CLB wide and has 

height that is same as the clock-region height. 

B. Floorplanning Constrainsts for PR Design 

In order to generate feasible floorplan, the following constraints 

are satisfied by our floorplanner PR_FP_tool in a 

heterogeneous FPGA: 



i. None of the RRs should overlap. For two modules A and B 

not to overlap with each other, the following conditions are 

need to be satisfied:  

(������ ≥ 	���
� || ����
� ≤ 	�����) && (������ ≥
	���
� || ����
� ≤ 	�����)                                                                                                  (1) 

Here, A and B are two modules and x-min and x-max 

represents the extremes in horizontal direction while y-min 

and y-max represents the extremes in vertical direction of the 

two modules. 

 

ii. Total resource available inside the FPGA chip must be 

greater than the sum of the resources of all RR and the SR 
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In the above equations, SR represents resource consumned by 

static region and RR represents resource consumed bt 

reconfigurable regions. The total resource of each type inside 

the FPGA is represented by PGACLB, FPGABRAM and  
FPGADSP respectively. 

 

iii. The rectangular area alloted to a particular RR must contain 

all the resources of each type required by the largest 

instance of PR module going into that region 

     RRaCLB ≥ max(RMa1clb , RMa2clb ………RManclb)                       (5)                                                                                      

     RRaBRAM ≥ max(RMa1BRAM , RMa2BRAM…RManBRAM)                 (6) 

     RRaDSP ≥  max(RMa1DSP , RMa2DSP…… RManDSP)                    (7) 

Here, RRa represents reconfigurable region named ‘a’ and RMa1, 

RMa2 … RMan represents different instances of reconfigurable 

modules which are going into reconfigurable region RRa. 

 

iv. The shape, size and location of each static module should 

remain same across different instances of PR. 

IV. PROPOSED FLOORPLANNER 

The entire design methodology consists of 8 stages which 

starts with synsthesis of the design in Xilinx Vivado[3] and 

ends with configuring the device using Vivado Hardware 

Manager. The important stages of the proposed design flow are: 

i. Synthesize the static module using Xilinx Vivado and 

generate  a netlist. 

ii. Synthesize each of the partially reconfigurabe module 

using Xilinx Vivado and generate a netlist. 

iii. Import the generated static and partial reconfiguration(PR) 

netlists to Vivado,  

iv. Collect resource requirement statistics and wire connection 

information from Vivado and generate file that can be 

accepted by our PR_FP_Tool. 

v. Run PR_FP_tool and generate a  constraint file with the  

coordinates of each RR module 

vi. Using the xdc file generated by the PR_FP_tool, create and 

implement design runs in Vivado..   

vii. Generate bitstream for each configuration of PR designs 

viii. Configure device and  store PR bitstreams in on-board 

memory. 

A. Priority Sort of Reconfigurable Regions 

The RRs present in the design are classified into four different 

categories: 

• Type1: #DSP>0, #BRAM>0, #CLB>0  

• Type2: #DSP>0, #BRAM=0, #CLB>0  

• Type3: #DSP=0, #BRAM>0, #CLB>0 

• Type4: #DSP=0, #BRAM=0, #CLB>0 

     Type1 modules are floorplanned first, followed by Type 2, 

Type 3 and Type 4. The order in which the RRs are to be 

allotted are stored in a sorted region list. The resources, which 

are more readily available, are given lower priority (e.g. CLB) 

and the ones which are least available are more costly and are 

given higher priority (e.g. DSPs).  

     The sorted region list created above is used for building the 

initial floorplan that will be perturbed during simulated 

annealing. 

B. Allocation of Reconfigurable Regions 

   As mentioned in the previous section, the RR present in a 

design is classified into four different categories. For the 

floorplanning of the four different types of RR, three distinct 

types of resource allocation schemes are adopted. These three 

resource allocation schemes are discussed here: 

 

B.1. Resource Allocation Scheme 1 

   This scheme is used to floorplan RRs that consist of all the 

three types of resources (CLB, BRAM and DSP). First we 

allocate the DSP blocks required by the RR as DSP has the 

highest priority and most expensive in Virtex 5. After DSP 

requirement of a RR is fulfilled, BRAM blocks are allotted in a 

similar manner. DSP and BRAM block allocation is followed 

by CLB allocation. CLB frames are also addressable 

individually and one CLB frame contains 20 CLB blocks. Fig. 

3 shows how a Type 1 RR is floorplanned in the FPGA. As 

shown in Fig.3, we allocate block labeled A first which is DSP, 

followed by block B (BRAM) and finally C, which are the 

surrounding CLBs. 

 

B.2. Resource Allocation Scheme 2 

   This method is used to pack RRs that consists of only two 

types of resources; either DSP and CLB or BRAM and CLB.  

While allotting the CLB blocks, it is ensured that the device 

rows occupied by the CLB blocks are same as the DSP or 

BRAM rows. If more CLB blocks are required, CLB blocks 

towards the left or the right of the higher priority column are 

allotted. As shown in Fig.3, we allocate block labeled D (DSP) 

first which is DSP, followed by block E which represents the 

surrounding CLBs. 

C. White Space Detection and Calculations 

   White Space represents the largest continuous rectangles of 

free space which are available inside the FPGA fabric after the 

allocation of Static Region, Type 1 and Type 2 RRs. The white 

space detection algorithm scans the FPGA from left to right and 

finds the largest free rectangles inside the device.  Once all the 

white space rectangles are formed, the coordinates and resource 

availability information of each of the rectangles are stored in a 

list called white space region list. This list is later used for 

Resource Allocation Scheme 3. 

 



C.1 Resource Allocation Scheme 3 

   The white space available inside the FPGA is used for 

resource allocation of Type 4 RR which contains only one type 

of resource i.e. CLBs. The Type 4 RR are allocated to white 

spaces based on a cost function associated with each white 

space region. For each region, we compute a cost, 

 

cost =α*Freedsp+β*Freebram+γ*Freeclb+δ*dist_centroid     (8)   

 
Fig. 3: Illustration showing resource allocation scheme 1 and 

resource allocation scheme 2 inside the FPGA device. 

 

Here, Freedsp, Freebram and Freeclb represents number of free 

DSP, BRAM and CLB blocks respectively in the white space, 

and dist_centroid represents the distance of the white space 

centroid from the centroid of the whole design 

     α, β, γ and δ are weights assigned to each factor which can 

be customized by the user. We have considered α>β>γ>δ as 

DSPs are more valuable as compared to other resources. The 

white spaces inside the white space region list are sorted in 

ascending order based on the cost provided by equation (8). In 

order to floorplan a Type 4 RR, we choose the white space 

which has the minimum cost as well as it contains sufficient 

number of CLB blocks to fulfill the CLB requirement of the 

RR.  This scheme minimizes the wastage of high priority and 

costly resources. This list is recreated after allocation of each 

new RR inside the FPGA. 

 

D. Resource Wastage Calculation in an FPGA 

Owing to the fact that no two RR can share a same frame in 

the same clock region or in the same device row a number of 

resources are wasted which are external to the allotted rectangle 

of the RR. Here, we have shown the calculation for wasted 

resource calculation for each resource in a frame. A frame is 

one row high. We have assumed that the resources are allotted 

only in the vertical direction. 

Definitions of terms used to calculate wasted resource in a row: 

ndsp , nbram, nclb : number of DSP, BRAM, CLB blocks required 

respectively  by a RR                                                                                                                          

DSPper frame , BRAMper frame , CLBper frame : number of DSP, BRAM 

and CLB blocks present in a frame respectively 

fdsp , fbram ,  fclb : number of DSP, BRAM, CLBs frame required 

by a RR respectively 

RWdsp , RWBRAM , RWCLB : number of DSP, BRAM, CLB blocks 

wasted respectively 

 

Number of DSP blocks wasted is given by: 

   -./0 = 2 �345
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<                                                        (9) 

   RWdsp= fdsp*DSPper_frame – ndsp                                                                (10) 

 

Number of BRAM blocks wasted is given by: 

   -=>
� = 2 �?7:;
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<                                                 (11) 

  RWbram= fbram*BRAMper_frame – nbram                                                   (12) 

 

Number of CLB blocks wasted is given by: 

   -@A= = 2 �BC?
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<                                                       (13) 

   RWclb= fclb*CLBper_frame – nclb                                          (14) 

 

Observation: If ndsp,  nbram and nclb are not integer multiples of fdsp 

, fbram and fclb respectively, there will always be RWrec number 

of resources that are wasted. RWrec is given by: 

     RWrec= frec*RECper_frame – nrec                                       (15) 

Here, rec represents the type of resource which can be CLB, 

BRAM or DSP. Resource wastage due to the restriction in 

sharing of a frame by two RRs occur if we allocate resource in 

the vertical direction. Since, CLBs are abundantly available in 

all directions, CLB block allocation in the horizontal direction 

in the same row should be given preference over extending 

CLB blocks in the vertical direction. This way, CLB resource 

wastage can be prevented significantly. But in case of BRAM 

or DSP, horizontal allocation of blocks are not possible as 

single block wide BRAM and DSP columns are aligned in the 

vertical direction only.  

E. Cost Function 

    The initial floorplanning which is done via priority sorting 

algorithm and white space based region allocation method is 

perturbed by simulated annealing which minimizes the cost 

function given by equation (16). 

DEFG = H ∗ JK +  L ∗ MNOM +  P ∗ J�                            (16) 

    Here, WL represents half perimeter wirelength(HPWL), area 

represents total area of the design and WR total wasted resource 

in the design and α, β and γ are weights assigned to each 

parameter by the user. 

Wirelength (WL): The wirelength is calculated using HPWL 

method. For a particular design, the total wirelength is 

calculated as the sum of HPWLs of all the nets present in the 

design.     

Area (Area): The total area represents the area of the bounding 

box enclosing the entire design. The area is calculated as: 
MNOM = MQF(R#"� − R#TU) ∗ MQF(V#"� − V#TU)                        (17)  

    The X and Y coordinates of equation (18) represents the 

extremes of the entire design, not the reconfigurable regions. 

Wasted Resource (WR):  Wasted resource represents the 

blocks present inside a RR rectangle which are not actually 

utilized during placement. WR is calculated as: 

NW@X/Y = YXY
A 764Z[7B6
YXY
ABC?

∗ D\Q]
/Y^. +  YXY
A 764Z[7B6
YXY
A?7:;

∗ QNM_]
/Y^. +
                YXY
A 764Z[7B6

YXY
A345
∗ `Fa]
/Y^.                                               (18) 

    Equation (19) makes sure that the weight assigned to each 

wasted resource is proportional to the total number of elements 



of that particular resource present in the device. rwcost is passed 

to the cost function defined in equation (16).  

F. Representation of Floorplan and Simmulated Annealing 

   We represent the floorplan using sequence pair. The sequence 

pair consists of two sets of permutations of the blocks present 

in the design [19]. The two sequences present in a sequence pair 

depict the relative alignment of the modules with respect to each 

other. The following relationships represent sequence pair: 

(<…..p,……q,….>,<…..p,……q,….>) => p is to the left of q                                                              

(<…..p,…...q,….>,<…..q,……p,….>) => p is above q 

   Simulated annealing is used to minimize the cost function 

defined in equation (16) in order to generate an improved 

floorplan. The input to the annealer is the sequence pair of the 

current floorplan. The simulated annealing moves are described 

below: 

Move 0: Shuffle: In this move, the annealer shuffles both the 

sequences in the sequence pair and starts floorplanning from the 

beginning. This move is very random and is generally 

performed at higher frequency when the temperature is high. 

Move 1: Swap two RR: In this move, the annealer randomly 

chooses two RRs and swaps their positions in both the sequence 

pair. If two modules are swapped in both the sequences, they 

swap their positions in the actual floorplan.  

Move 2: Remove and Replace: In this move, the annealer 

randomly chooses a RR and deletes it from both the sequences. 

The remaining RRs are floorplanned and the removed module 

is floorplanned after all others modules are packed. 

Move 3: Shift a RR Left/Right: In this move, the annealer 

randomly chooses a RR and shift it either towards the right or 

to the left by certain number of CLB blocks. If the resource 

requirement of the RR is violated due the shifting operation, the 

move is ignored and the previous configuration is restored. 

V. EXPERIMENTS AND RESULTS 

   We have tested our floorplanner on an AMD Opteron(tm) 

Processor 3GHz  work station. The floorplanner was tested on 

three different FPGA devices: 

a. A user defined 10x23 FPGA 

b. Xilinx Virtex 5 F110xt 

c. Xilinx Artix 7 XCA100T 

   The user defined 10x23 FPGA is a small heterogeneous 

FPGA which is modelled based on the Virtex architecture. It 

consists of 10 CLB rows and 23 columns. This will represent 

one clock-region. The columns are divided into 1 DSP column, 

2 BRAM columns and remaining 20 CLB columns. The 

reconfigurable regions allotted to this FPGA are generated as a 

task flow graph using TGFF [14] graph generator. Also, it is 

assumed that the frame size is one, i.e. on each frame, only one 

type of resource will exist. Next, we have tested our 

floorplanner on Virtex 5 FPGA. We have used the 5 MCNC 

circuits and 1 GSRC circuit taken from [4] in order to evaluate 

the performance of our floorplanner. Finally, in order to 

validate our floorplanner we integrate it with Xilinx Vivado. 

We have taken the Xilinx Artix 7 device as our base architecture 

and floorplanned a partially reconfigurable median filter used 

in image processing applications using our tool. The median 

filter consists of seven reconfigurable regions. 

A. Result Analysis 

   We have evaluated the performance of our floorplanner using 

the 6 MCNC benchmarks. We calculated the wirelength, area, 

wasted resource and execution time for each of the benchmarks 

and compared our results against the existing work. The results 

presented here are based on Virtex 5 FPGA are shown in Table 

I and Table II. 

 

 

TABLE I.  WIRELENGTH COMPARISON WITH SIMILAR WORKS 

 [13] [7] [12] Ours 

Circuit HPWL HPWL HPWL HPWL 

apte --- 213540 2704 42940 

hp --- 113652 3286 40242 

xerox --- 536450 10476 112630 

ami33 89283 51356 4060 71280 

ami49 1173000 1001462 14050 218800 

n100 358338 132682 26355 189470 

TABLE II.  RUNTIME COMPARISON WITH SIMILAR WORKS 

 [13] [7] [12] Ours 

Circuit Time(sec) Time(sec) Time(sec) Time(sec) 

apte - 1.22 343 0.45 

hp - 0.96 531 0.47 

xerox - 1.02 353 0.58 

ami33 2.71 1.39 369 2.71 

ami49 4.95 3.84 585 4.59 

n100 8.86 8.87 573 15.24 

   

 As shown in Table I, we have calculated the wirelength as half 

perimeter wirelength (HPWL) which is in terms of CLB blocks. 

This means that the unit for wirelength is one CLB unit long. It 

has been found that our floorplanner PR_FP_TOOL gives an 

average 37% improvement of wirelength than the works 

mentioned by Banerjee et. al.[7]. In [7], the FPGA used for the 

testing the benchmark was Xilinx Spartan-3 XC3S5000 where 

the distribution of resources is uniform and follow a repetitive 

pattern. In this work, the authors have partitioned the FPGA 

into basic tiles. Each basic tile consists of 96 CLBs, 1 BRAM 

and 1 DSP block. The wirelength is measured in terms of  basic 

tiles. 

     The work mentioned by Mehta et. al. in [13] was also tested 

on Spartan 3 and Virtex 2 FPGAs. Here the authors 

concentrated only on minimization of wirelength. Resource 

wastage is not accounted for in the cost function. The unit for 

calculation of wirelength is taken as CLBs which is similar to 

ours. When we compared our works with [13], we found that 

there is 49% improvement in wirelength for the last three 

benchmarks and the run time is comparable in both the cases. 

     The results in [12] were derived for Xilinx Spartan 3 

XC3S500 FPGA. The floorplan was scaled [15] so that the 

bounding box of the entire floorplan is same as that of the FPGA 

chip. They have calculated the wirelength using center to center 



HPWL of all the nets. The floorplanner takes much more time 

to generate the floorplan as compared to other state of the art 

works [4, 7, 13]. Our tool runs at around 500 times faster than 

the one mentioned in [12] since we apply pre-processing using 

white space detection and priority based sorting algorithms.  

   

      Table III shows the resource wastage for each type of 

resource. The average resource wastage for CLB, DSP and 

BRAM are 14.7%, 19% and 3.28% respectively which is very 

less as compared to other state of the art works [4,7,16]. 

TABLE III.  PERCENTAGE OF RESOURCE WASTED FOR EACH CIRCUIT 

circuit %clb 

wasted 

%bram  

wasted 

%dsp             

wasted 

apte 12 2 3 

hp 12 5 0 

xerox 11 2 3 

ami33 20 23 0 

ami49 17 21 14 

n100 17 40 3 

B. Integration With Vivado 

   We have integrated our floorplanner with Xilinx Vivado and 

tested on a filter designed for image processing application. The 

PR_FP_TOOL gives the output in a format which is similar to 

the xdc file which can be read by Xilinx Vivado tool. The image 

processing filter consists of 7 reconfigurable regions. Each 

reconfigurable region supports two reconfigurable modules: 
a. Median Filter 

b. Mean Filter 

    The resource requirement vector of actual design is 

significantly different from the resource requirement in MCNC 

benchmark. In the actual design, resource requirement is 

expressed in terms of SLICE_L and SLICE_M, RAM32 or 

RAM16 and DSP48 for Artix 7 FPGA. Figure 5(b) shows a 

design which is floorplanned by our tool on Vivado which is 

compared against a manually floorplaned design shown in 

Figure 5(a). Our floorplanner takes into account the edges to 

which the IOBs of the netlist are connected and places the 

modules near that edge. 

    When we compared the performance of our PR_FP_TOOL 

to a manual floorplanner, we found significant improvement in 

terms of area, maximum clock frequency and implementation 

time. It has been found that our floorplanner is able to reduce 

the total area of the reconfigurable modules by more than 80% 

and the frequency of the design has been increased by 

approximately 4%.  Table IV compare the automatic floorplan 

performance against a manual one while Figure 5 shows the 

manual floorplan against the automatic one. 

TABLE IV.  MANUAL FLOORPLAN VS AUTOMATED FLOORPLAN 

Parameter Manual Automatic 

Design Frequency 26.85 MHz  28.054MHz 

Area 3242 CLB2 513CLB2 

Place & Route Time 4 hours 19mins 23 secs 

VI. CONCLUSION 

We have presented a floorplanner for heterogeneous FPGAs 

that is capable of mapping partially reconfigurable designs. We 

have produced very efficient results with respect to the 

wirelength and the area. We have compared our work with the 

other approaches and have shown better results primarily due 

to the application of our novel white space detection algorithm 

that very effectively manages the dead space inside the device. 

Here, we have managed to reduce wasted resources by adopting 

three different resource allocation schemes for four different 

types of RRs. Also, our floorplanner can be easily integrated 

with vendor supplied place and route tools which we have 

proved by floorplanning a partially reconfigurable image 

processing median filter. In the future, this work can be 

extended to 3-D heterogeneous FPGAs. 

 
(a)                                                   (b)  

Fig. 5 (a) Initial Manual Floorplan, (b) Optimized 

automatic floorplan generated by PR_FP_TOOL  
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